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Experiments

Processing Times

Fig. S-1: Minimum time to process 100 perovskite samples and compute band gap.
The processing times are shown for three different scenarios: (a) manual synthesis man-
ual and characterization, (b) high-throughput synthesis and manual characterization,
and (c) high-throughput synthesis and high-throughput autocharacterization.

In this paper, we aim to achieve higher rate-matching between the synthesis
and characterization of materials for high-throughput screening. In Figure S-1, the
minimum processing time required to go from precursor to data is illustrated for per-
ovskite samples. The minimum processing times to collect band gap data for 100
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perovskite samples are shown and represent the times experimentally recorded during
this study. Three different scenarios are represented that use combinations of both
manual and high-throughput methods. The processing time to collect these band gap
data is further broken down into four steps: (1) precursor preparation, (2) synthe-
sis, (3) annealing, and (4) characterization. These are the minimum processing times
as they do not account for sample transfer times or reloading, e.g., moving a sample
to the hotplate. In Figure S-1b, moving from manual to high-throughput synthesis
results in a higher discrepancy of throughputs between synthesis and characteriza-
tion, which bottlenecks the materials screening loop. However, in Figure S-1c, by using
high-throughput autocharacterization, the rate of high-throughput synthesis is closely
matched to that of high-throughput synthesis, in turn, enabling more efficient materi-
als screening. The bottleneck then becomes precursor preparation, which is out of the
scope of this study.

To detail the individual processing time contributions in this study, precursor
preparation is always conducted manually and takes 90 minutes to make 100 samples
worth of solution for all three scenarios. Synthesis takes 45 seconds per sample for
manual spin coating and takes 20 seconds per 100 samples for high-throughput man-
ufacturing. Annealing takes 10 minutes for manual thin films where 8 samples can fit
on a single hot plate at a time. It takes 15 minutes for the thicker, high-throughput
samples but all 100 samples can fit on a single hot plate. Characterization for com-
puting band gap takes 255 minutes per 100 samples manually by a domain expert. It
takes 3 minutes per 100 samples using the band gap extractor autocharacterization
algorithm developed in this paper.

Experimental Reproducibility
Variability exists across samples manufactured using our high-throughput combi-

natorial printer, as the setup is designed for low-cost, scalable, and high-throughput
screening rather than high-fidelity experiments. Although the purpose of the paper
is not to highlight the perovskite manufacturing method but to focus on the rate
matching of characterization, it is important to understand the sources of variability
from experiment to experiment, as these sources of variability will arise for those who
replicate the proposed approaches. Figure S-2 shows the post-degradation structural
morphology differences between two of the same sample compositions across two sep-
arate batches, manufactured using the same printing conditions. Both batches were
degraded under the same environmental conditions for 2 hours at 35◦C, 40% relative
humidity, and 0.5 suns of AM1.5 illumination (without UV). During crystallization,
batch A achieved more uniform and compact grain boundaries, whereas the crystalliza-
tion in sample B produced jagged boundaries, inducing more pathways for degradation.
This crystallization mismatch explains the accelerated degradation noted in batch B
relative to batch A. Samples that are prone to phase changes (e.g., compositions near
phase boundaries such as 0.0 ≤ x ≤ 0.15, for FA1−xMAxPbI3), may experience high
sample-to-sample variances using any sample preparation approach. Therefore, the
effects of these variations must be carefully considered in high-throughput manufac-
turing scenarios, where not every sample can be fully characterized at high fidelity.
These morphological variations in the high-throughput manufacturing process must
be further studied to ascertain better control over experimental reproducibility. In this
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(a) Batch A (b) Batch B

Fig. S-2: Optical microscopy of deposit morphology between two different batches of
FA0.67MA0.33PbI3 after controlled degradation.

study, three batches of samples were selected with similar morphology in an attempt
to minimize this variation and maintain the emphasis of the paper on the assessment
of the proposed automatic characterization methods, rather than on the method of
synthesis.

Material Characterization

Computer Vision Segmentation and Composition Mapping
Figures S-4a-b illustrate the process of going from a raw hyperspectral datacube

(Ω) to computer vision-segmented data (Φ), which is used as input to the autochar-
acterization methods developed in this paper. An image, Ω, which can be in either
Hyperspectral or RGB format, is segmented using Algorithm 1, producing the seg-
mented pixels, (X̂, Ŷ ), and their corresponding set of reflectance values, R(λ). The

matched sets of (X̂, Ŷ ) and R(λ) are denoted as Φ. The compositions of each deposited
sample are then able to be mapped onto the segmented Φ using the G-code raster
path of the printer head, the pump speed traces from Figure S-3, and Equation 1.
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Fig. S-3: Traces of motor velocity over time for each perovskite precursor, MAPbI3
and FAPbI3, for high-throughput combinatorial deposition as droplets.

