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S1. Additional figures and table
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(a) α = π: Covariance
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(b) α = 2π: Covariance
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(c) α = π: Samples
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(d) α = 2π: Samples

Figure S1: (a,b) display the covariance functions of two sGPs at 3, and (c,d) display five
sample paths from the two sGPs. The frequency parameter α equals to π in (a,c) and 2π
in (b,d), and the SD parameter σ = 1 in both sGPs. Both the covariance functions and the
sample paths exhibit quasi-periodic behavior with amplitudes varying overtime.
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1st Quantile Median 3rd Quantile
σtr(10) 0.4371 (102.05) 0.6446 (120.81) 0.9462 (139.49)
σ1(10) 1.8179 (–) 2.4542 (–) 3.1709 (–)
σ 1

2
(10) 1.8179 (–) 2.4542 (–) 3.1709 (–)

σ 44
12
(10) 0.4004 (–) 0.4514 (–) 0.5019 (–)

σ9.1(10) 0.004248 (–) 0.01045 (–) 0.02445 (–)
σ10.4(10) 0.01090 (–) 0.02035 (–) 0.03335 (–)
σϵ 0.5870 (0.6099) 0.5928 (0.6159) 0.5988 (0.6220)

Table S1: Posterior summary of variance parameters for the CO2 example in Section 5.4.
Results from M2 are shown in parenthesis.
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S2. Derivation of the sGP covariance

Proposition S1 (Covariance Function of the Seasonal Gaussian Process). Let g ∼ sGP(α, σ).
Then g has a covariance function:

C(x1, x2) =

(
σ

α

)2[
x1

2
cos(α(x2 − x1))−

cos(αx2) sin(αx1)

2α

]
=

(
σ

α

)2[
cos(αx2)x1

2
cos(αx1) +

(
sin(αx2)x1

2
− cos(αx2)

2α

)
sin(αx1)

]
,

(1)

for any x1, x2 ∈ R+ such that x1 ≤ x2.

Proof. It is obvious that the differential operator L is linear. Define gaug(x) = (g(x), g′(x))T

and therefore g′
aug(x) = (g′(x), g′′(x))T , then the SDE can be rewritten in the vector form:

g′
aug = Fgaug + JW, (2)

where F =

[
0 1

−α2 0

]
and J =

[
0
σ

]
.

Using the result from Särkkä and Solin (2019) (section 4.3), the solution of the linear SDE
can be written as:

gaug(x) = exp(Fx)gaug(0) +

∫ x

0

exp(F(x− τ))JW (τ)dτ

=

∫ x

0

exp(F(x− τ))JW (τ)dτ,

(3)

where exp(Fx) denotes the matrix exponential defined as exp(Fx) =
∑

k
Fkxk

k!
.

Note that F2k = (−α2)kI and F2k = (−α2)kF. With Taylor series, the first component of
gaug(x) can be therefore written as:

g(x) =

∫ x

0

σ

α
sin(a(x− τ))W (τ)dτ. (4)

Assume arbitrary 0 < x1 ≤ x2, the covariance function can be computed for g as:

k(x1, x2) =

∫ x1

0

σ

α
sin(α(x1 − τ))

σ

a
sin(α(x2 − τ))dτ

=

(
σ

α

)2[
x1

2
cos(α(x2 − x1))−

cos(αx2) sin(αx1)

2α

]
,

(5)

using properties of Gaussian white noise (Harvey, 1990).
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S3. Proof of the State-Space Representation

Theorem S1 (State Space Representation of the sGP). Consider g ∼ sGP(α, σ), and let
s = {s1, ..., sn} ⊂ R+ denotes a set of n sorted locations and spacing d1 = s1 and di = si−si−1

for i ∈ {2, .., n}. Then the augmented vector gaug(si) = [g(si), g
′(si)]

T can be written as a
Markov model:

gaug(si+1) = Ri+1gaug(si) + ϵi+1, (6)

where ϵi
ind∼ N(0,Σi). The 2× 2 matrices Ri and Σi = Q−1

i are respectively defined as:

Ri =

[
cos(αdi)

1
α
sin(αdi)

−α sin(αdi) cos(αdi)

]
, Σi = σ2

 1
α2

(
di
2
− sin(2αdi)

4α

)
sin2(αdi)

2α2

sin2(αdi)
2α2

2αdi+sin(2αdi)
4α

 . (7)

Proof. To show the above Markov representation, note that the value of g(si+1) given g(si)
can be written similarly as (Särkkä and Solin, 2019):

gaug(si+1) = exp(Fdi+1)gaug(si) +

∫ si+1

si

exp(F(si+1 − τ))JW (τ)dτ.

