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S1. Additional figures and table
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Figure S1: (a,b) display the covariance functions of two sGPs at 3, and (c,d) display five

sample paths from the two sGPs. The frequency parameter « equals to 7 in (a,c) and 27
in (b,d), and the SD parameter 0 = 1 in both sGPs. Both the covariance functions and the

sample paths exhibit quasi-periodic behavior with amplitudes varying overtime.
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Ist Quantile Median 3rd Quantile

o, (10)  0.4371 (102.05) 0.6446 (120.81) 0.9462 (139.49)
o1(10)  1.8179 (-) 2.4542 (-) 3.1709 (-)
01(10) 18179 () 2.4542 (-) 3.1709 (-)
0u(10)  0.4004 () 0.4514 (-) 0.5019 (-)
091(10)  0.004248 (<) 0.01045 (-) 0.02445 (-)
104(10)  0.01090 (-) 0.02035 (-) 0.03335 (-)
o, 0.5870 (0.6099) 0.5928 (0.6159) 0.5988 (0.6220)

Table S1: Posterior summary of variance parameters for the CO2 example in Section 5.4.
Results from M2 are shown in parenthesis.
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S2. Derivation of the sGP covariance

Proposition S1 (Covariance Function of the Seasonal Gaussian Process). Let g ~ sGP(«a, o).
Then g has a covariance function:

C(x1, 1) = <£)2 {% cos(a(xy — 1)) —

cos(as) sin(axl)}

2 201 (1)
(e [ - (it

for any x1, 19 € RT such that 1 < x5.

Proof. Tt is obvious that the differential operator L is linear. Define gu.u,(7) = (g(z), ¢'(x))”
and therefore g/, () = (¢'(x),¢"(x))", then the SDE can be rewritten in the vector form:

g;ug = Fgaug + JW, <2>

—a? 0 o

Using the result from Sarkka and Solin| (2019) (section 4.3), the solution of the linear SDE
can be written as:

where F = [ 0 1} and J = {0]

Gaug(2) = exp(Fx)gaug(0) + /OI exp(F(z — 7)) JW (1)dr
_ /0 " exp(F(z — 7)) IW (r)dr,

Fkgk
k! -

where exp(Fz) denotes the matrix exponential defined as exp(Fz) = )",

Note that F?* = (—a?)*T and F?* = (—a?)*F. With Taylor series, the first component of
Jaug(x) can be therefore written as:

glz) = /0 o sin(a(z — 7))W (7)dr. (4)

Assume arbitrary 0 < x; < x9, the covariance function can be computed for g as:

k(xy,z9) = /Oxl gsin(a(ml - 7'))% sin(a(zy — 7))dT

_ <§>2 {% cos(a(zs — 1)) — Cos(axQQ)jin(axl) |

—
at
Nl

using properties of Gaussian white noise (Harveyl, [1990).
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S3. Proof of the State-Space Representation

Theorem S1 (State Space Representation of the sGP). Consider g ~ sGP(a, o), and let
s ={s1,...,8n} C R denotes a set of n sorted locations and spacing dy = s1 and d; = s;—8;_1
fori € {2,..,n}. Then the augmented vector guuy(s:) = [9(si),d (s:))]* can be written as a
Markov model:

Gaug(Sit1) = Rit19aug(si) + €it1, (6)

where €; nd N(0,%;). The 2 x 2 matrices R; and Z; = Q"

. are respectively defined as:

X i . in2 .
R — cos(ad;) ésin(adi)] 5 _ 2 L4 - fnod) sin’ (ads) -
' —Q SiIl(Oédi) COS(O[di) ’ sin? (ad;) 2ad;+sin(2ad;)
202 4o

Proof. To show the above Markov representation, note that the value of g(s;41) given g(s;)
can be written similarly as (Sarkka and Solin, [2019)):

Si+1
Gaug(si+1) = exp(Fdi1)Gaug(si) +/ exp(F(sip1 — 7)) JW (7)dr.

i

Recall that F?* = (—a?)*T and F?**! = (—a?)*F, then apply the Taylor series expansion
for both components in the integral above. It then can be rewritten as:

Gaug(Si+1) = exp(Fdiy1)Gaug(si) + /%ZH exp(F(siy1 — 7)) IW (7)dr
= Ri+1gaug<8i) —+ /VHS%VJrl |: SIII( (32-1—1 7')):| O'W(T>d7- ((])

cos (a(si1 — 7))
= z+1gaug( z) + €it1-
Note that since each €;,;1 involves integration at disjoint intervals, their independence

follows from the property of Gaussian white noise (Harvey, 1990). To check its covariance
matrix X;q, note that:

Y2 f: i+ alz sin? (a(siy1 — 7))dr %f:“ sin (a(sip1 — 7)) cos (a(s;41 — 7))dT
i+l 2 [0 sin(a(sipr — 7)) cos (a(sip1 — 7))dT Lo cos? (alsipn — 7))
i di+1 o sin(2adi+1) Sirl2 (adi+1) (S))
- 0_2 a? 2 4a 2a?
- 9
sinQ(adi+1) 2adi+1+sin(2adi+1)
2a? 4a

which completes the proof.
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S4. Details of the Finite Element Method

The Finite Element Method (FEM) used to construct the finite-dimensional approximation
can be understood as the following procedures.

Given the (linear) stochastic differential equation (SDE) that defines the sGP model:

Lg(z) = o§(x),

where L = a® + j—; is a linear differential operator and &(z) is the standard Gaussian white
noise process. Let Q@ C R* denotes a bounded interval of interest. Let By := {p;,i € [k]}
denote the set of k pre-specified basis functions, and let T, := {¢;,7 € [¢]} denote the set
of ¢ pre-specified test functions. We consider finite dimensional approximation with form
g(.) = Zle w;pi(.). The weights w := [wy,...,w]T € R* is a set of random weights to be
determined.

In our FEM construction, we used the sB-splines defined over €2 as the basis functions,
and chose the test functions by Ty := {¢; = Ly;, i € [k]}, which is called a least squares
approximation in [Lindgren et al|(2011]). The distribution of the unknown weight vector can

be found by fulfilling the weak formulation at the test function spaces Ty, such that

(Lg(x), ¢i(x)) £ o(E(x), di(2)), (10)

for any test function ¢; € Ty. This equation can also be vectorized as:

(Lg(), ¢i(x))izy = Huw,

where the 7j component of the k x k H matrix can be computed as H;; = (Lip;(x), Ly;(z))¥_;.
The inner product on the right (£(z), ¢;(x))¥_, will have Gaussian distribution with zero
mean vector and covariance matrix H by properties of Gaussian white noise (Harvey|, |1990)).

Therefore, the basis coefficients w will be multivariate Gaussian with zero mean and covari-
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ance H-'HH ' = H~!. Each element of the matrix H can be written as:

Hyj = (Lyj, L)

d? 2 d? ©i

= <a2§0j + _de ’a290i + — > (ll)
2y, 2o, 2o, Py,

_ 4 2 J 2 7 7 7

=a <90j790i>+a’ <dx2a<pi>+a <§Oj’ dl’2>+<dl’2’ d(L’2 >7

hence H = a*G + C + a*M with Gi; = (i, p;), Cij = (dQ“"i d%j) and M;; = (¢, %) +

dz? 7 dx?

(‘g;‘;" , g0j> for each element of the matrices.

S5. Proof of the Convergence Result

Theorem (Convergence of B-spline Approximation). Let 2 = [a,b] where a,b € RT and
let g ~ sGP(a,0). Assume By, is a set of k cubic B-splines constructed with equally spaced

knots over ), and gy denotes the corresponding FEM approximation, then:
hm Ck(l'l, xg) = C(l’l, $2),
k—o0

for any x1, x5 € Q, where C(x1, x2) = Covlg(z1), g(x2)], Cr(z1,22) = Cov|gy(z1), gr(22)].

Proof. The proof of this theorem starts with a similar strategy as in [Lindgren et al.| (2011).
Without the loss of generality, we assume the variance paramter of the sGP ¢ = 1 and
Q = [0,1]. We denote the 3rd order Sobolev space as H3(Q) = {f € L*(Q) : Dif €

L£2(Q) V|g|< 3}. We then define the constrained Sobolev space H as:
H={f € H(Q): f(0) = f'(0) = 0}.

Since Lf = 0 implies f € span{cos(ax),sin(ax)}, it is clear that
)y = (LFLh)g = [ Li@)Lh(a)ds (12)
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defines an inner product for f,h € H.

Let b > 1 and Q = [0,b) D Q, then for each f € H3(Q), there exists a zero-extension
fo € H*(Q) such that fo(z) = f(z) for z € Q, and fo(b) = fi(b) = 0. Hence, we assume
without the loss of generality that for each f € H, f(1) = f/(1) = 0 from now. This implies
that the differential operator D in H has adjoint operator (D?)* = (—1)?D? for each g € Z.