Figure S-4c illustrates this complete mapping of all material deposits with their derived
compositions within the FA1−xMAxPbI3 series.

Band Gap
The materials within the FA1−xMAxPbI3 compositional series are direct band

gap semiconductors [67, 68]. To compute the band gap of these materials, first, the
reflectance spectra of all samples are measured using a hyperspectral camera (Resonon
Pika L) that measures reflectance within the wavelength range λ ∈ [380nm, 1020nm] at
2nm resolution. Figure S-5 illustrates the measured reflectance spectra for all N = 201
samples in the paper, gathered using the computer vision-segmentation of the raw
hyperspectral datacube, as shown in Figure S-4. Then, the reflectance spectra are
converted to their corresponding absorption spectra using the Kubelka-Munk equation
[19, 55] for sufficiently thick samples (the thickness of our samples is approximately
300µm – which is considered sufficiently thick for reflectance measurement):

F (R) =
(1 −R)2

2R
, (S-2)

where R is the reflectance for the entire range of λ for a given segmented pixel in the
reflectance hypercube, (X̂, Ŷ ). Next, the Tauc curves are computed from F (R) [54]:

(F (R) · hν)1/γ = B(hν − Eg), (S-3)

where hν is energy (hν = 1240
λ ), γ = 1

2 for direct band gap and γ = 2 for indirect band
gap, B is a constant that allows the band gap, Eg, to be the x-intercept of a regression
fit line to the slope of Tauc curve. Hence, the following equation arises that enables
computation of the direct band gap from the initial reflectance spectra by equating
Equation S-4 to Equation S-3:

(F (R) · hν)2 =

(
(1 −R)2

2R
· 1240

λ

)2

=

(
620(1 −R)2

λR

)2

. (S-4)

In this paper, we use the theory formulated above from optics to automatically
compute the median band gap across all vision-segmented pixels (X̂, Ŷ ) for a given
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(a) Raw Image

(b) Computer Vision-segmented Image

(c) Automated Composition Extraction Overlay

Fig. S-4: Computer vision segmentation and composition mapping.

5



Fig. S-5: Hyperspectral reflectance of all N = 201 samples synthesized in this study,
color mapped as a function of composition.

perovskite sample, as described by the autocharacterization algorithm illustrated in
Figure 4. Currently, the autocharacterization algorithm is configured to operate only
on materials with a single direct band gap. The band gaps computed using the auto-
matic Tauc segmentation and regression RMSE minimization processes employed by
the autocharacterization algorithms are benchmarked against the band gaps calcu-
lated manually by a domain expert. This band gap comparison between algorithm
and expert is used to determine an accuracy metric for the algorithm, assuming the
expert-calculated output as ground truth. The accuracy is calculated by taking the
average of a binary 0/1 for all N = 201 samples, determined based on whether or not
the differences between the automatic and the expert band gap values fall within a
specified energy difference threshold (shown along the x-axis of Figure S-6b).

Figure S-6a illustrates the autocharacterization output band gaps as a function of
composition for the three independent batches. Figure S-6b illustrates the accuracy of
the automatic algorithm as a function of the energy difference threshold. The algorithm
achieves 98.5% accuracy within 0.02eV and as the threshold becomes tighter, the
algorithm accuracy is expected to decrease.

Stability
To conduct the degradation experiments in this paper, we put the samples in a

degradation chamber and monitor the conditions for 2 hours, capturing RGB images
(Thorlabs DCC1645C camera with the infrared filter removed to increase sensitiv-
ity towards dark samples) every 30 seconds. The construction and operation of the
degradation chamber setup are detailed in Keesey & Tiihonen et al. [8]. Figure S-
7(a) shows the time series of temperature and humidity conditions over the course of
the experiment. Over the 2-hour degradation experiment, the temperature conditions
were maintained at 34.5◦C ± 0.5◦C with a relative humidity of 40% ± 1%. An initial
jump in temperature with a respective dip in humidity is noted as the samples are
placed into the degradation chamber before the internal environment equilibrates. A
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(a) Algorithm Batched Output (b) Algorithm Accuracy

Fig. S-6: (a) Direct band gap values output by the automatic band gap extraction
algorithm, split by batch, as a function of FA1−xMAxPbI3 composition. (b) Automatic
band gap extraction algorithm accuracy as a function of the maximum allowable dif-
ference in energy between the domain expert-calculated and automatically calculated
band gaps.