Recall that F2k = (−a2)kI and F2k+1 = (−a2)kF, then apply the Taylor series expansion
for both components in the integral above. It then can be rewritten as:

gaug(si+1) = exp(Fdi+1)gaug(si) +

∫ si+1

si

exp(F(si+1 − τ))JW (τ)dτ

= Ri+1gaug(si) +

∫ si+1

si

[
1
a
sin (a(si+1 − τ))
cos (a(si+1 − τ))

]
σW (τ)dτ

:= Ri+1gaug(si) + ϵi+1.

(8)

Note that since each ϵi+1 involves integration at disjoint intervals, their independence
follows from the property of Gaussian white noise (Harvey, 1990). To check its covariance
matrix Σi+1, note that:

Σi+1 = σ2
[ ∫ si+1

si

1
a2
sin2 (a(si+1 − τ))dτ 1

a

∫ si+1

si
sin (a(si+1 − τ)) cos (a(si+1 − τ))dτ

1
a

∫ si+1

si
sin (a(si+1 − τ)) cos (a(si+1 − τ))dτ

∫ si+1

si
cos2 (a(si+1 − τ))

]

= σ2

 1
a2

(
di+1

2
− sin(2adi+1)

4a

)
sin2(adi+1)

2a2

sin2(adi+1)
2a2

2adi+1+sin(2adi+1)
4a

 ,
(9)

which completes the proof.
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S4. Details of the Finite Element Method

The Finite Element Method (FEM) used to construct the finite-dimensional approximation

can be understood as the following procedures.

Given the (linear) stochastic differential equation (SDE) that defines the sGP model:

Lg(x) = σξ(x),

where L = a2 + d2

dx2 is a linear differential operator and ξ(x) is the standard Gaussian white

noise process. Let Ω ⊂ R+ denotes a bounded interval of interest. Let Bk := {φi, i ∈ [k]}

denote the set of k pre-specified basis functions, and let Tq := {ϕi, i ∈ [q]} denote the set

of q pre-specified test functions. We consider finite dimensional approximation with form

g̃(.) =
∑k

i=1wiφi(.). The weights w := [w1, ..., wk]
T ∈ Rk is a set of random weights to be

determined.

In our FEM construction, we used the sB-splines defined over Ω as the basis functions,

and chose the test functions by Tk := {ϕi = Lφi, i ∈ [k]}, which is called a least squares

approximation in Lindgren et al. (2011). The distribution of the unknown weight vector can

be found by fulfilling the weak formulation at the test function spaces Tk, such that

⟨Lg̃(x), ϕi(x)⟩
d
= σ⟨ξ(x), ϕi(x)⟩, (10)

for any test function ϕi ∈ Tk. This equation can also be vectorized as:

⟨Lg̃(x), ϕi(x)⟩ki=1 = Hw,

where the ij component of the k×k H matrix can be computed asHij = ⟨Lφj(x), Lφi(x)⟩ki=1.

The inner product on the right ⟨ξ(x), ϕi(x)⟩ki=1 will have Gaussian distribution with zero

mean vector and covariance matrix H by properties of Gaussian white noise (Harvey, 1990).

Therefore, the basis coefficients w will be multivariate Gaussian with zero mean and covari-

S6



ance H−1HH−1 = H−1. Each element of the matrix H can be written as:

Hij = ⟨Lφj, Lφi⟩

= ⟨a2φj +
d2φj

dx2
, a2φi +

d2φi

dx2
⟩

= a4⟨φj, φi⟩+ a2⟨d
2φj

dx2
, φi⟩+ a2⟨φj,

d2φi

dx2
⟩+ ⟨d

2φj

dx2
,
d2φi

dx2
⟩,

(11)

hence H = a4G + C + a2M with Gij = ⟨φi, φj⟩, Cij = ⟨d2φi

dx2 ,
d2φj

dx2 ⟩ and Mij = ⟨φi,
d2φj

dx2 ⟩ +

⟨d2φi

dx2 , φj⟩ for each element of the matrices.