Define H;, = span{B;}. Note H; C H by our construction of the B-spline basis. This

implies if f(z) € 7, then there exists a projection f(x) = SF | wypi(z) € Hy which satisfies:

oo
~—

—f,h) ={f,h) —{(fh) =0, Vh 1
(F=Fh) =(f.h) —(fh) =0, Vhe. (
To prove limy_, o, Ci(21, 22) = C(x1, x2), note that for any f, h € H,

Cov[(g: Fla+ (9, h)y) = Cov[(Lg, Lf)q , (Lg, Lh)g)
= Cov[(§, Lf)g, (& Lh)g)
= (Lf,Lh)q,

(14)

The second equality follows from the definition of the sGP, and the third equality follows
from the property of Gaussian white noise (Harvey, 1990).

Since the B-spline approximation g, € H;, we know
(Grs [y = <§k,f— f+f>H = <§k7f>H - <§k,f - f>H = <§k,f>H.

Using this result and the fact that the B-spline approximation g, is a least square solution,

we have

Cov [@k,m , <§k,h>H] = Cov {(gkﬂﬂ , <§k,h>H}
= Cov [<§,Lf>ﬂ , <5, LB>Q] (15)
(i),
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Let Cs(z) = C(s,z) denote the covariance function of the sGP defined at any s € ). Based

on the previous result in [Proposition S1}, we know Cy(z) € H and LC,(z) = + sina(s — z)7]

is the Green function of L. Its projection into Hy is denoted as Cq(x)

Lemma 1. Given the same setting in the main theorem

C(‘rlvx?) = Cov [ <gacw1>’}-[ ) <gacl"2>7-[]

Ci1, 22) = Cov {<gkC>H , <gkC>H}

(16)

Proof. The first part directly follows from the proof in [Proposition S1l The second part can

be proved using the fact that L is self-adjoint and LC,, (z) = Lsin[a(z, — x)*] is the Green

function, which implies <gpi, C~x1> = ;(xy) for each i € [k]. The detailed proof proceeds as
H

the following.

By construction of the B-spline approximation,

Cr(x1,22) = Cov[zi:wicpi(xl), Xi:wi%(@) }
= Cov [<I>(:L*1)Tw, @(xg)Tw] (17)
= & (1) 8 ®(22),

where ®(z) = [p1(), ..., or(2)]T.

Since C,,(x) is the projection of Cy, () to Hp, Cu (x) = 3, wa, ipi(z) for some weights

Wy, = [Way 1y ey wxl,k]T. The same argument can be used for C,,. Therefore

Cov| (i0.Cur) (€)= (Canc),

D

(18)
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Solving <éx1, goi> = (Cy,, i)y for each i € [k] yields that w,, = 3,w,,, where w,, € R
H
with 7th element w,, ; = (Cy,, ¢i)4,- Hence it only remains to show w,, = ®(x;), which holds

because

wwl,i - <Cx17 LPZ>H
= <LC21> L901>Q

= <L*LC$1 ) 901'>Q

(19)

The last equality holds because L is a self-adjoint operator and LC,, is the Green function.

This lemma is hence proved. O

Using the above result and [Lemma 1], it suffices to prove that

(CorsCua) = (Car.Conly (20)

as k — oo. For this step, we will use the following lemma on the spline approximation:

Lemma 2. Given the same setting in the main theorem, define the norm ||f||lu= (f, f)%2
for f € H then
1Cs = Colls = O(1/k), (21)

for each s € ().

Proof. The proof of this lemma mostly follows from the result in |Schultz| (1969). Given Hy
is a spline space with degree 3 and mesh size 1/k and Cy € H3(f2), by theorem 3.3 in |Schultz
(1969) we have

- 1\37¢ ’
1D9(C, — €l < (z) (22)

for each 0 < ¢ < 2, where ¢, is a constant that depends on ||C;l|| () but does not depend
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on k. Note that

I, = Colly, = atlic, — Gl aHID(C, — Go) =20 ((C; — €), D*(C, — C.))

& (23)
= a'||C, - CS||%2+||D2(CS - CS)||%22+2Q||D(CS - CS)H%??
where the second equality holds since D* = —D. The lemma is proved since ||.||3y and
||| #r2(0) are equivalent norm.
O

Using [Lemma 2| [Eq. (20)| can be proved with Cauchy Schwarz inequality and the fact that

the sequence ||C,, || is bounded,

(G, - (o

_ ’ (G =i Ca) = (CorsCo = Coa) ‘
< Coy = CorllallCosl 3y + 1oy — ConllyglICarlly,  (2Y)

= c/k,

where ¢ is some constant independent of k. The theorem is hence proved. O
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