(a) Temporal Degradation Conditions (b) Fixed Degradation Illumination

Fig. S-7: (a) Temporal degradation conditions for each of the 3 batches of samples over
the course of 2 hours, measured using a temperature and humidity sensor (Adafruit,
AHT10). (b) Spatial uniformity of illumination measured across the substrate within
the degradation chamber, measured using a lux sensor (Adafruit, VEML7700).

class AAA solar simulator (G2V Optics Sunbrick Base, with visible-only part of the
AM1.5G spectrum) is used to illuminate the 3”×2” substrate of samples during the
2-hour degradation experiment. Figure S-7(b) shows the spatial uniformity of the illu-
mination across the substrate internal to the degradation chamber, measured using a
lux sensor (Adafruit, VEML7700). These illumination conditions are held fixed over
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the course of the experiment. Most of the substrate experiences 0.50-0.55 suns of illu-
mination, however, in the top-left corner of the substrate, a dip in illumination occurs
as a result of minor occlusion due to sensor placement. Figure S-8 illustrates that this
dip in illumination at the top-left corner of the substrate does not have a major effect
on the degradation pattern of the FA1−xMAxPbI3 compositional series. Degradation,
as indicated by the yellowing, is shown to begin in the formamidinium (FA)-rich end
of the samples and migrates towards the methylammonium (MA)-rich end over time.

Fig. S-8: Degradation of the high-throughput manufactured FA1−xMAxPbI3 compo-
sitional series over 2 hours.

After segmenting each sample across the entire time domain of the experiment, the
full matrix of degradation time series is populated and color calibrated automatically,
as shown in Figure S-9. In this specific experiment, spatial non-uniformity of reflected
surfaces was detected in the post-analysis, which does not noticeably affect the insta-
bility index calculation but does give rise to artificial color differences in the samples,
depending on their location on the substrate. These spatially-dependent color differ-
ences arise due to the physical configuration of the environmental chamber and the
RGB camera. To account for these color differences in the final output matrix time
series, an additional color correction step was applied that initializes all deposited
samples to the same color. This color correction is only cosmetic and was not used
in the calculations for determining the degradation intensity, Ic. Color correction aids
in the interpretation of the visualized time series data by making the color changes
due to degradation easier to see while diminishing the unwanted effects of spatially-
dependent reflectivity aberrations. After the color correction, a fully calibrated matrix
of degradation time-series is acquired, showing the color change over time for each
perovskite sample within its batch, shown in Figure S-9.

The degradation intensity, Ic, is computed from the color-changing time series per
sample using Equation 3 [7, 8]. The degradation detection algorithm automatically
computes Ic for every sample. High values of Ic correspond to high degradation. To
benchmark the algorithm, the difference in domain expert-computed band gaps before
and after degradation is used as a ground truth to quantify whether the material has
truly degraded or not. This is possible due to the change in band gap that occurs in
perovskites during either a phase transition or chemical decomposition [7, 63]. Hence,
in Figure S-10(a), any expert-calculated post-degraded band gaps (red points) samples
that fall outside of the ±0.02eV bounds, with respect to the regression fit line to the
expert-calculated pre-degradation band gaps (blue points), are considered to exhibit
“Ground Truth Degradation”. These ground truth-degraded samples are denoted by
yellow scatter points in Figure S-10(b). The bounds of ±0.02eV are used because they
empirically fit the expert-calculated pre-degradation band gaps (blue points) with
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(a) Stability Time Series for Batch 1

(b) Stability Time Series for Batch 2

(c) Stability Time Series for Batch 3

Fig. S-9: Final stability time series matrix of all batches of segmented droplets over
the course of a 2-hour degradation experiment. All samples begin the experiment
colored as dark gray and over the course of degradation, samples with MA proportions
between 0% to 20% exhibit yellowing around the 20min to 40min mark, thus indicating
degradation.
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(a) Ground Truth Determination (b) Algorithm Extracted Degradation

(c) Algorithm Precision-Recall (d) Algorithm Accuracy

Fig. S-10: Automatic degradation detection algorithm performance benchmarking.
(a) Shows how the ground truth degradation is determined using post-degradation
band gap measurement. The break in the graph is used to visualize which compositions
had no band gap after degradation, reported as 0.0eV. (b) Values of Ic as a function of
composition, split by batch with a total of N = 201 samples. Ic is used as a classifier
for degradation, where the dashed line indicates the separation of high Ic versus low
Ic. (c) Precision-recall performance of Ic as a classifier for degradation based on the
classification rate of false negatives and false positives. (d) Accuracy of Ic as a classifier
for determining high and low degradation. The x-axis indicates the decision boundary
value of Ic, where values above are considered degraded and values below are not. The
optimal value of Ic as a decision boundary for degradation is Ic = 0.92×105px·hr, and
is shown as a dashed vertical line. This value is where the accuracy of the algorithm
is maximum at 96.9%.

little to no tolerance. Thus, the region where “Ground Truth Degradation” occurs in
the post-degraded samples is indicated by the yellow shaded region in Figure S-10(a).
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Figure S-10(b) illustrates that the magnitude of Ic strongly corresponds with the
ground truth determination of degradation using band gap difference as a metric. This
correspondence can be quantified using the precision-recall (PR) of the autocharac-
terization algorithm. A PR curve quantifies the performance of using a classifier, in
this case, Ic, to predict a ground truth, in this case, degradation:

Recall =
TP

TP + FN

Precision =
TP

TP + FP
,

(S-5)

where TP are the true positives, FN are the false negatives, FP are the false positives.
We use the PR curve instead of the ROC (receiver operating characteristic) curve
here due to the large class imbalance between the number of degraded samples versus
non-degraded samples (there are significantly more non-degraded samples than there
are degraded samples).