S5. Proof of the Convergence Result

Theorem (Convergence of B-spline Approximation). Let Ω = [a, b] where a, b ∈ R+ and

let g ∼ sGP(α, σ). Assume Bk is a set of k cubic B-splines constructed with equally spaced

knots over Ω, and g̃k denotes the corresponding FEM approximation, then:

lim
k→∞

Ck(x1, x2) = C(x1, x2),

for any x1, x2 ∈ Ω, where C(x1, x2) = Cov[g(x1), g(x2)], Ck(x1, x2) = Cov[g̃k(x1), g̃k(x2)].

Proof. The proof of this theorem starts with a similar strategy as in Lindgren et al. (2011).

Without the loss of generality, we assume the variance paramter of the sGP σ = 1 and

Ω = [0, 1]. We denote the 3rd order Sobolev space as H3(Ω) = {f ∈ L2(Ω) : Dqf ∈

L2(Ω) ∀|q|≤ 3}. We then define the constrained Sobolev space H as:

H = {f ∈ H3(Ω) : f(0) = f ′(0) = 0}.

Since Lf = 0 implies f ∈ span{cos(αx), sin(αx)}, it is clear that

⟨f, h⟩H := ⟨Lf, Lh⟩Ω =

∫
Ω

Lf(x)Lh(x)dx (12)

S7



defines an inner product for f, h ∈ H.

Let b > 1 and Ω̃ = [0, b) ⊃ Ω, then for each f ∈ H3(Ω), there exists a zero-extension

f0 ∈ H3(Ω̃) such that f0(x) = f(x) for x ∈ Ω, and f0(b) = f ′
0(b) = 0. Hence, we assume

without the loss of generality that for each f ∈ H, f(1) = f ′(1) = 0 from now. This implies

that the differential operator Dq in H has adjoint operator (Dq)∗ = (−1)qDq for each q ∈ Z.

Define Hk = span{Bk}. Note Hk ⊂ H by our construction of the B-spline basis. This

implies if f(x) ∈ H, then there exists a projection f̃(x) =
∑k

i=1wiφi(x) ∈ Hk which satisfies:

〈
f − f̃ , h̃

〉
H
=

〈
f, h̃

〉
H
−
〈
f̃ , h̃

〉
H
= 0, ∀h̃ ∈ Hk. (13)

To prove limk→∞ Ck(x1, x2) = C(x1, x2), note that for any f, h ∈ H,

Cov[⟨g, f⟩H , ⟨g, h⟩H] := Cov[⟨Lg, Lf⟩Ω , ⟨Lg, Lh⟩Ω]

= Cov[⟨ξ, Lf⟩Ω , ⟨ξ, Lh⟩Ω]

= ⟨Lf, Lh⟩Ω ,

= ⟨f, h⟩H .

(14)

The second equality follows from the definition of the sGP, and the third equality follows

from the property of Gaussian white noise (Harvey, 1990).

Since the B-spline approximation g̃k ∈ Hk, we know

⟨g̃k, f⟩H =
〈
g̃k, f − f̃ + f̃

〉
H
=

〈
g̃k, f̃

〉
H
+
〈
g̃k, f − f̃

〉
H
=

〈
g̃k, f̃

〉
H
.

Using this result and the fact that the B-spline approximation g̃k is a least square solution,

we have

Cov

[
⟨g̃k, f⟩H , ⟨g̃k, h⟩H

]
= Cov

[〈
g̃k, f̃

〉
H
,
〈
g̃k, h̃

〉
H

]
= Cov

[〈
ξ, Lf̃

〉
Ω
,
〈
ξ, Lh̃

〉
Ω

]
=

〈
f̃ , h̃

〉
H
.

(15)
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Let Cs(x) = C(s, x) denote the covariance function of the sGP defined at any s ∈ Ω. Based

on the previous result in Proposition S1, we know Cs(x) ∈ H and LCs(x) = 1
α
sin[α(s− x)+]

is the Green function of L. Its projection into Hk is denoted as C̃s(x)

Lemma 1. Given the same setting in the main theorem

C(x1, x2) = Cov [ ⟨g, Cx1⟩H , ⟨g, Cx2⟩H ]

Ck(x1, x2) = Cov

[〈
g̃k, C̃x1

〉
H
,
〈
g̃k, C̃x2

〉
H

]
.

(16)

Proof. The first part directly follows from the proof in Proposition S1. The second part can

be proved using the fact that L is self-adjoint and LCx1(x) =
1
a
sin[a(x1 − x)+] is the Green

function, which implies
〈
φi, C̃x1

〉
H
= φi(x1) for each i ∈ [k]. The detailed proof proceeds as

the following.

By construction of the B-spline approximation,

Ck(x1, x2) = Cov

[∑
i

wiφi(x1),
∑
i

wiφi(x2)

]
= Cov

[
Φ(x1)

Tw,Φ(x2)
Tw

]
= Φ(x1)

TΣwΦ(x2),

(17)

where Φ(x) = [φ1(x), ..., φk(x)]
T .

Since C̃x1(x) is the projection of Cx1(x) to Hk, C̃x1(x) =
∑

i wx1,iφi(x) for some weights

wx1 = [wx1,1, ..., wx1,k]
T . The same argument can be used for C̃x2 . Therefore

Cov

[〈
g̃k, C̃x1

〉
H
,
〈
g̃k, C̃x2

〉
H

]
=

〈
C̃x1 , C̃x2

〉
H

=
〈
Φ(x)Twx1 ,Φ(x)Twx2

〉
H

=
〈
LΦ(x)Twx1 , LΦ(x)Twx2

〉
Ω

= wT
x1
Σ−1

w wx2 .

(18)
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Solving
〈
C̃x1 , φi

〉
H
= ⟨Cx1 , φi⟩H for each i ∈ [k] yields that wx1 = Σwωx1 , where ωx1 ∈ Rk

with ith element ωx1,i = ⟨Cx1 , φi⟩H. Hence it only remains to show ωx1 = Φ(x1), which holds

because

ωx1,i = ⟨Cx1 , φi⟩H

= ⟨LCx1 , Lφi⟩Ω

= ⟨L∗LCx1 , φi⟩Ω

= φi(x1), ∀i ∈ [k].

(19)

The last equality holds because L is a self-adjoint operator and LCx1 is the Green function.

This lemma is hence proved.

Using the above result and Lemma 1, it suffices to prove that

〈
C̃x1 , C̃x2

〉
H
→ ⟨Cx1 , Cx2⟩H , (20)

as k → ∞. For this step, we will use the following lemma on the spline approximation:

Lemma 2. Given the same setting in the main theorem, define the norm ||f ||H= ⟨f, f⟩1/2H

for f ∈ H then

||Cs − C̃s||H = O(1/k), (21)

for each s ∈ Ω.

Proof. The proof of this lemma mostly follows from the result in Schultz (1969). Given Hk

is a spline space with degree 3 and mesh size 1/k and Cs ∈ H3(Ω), by theorem 3.3 in Schultz

(1969) we have

||Dq(Cs − C̃s)||H2(Ω)≤ cq

(
1

k

)3−q

(22)

for each 0 ≤ q ≤ 2, where cq is a constant that depends on ||Cs||H3(Ω) but does not depend
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on k. Note that

||Cs − C̃s||2H = α4||Cs − C̃s||2L2+||D2(Cs − C̃s)||2L2−2α
〈
(Cs − C̃s), D2(Cs − C̃s)

〉
Ω

= α4||Cs − C̃s||2L2+||D2(Cs − C̃s)||2L2+2α||D(Cs − C̃s)||2L2 ,

(23)

where the second equality holds since D∗ = −D. The lemma is proved since ||.||H and

||.||H2(Ω) are equivalent norm.

Using Lemma 2, Eq. (20) can be proved with Cauchy Schwarz inequality and the fact that

the sequence ||C̃x2||H is bounded,

∣∣∣∣ 〈C̃x1 , C̃x2

〉
H
− ⟨Cx1 , Cx2⟩H

∣∣∣∣ = ∣∣∣∣ 〈C̃x1 − Cx1 , C̃x2

〉
H
−
〈
Cx1 , Cx2 − C̃x2

〉
H

∣∣∣∣
≤ ||C̃x1 − Cx1||H||C̃x2||H + ||C̃x2 − Cx2||H||Cx1||H

= c/k,

(24)

where c is some constant independent of k. The theorem is hence proved.
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