Figure S-10(c) illustrates the PR curve of the automatic degradation detection
algorithm based on the degradation decision boundary (horizontal black dashed line
in Figure S-10b). The goal is to have both high precision and high recall simultane-
ously. The PR-AUC (precision-recall area under the curve) figure of merit boils the PR
curve down to a single number that determines the performance of Ic as a good pre-
dictor for degradation. The value of PR-AUC falls between 0.0 and 1.0, where a value
of 1.0 represents perfect performance. The Ic values computed by the autocharacteri-
zation algorithm achieve a PR-AUC of 0.853 ∈ [0, 1], implying that high values of Ic
do strongly correspond to ground truth degradation. Figure S-10d shows the effect of
moving the decision boundary on the accuracy in detecting the degradation. Consider-
ing recall, precision, and accuracy, Ic performs optimally, with an accuracy of 96.9%,
in detecting degraded samples when the decision boundary is set to 0.92 × 105px·hr.
However, accuracies of over 90% are achieved for a wide range of Ic decision bound-
aries: 0.7 × 105px·hr ≤ Ic ≤ 1.6 × 105px·hr. Hence, indicating that Ic is a general yet
strong predictor of degradation.

Phase and Elemental Analysis
Phase analysis, such as X-ray diffraction (XRD), of perovskites is used to deter-

mine the structure and quality of the manufactured samples. In this study, we measure
our samples using the Bruker X-ray Diffractometer with a Cobalt Source D8 and
General Area Detector Diffraction System. Figure S-11 illustrates the pre- and post-
degradation XRD traces for equally spaced compositions along the FA1−xMAxPbI3
series. The reference peak locations for both the favorable cubic α-FAPbI3 [61] and
favorable tetragonal MAPbI3 phases [62] are shown together as black vertical lines
and “∗” symbols since a shift of only ∆2θ ≈ 0.16◦ is seen from FAPbI3 to MAPbI3
at around the 2θ = 31.5◦ peak. High-resolution scans of this peak shift along
FA1−xMAxPbI3 are shown in Figure 3b and can be used as an additional valida-
tion tool for composition shift. During degradation, FAPbI3 phase transitions from a
favorable cubic α-phase to a non-perovskite hexagonal δ-phase [61]. Hence, XRD is a
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(a) Pre-degradation XRD (b) Post-degradation XRD

Fig. S-11: XRD peak intensities for uniformly-spaced compositions along the
FA1−xMAxPbI3 series before and after degradation.

useful validation tool for pre- and post-degradation determination. Prior to degrada-
tion, Figure S-11a illustrates that the samples exhibit high adherence to their favorable
phases with only minor contribution of δ-FAPbI3 phase. However, after the degra-
dation test, Figure S-11b illustrates high degradation (indicated by the high peak
intensities of the δ-FAPbI3 phase at 2θ = 26.3◦, denoted by the red diamond) in the
FA-rich compositions. This XRD result matches the detected yellowing degradation
pattern of the FA-rich samples, as shown in Figure S-8 and Figure S-9.

Elemental analysis, such as X-ray photoelectron spectroscopy (XPS), is used to
determine the shift in the binding energy of bonds present within the different A-site
cations (FA and MA) along the FA1−xMAxPbI3 series, in turn corresponding to a
“composition” shift. XPS is a surface-sensitive quantitative spectroscopic technique
that can identify crystalline phases. In this study, we measure our samples using the
PHI 5000 Versa Probe II Focus X-ray Photoelectron Spectrometer, equipped with a
monochromated AlKα X-ray source for excitation at 1486.6eV with an X-ray beam
size of 200µm. Survey spectra of FAPbI3 to MAPbI3 series are depicted in Figure S-
12. Using the survey spectra alone, there are variations in A-site composition that can
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Fig. S-12: Full XPS spectra for uniformly-spaced compositions along the
FA1−xMAxPbI3 series.

not be distinguished clearly in survey spectra due to the many similarities between
the FA and MA molecules [50]. However, the primary distinguishing feature of these
is the presence of the carbon-nitrogen double bond (C=N), clearly detectable in the
high-resolution XPS scans, as shown in Figure 3c. In the high-resolution scans of C1s1
and N1s2, the calibration is performed on the lowest C1s energy peak of 284.8eV.
Hence, the shift in C=N peak intensity quantifies the presence of FA relative to MA,
in turn, determining composition along the FA1−xMAxPbI3 series.

Figure S-13 shows the quantitative XRD peak shifts and XPS peak intensities
from the high-resolution scans for the phase and elemental shifts that occur along the
FA1−xMAxPbI3 series. The XRD peak of the (012) crystallographic plane shifts from
lower to higher 2θ angles as more MA is added to the composition. Conversely, the
XPS peak for the presence of C=N bonds shifts from higher to lower intensity as more
MA is added to the composition. Thus, both of these measurements validate the pres-
ence of a compositional gradient occurring across the synthesized batches of samples.
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(a) XRD (012) Peak Angle Shift (b) XPS C=N Peak Intensity Shift

Fig. S-13: (a) XRD 2θ values for the (012) crystallographic plane peak shift from FA-
rich to MA-rich FA1−xMAxPbI3 compositions. (b) XPS intensity shift for the C=N
peak from FA-rich to MA-rich FA1−xMAxPbI3 compositions. The horizontal error
bars illustrate the relative widths of the XRD and XPS peaks.

Size of the Perovskite Search Space
A commonly explored metal halide perovskite search space for photovoltaic appli-

cations from literature consists of the following eight-component material system:
(FAxMAyCs1−x−y)(PbzSn1−z)(BraClbI1−a−b)3 [7, 9, 14, 22–24]. Figure S-14 shows the
discretization of these eight components within the archetypal ABX3 perovskite struc-
ture. The number of steps per edge, n, determines the compositional resolution for
each subspace. As the number of steps increases, the number of potential compositions
increases, and, in turn, the search space becomes more vast. For this eight-component
search space, the number of possible compositions is proportional to the product of
each subspace’s (A, B, and X) step size to the power of the number of components
within each subspace (here, 3-components for A (FA, MA, and Cs), 2-components for
B (Pb and Sn), and 3-components for X (Br, Cl, and I)) =⇒ n3 × n × n3 for the
A×B×X subspaces. A caveat in this equation is that for binary subspaces, the power
of the step size is 1 instead of 2 since the space is linear, as shown by the B-site sub-
space in Figure S-14. Hence, for a low-resolution search space of n = 10 steps, 1× 106

total compositions are considered; and for a high-resolution search space of n = 100
steps, 7 × 1012 compositions are considered.

Fig. S-14: Archetypal metal halide perovskite compositional search space.
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Full Experimental Results

Table S-1 contains the full readout of the characterization results extracted by the
autocharacterization algorithms for all N = 201 samples. We report the numeri-
cal values of calculated composition, autocharacterization-calculated band gap (Auto
Eg), human domain expert-calculated band gap (Expert Eg), autocharacterization-
calculated degree of degradation (Ic), and the ground truth degradation determined
by the human domain expert. Dashes indicate values unable to be determined for that
composition due to missing data.

Table S-1: Results readout for all perovskite samples produced in this study.

Sample Computed Composition Auto Eg Expert Eg Ic Degradation
(eV) (eV) (px·hr)×105 (Ground Truth)

1 FA1.000MA0.000PbI3 1.471 1.460 1.581 Yes
2 FA1.000MA0.000PbI3 1.463 1.474 1.737 Yes
3 FA1.000MA0.000PbI3 1.463 1.475 1.562 Yes
4 FA1.000MA0.000PbI3 1.467 1.479 1.799 Yes
5 FA1.000MA0.000PbI3 1.458 1.464 1.335 Yes
6 FA1.000MA0.000PbI3 1.469 1.470 1.739 Yes
7 FA1.000MA0.000PbI3 1.454 1.460 1.465 Yes
8 FA1.000MA0.000PbI3 1.455 1.470 - Yes
9 FA1.000MA0.000PbI3 1.450 1.460 - Yes
10 FA1.000MA0.000PbI3 1.457 1.470 - Yes
11 FA1.000MA0.000PbI3 1.457 1.465 1.607 Yes
12 FA1.000MA0.000PbI3 1.475 1.475 1.501 No
13 FA1.000MA0.000PbI3 1.473 1.470 1.098 Yes
14 FA1.000MA0.000PbI3 1.471 1.470 1.623 Yes
15 FA0.987MA0.013PbI3 1.464 1.470 1.209 Yes
16 FA0.983MA0.017PbI3 1.460 1.474 0.655 No
17 FA0.968MA0.032PbI3 1.488 1.490 0.436 Yes
18 FA0.955MA0.045PbI3 1.479 1.484 0.453 Yes
19 FA0.950MA0.050PbI3 1.474 1.480 0.809 Yes
20 FA0.950MA0.050PbI3 1.475 1.484 0.538 No
21 FA0.950MA0.050PbI3 1.478 1.485 1.012 Yes
22 FA0.945MA0.055PbI3 1.490 1.494 1.034 Yes
23 FA0.933MA0.067PbI3 1.471 1.480 1.215 Yes
24 FA0.933MA0.067PbI3 1.470 1.480 1.165 Yes
25 FA0.933MA0.067PbI3 1.494 1.497 1.223 Yes
26 FA0.917MA0.083PbI3 1.473 1.484 1.040 Yes
27 FA0.917MA0.083PbI3 1.474 1.485 0.918 No
28 FA0.917MA0.083PbI3 1.492 1.496 1.231 Yes
29 FA0.907MA0.093PbI3 1.473 1.482 0.652 No
30 FA0.900MA0.100PbI3 1.464 1.480 1.170 Yes
31 FA0.900MA0.100PbI3 1.466 1.485 - -
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Table S-1: Continued from previous page.

Sample Computed Composition Auto Eg Expert Eg Ic Degradation
(eV) (eV) (px·hr)×105 (Ground Truth)

32 FA0.900MA0.100PbI3 1.494 1.500 0.645 No
33 FA0.898MA0.102PbI3 1.471 1.480 - -
34 FA0.889MA0.111PbI3 1.494 1.502 - -
35 FA0.883MA0.117PbI3 1.470 1.480 - -
36 FA0.883MA0.117PbI3 1.494 1.502 - -
37 FA0.881MA0.119PbI3 1.478 1.487 - No
38 FA0.867MA0.133PbI3 1.496 1.507 0.759 No
39 FA0.867MA0.133PbI3 1.474 1.490 0.773 No
40 FA0.867MA0.133PbI3 1.475 1.487 0.684 No
41 FA0.857MA0.143PbI3 1.502 1.510 0.866 -
42 FA0.850MA0.150PbI3 1.494 1.505 0.851 No
43 FA0.850MA0.150PbI3 1.477 1.490 0.565 No
44 FA0.850MA0.150PbI3 1.482 1.490 0.849 No
45 FA0.846MA0.154PbI3 1.481 1.490 0.438 No
46 FA0.833MA0.167PbI3 1.487 1.495 0.529 No
47 FA0.833MA0.167PbI3 1.493 1.500 0.703 No
48 FA0.833MA0.167PbI3 1.503 1.510 0.747 No
49 FA0.819MA0.181PbI3 1.484 1.495 0.649 No
50 FA0.817MA0.183PbI3 1.503 1.512 0.549 No
51 FA0.817MA0.183PbI3 1.490 1.495 0.600 No
52 FA0.803MA0.197PbI3 1.494 1.500 0.452 Yes
53 FA0.792MA0.208PbI3 1.491 1.500 0.354 No
54 FA0.783MA0.217PbI3 1.492 1.502 0.403 No
55 FA0.783MA0.217PbI3 1.502 1.512 0.518 No
56 FA0.782MA0.218PbI3 1.498 1.505 0.504 No
57 FA0.779MA0.221PbI3 1.503 1.512 - -
58 FA0.767MA0.233PbI3 1.494 1.503 0.446 No
59 FA0.767MA0.233PbI3 1.508 1.513 0.628 No
60 FA0.767MA0.233PbI3 1.494 1.505 0.623 No
61 FA0.750MA0.250PbI3 1.494 1.508 0.480 No
62 FA0.750MA0.250PbI3 1.506 1.514 0.576 No
63 FA0.750MA0.250PbI3 1.492 1.505 0.551 No
64 FA0.738MA0.262PbI3 1.493 1.504 0.532 No
65 FA0.733MA0.267PbI3 1.487 1.505 0.531 No
66 FA0.733MA0.267PbI3 1.503 1.514 0.320 No
67 FA0.733MA0.267PbI3 1.497 1.509 0.621 No
68 FA0.733MA0.267PbI3 1.490 1.500 - -
69 FA0.724MA0.276PbI3 1.504 1.514 - -
70 FA0.717MA0.283PbI3 1.495 1.500 - -
71 FA0.717MA0.283PbI3 1.503 1.512 - -
72 FA0.712MA0.288PbI3 1.498 1.512 0.555 No
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Table S-1: Continued from previous page.

Sample Computed Composition Auto Eg Expert Eg Ic Degradation
(eV) (eV) (px·hr)×105 (Ground Truth)

73 FA0.700MA0.300PbI3 1.505 1.512 0.477 No
74 FA0.700MA0.300PbI3 1.499 1.510 0.414 No
75 FA0.697MA0.303PbI3 1.501 1.510 0.433 No
76 FA0.686MA0.314PbI3 1.511 1.522 0.567 No
77 FA0.683MA0.317PbI3 1.502 1.510 0.595 -
78 FA0.683MA0.317PbI3 1.503 1.510 0.528 No
79 FA0.683MA0.317PbI3 1.514 1.525 - No
80 FA0.677MA0.323PbI3 1.502 1.510 0.282 No
81 FA0.667MA0.333PbI3 1.516 1.528 0.498 No
82 FA0.667MA0.333PbI3 1.504 1.515 0.423 No
83 FA0.667MA0.333PbI3 1.498 1.510 0.219 No
84 FA0.650MA0.350PbI3 1.501 1.510 0.353 No
85 FA0.650MA0.350PbI3 1.502 1.510 0.383 No
86 FA0.650MA0.350PbI3 1.507 1.515 0.302 No
87 FA0.625MA0.375PbI3 1.503 1.513 0.250 No
88 FA0.624MA0.376PbI3 1.510 1.515 0.389 No
89 FA0.617MA0.383PbI3 1.509 1.520 0.335 No
90 FA0.614MA0.386PbI3 1.505 1.515 0.196 No
91 FA0.611MA0.389PbI3 1.522 1.530 0.549 No
92 FA0.600MA0.400PbI3 1.518 1.530 0.391 No
93 FA0.600MA0.400PbI3 1.509 1.520 0.255 No
94 FA0.600MA0.400PbI3 1.509 1.520 0.241 No
95 FA0.583MA0.417PbI3 1.510 1.520 0.331 No
96 FA0.583MA0.417PbI3 1.511 1.522 0.280 No
97 FA0.583MA0.417PbI3 1.518 1.530 0.344 No
98 FA0.569MA0.431PbI3 1.512 1.523 0.303 No
99 FA0.567MA0.433PbI3 1.520 1.530 0.325 No
100 FA0.567MA0.433PbI3 1.508 1.520 0.429 No
101 FA0.559MA0.441PbI3 1.501 1.510 0.433 No
102 FA0.558MA0.442PbI3 1.512 1.526 0.366 No
103 FA0.558MA0.442PbI3 1.511 1.523 0.320 No
104 FA0.550MA0.450PbI3 1.524 1.530 0.414 No
105 FA0.550MA0.450PbI3 1.503 1.510 0.270 No
106 FA0.545MA0.455PbI3 1.513 1.523 0.365 No
107 FA0.533MA0.467PbI3 1.517 1.532 0.372 No
108 FA0.533MA0.467PbI3 1.509 1.520 0.288 No
109 FA0.529MA0.471PbI3 1.515 1.526 0.252 No
110 FA0.517MA0.483PbI3 1.529 1.532 0.282 No
111 FA0.517MA0.483PbI3 1.523 1.530 0.340 No
112 FA0.517MA0.483PbI3 1.513 1.528 0.356 No
113 FA0.511MA0.489PbI3 1.528 1.532 0.286 No
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Table S-1: Continued from previous page.

Sample Computed Composition Auto Eg Expert Eg Ic Degradation
(eV) (eV) (px·hr)×105 (Ground Truth)

114 FA0.504MA0.496PbI3 1.514 1.530 0.270 No
115 FA0.500MA0.500PbI3 1.500 1.535 0.254 No
116 FA0.500MA0.500PbI3 1.518 1.530 0.216 No
117 FA0.498MA0.502PbI3 1.518 1.525 0.253 No
118 FA0.483MA0.517PbI3 1.522 1.525 0.244 No
119 FA0.459MA0.541PbI3 1.524 1.530 0.210 No
120 FA0.450MA0.550PbI3 1.523 1.530 0.241 No
121 FA0.447MA0.553PbI3 1.520 1.530 0.306 No
122 FA0.445MA0.555PbI3 1.530 1.537 0.282 No
123 FA0.433MA0.567PbI3 1.523 1.530 0.331 No
124 FA0.433MA0.567PbI3 1.527 1.533 0.305 No
125 FA0.433MA0.567PbI3 1.529 1.537 0.288 No
126 FA0.417MA0.583PbI3 1.524 1.533 0.416 No
127 FA0.417MA0.583PbI3 1.525 1.530 0.262 No
128 FA0.417MA0.583PbI3 1.528 1.537 0.351 No
129 FA0.402MA0.598PbI3 1.524 1.533 0.312 No
130 FA0.400MA0.600PbI3 1.518 1.530 0.248 No
131 FA0.400MA0.600PbI3 1.521 1.530 0.287 No
132 FA0.400MA0.600PbI3 1.527 1.539 0.408 No
133 FA0.392MA0.608PbI3 1.524 1.530 0.279 No
134 FA0.391MA0.609PbI3 1.527 1.535 0.271 No
135 FA0.383MA0.617PbI3 1.531 1.538 0.347 No
136 FA0.383MA0.617PbI3 1.517 1.530 0.457 No
137 FA0.367MA0.633PbI3 1.529 1.539 0.274 No
138 FA0.367MA0.633PbI3 1.527 1.535 0.410 No
139 FA0.367MA0.633PbI3 1.530 1.540 0.278 No
140 FA0.360MA0.640PbI3 1.529 1.540 0.352 No
141 FA0.350MA0.650PbI3 1.529 1.540 0.332 No
142 FA0.350MA0.650PbI3 1.528 1.535 0.256 No
143 FA0.350MA0.650PbI3 1.531 1.540 0.347 No
144 FA0.342MA0.658PbI3 1.531 1.540 0.335 No
145 FA0.336MA0.664PbI3 1.529 1.535 0.291 No
146 FA0.333MA0.667PbI3 1.532 1.542 0.227 No
147 FA0.333MA0.667PbI3 1.532 1.542 0.369 No
148 FA0.332MA0.668PbI3 1.529 1.540 0.289 No
149 FA0.317MA0.683PbI3 1.532 1.540 0.244 No
150 FA0.304MA0.696PbI3 1.535 1.542 0.283 No
151 FA0.303MA0.697PbI3 1.531 1.542 0.281 No
152 FA0.292MA0.708PbI3 1.530 1.540 0.236 No
153 FA0.280MA0.720PbI3 1.533 1.546 0.254 No
154 FA0.278MA0.722PbI3 1.537 1.545 0.266 No
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Table S-1: Continued from previous page.

Sample Computed Composition Auto Eg Expert Eg Ic Degradation
(eV) (eV) (px·hr)×105 (Ground Truth)

155 FA0.276MA0.724PbI3 1.529 1.540 0.276 No
156 FA0.267MA0.733PbI3 1.538 1.548 0.243 No
157 FA0.267MA0.733PbI3 1.532 1.548 0.312 No
158 FA0.267MA0.733PbI3 1.530 1.540 0.305 No
159 FA0.250MA0.750PbI3 1.537 1.547 0.258 No
160 FA0.250MA0.750PbI3 1.534 1.540 0.333 No
161 FA0.250MA0.750PbI3 1.538 1.547 0.354 No
162 FA0.234MA0.766PbI3 1.537 1.548 0.344 No
163 FA0.233MA0.767PbI3 1.530 1.540 0.331 No
164 FA0.233MA0.767PbI3 1.538 1.550 0.441 No
165 FA0.233MA0.767PbI3 1.525 1.533 0.312 No
166 FA0.226MA0.774PbI3 1.538 1.550 0.353 No
167 FA0.221MA0.779PbI3 1.539 1.550 0.433 No
168 FA0.217MA0.783PbI3 1.540 1.550 0.501 No
169 FA0.217MA0.783PbI3 1.524 1.535 0.457 No
170 FA0.200MA0.800PbI3 1.540 1.550 0.344 No
171 FA0.200MA0.800PbI3 1.532 1.540 0.415 No
172 FA0.200MA0.800PbI3 1.542 1.550 0.541 No
173 FA0.191MA0.809PbI3 1.539 1.550 0.361 No
174 FA0.183MA0.817PbI3 1.536 1.540 0.470 No
175 FA0.183MA0.817PbI3 1.545 1.550 0.229 No
176 FA0.183MA0.817PbI3 1.548 1.552 0.324 No
177 FA0.172MA0.828PbI3 1.539 1.552 0.503 No
178 FA0.167MA0.833PbI3 1.537 1.545 0.307 No
179 FA0.167MA0.833PbI3 1.547 1.552 0.247 No
180 FA0.166MA0.834PbI3 1.539 1.552 0.489 No
181 FA0.163MA0.837PbI3 1.537 1.545 0.374 No
182 FA0.150MA0.850PbI3 1.537 1.546 0.316 No
183 FA0.150MA0.850PbI3 1.536 1.552 0.209 No
184 FA0.133MA0.867PbI3 1.540 1.550 0.345 No
185 FA0.125MA0.875PbI3 1.544 1.552 0.261 No
186 FA0.117MA0.883PbI3 1.544 1.550 0.300 No
187 FA0.112MA0.888PbI3 1.553 1.556 0.279 No
188 FA0.111MA0.889PbI3 1.550 1.555 0.276 No
189 FA0.109MA0.891PbI3 1.545 1.550 0.383 No
190 FA0.100MA0.900PbI3 1.548 1.555 0.309 No
191 FA0.100MA0.900PbI3 1.549 1.560 0.494 No
192 FA0.100MA0.900PbI3 1.540 1.550 0.368 No
193 FA0.083MA0.917PbI3 1.541 1.550 0.468 No
194 FA0.083MA0.917PbI3 1.549 1.560 0.434 No
195 FA0.083MA0.917PbI3 1.548 1.555 0.361 No
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Table S-1: Continued from previous page.

Sample Computed Composition Auto Eg Expert Eg Ic Degradation
(eV) (eV) (px·hr)×105 (Ground Truth)

196 FA0.067MA0.933PbI3 1.552 1.555 0.442 No
197 FA0.067MA0.933PbI3 1.547 1.560 0.444 No
198 FA0.067MA0.933PbI3 1.537 1.550 0.543 No
199 FA0.067MA0.933PbI3 1.551 1.558 0.516 No
200 FA0.067MA0.933PbI3 1.533 1.548 0.554 No
201 FA0.058MA0.942PbI3 1.553 1.560 0.498 No
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