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Fig. S-1: Minimum time to process 100 perovskite samples and compute band gap.
The processing times are shown for three different scenarios: (a) manual synthesis man-
ual and characterization, (b) high-throughput synthesis and manual characterization,
and (c¢) high-throughput synthesis and high-throughput autocharacterization.

In this paper, we aim to achieve higher rate-matching between the synthesis
and characterization of materials for high-throughput screening. In Figure S-1, the
minimum processing time required to go from precursor to data is illustrated for per-
ovskite samples. The minimum processing times to collect band gap data for 100



perovskite samples are shown and represent the times experimentally recorded during
this study. Three different scenarios are represented that use combinations of both
manual and high-throughput methods. The processing time to collect these band gap
data is further broken down into four steps: (1) precursor preparation, (2) synthe-
sis, (3) annealing, and (4) characterization. These are the minimum processing times
as they do not account for sample transfer times or reloading, e.g., moving a sample
to the hotplate. In Figure S-1b, moving from manual to high-throughput synthesis
results in a higher discrepancy of throughputs between synthesis and characteriza-
tion, which bottlenecks the materials screening loop. However, in Figure S-1c, by using
high-throughput autocharacterization, the rate of high-throughput synthesis is closely
matched to that of high-throughput synthesis, in turn, enabling more efficient materi-
als screening. The bottleneck then becomes precursor preparation, which is out of the
scope of this study.

To detail the individual processing time contributions in this study, precursor
preparation is always conducted manually and takes 90 minutes to make 100 samples
worth of solution for all three scenarios. Synthesis takes 45 seconds per sample for
manual spin coating and takes 20 seconds per 100 samples for high-throughput man-
ufacturing. Annealing takes 10 minutes for manual thin films where 8 samples can fit
on a single hot plate at a time. It takes 15 minutes for the thicker, high-throughput
samples but all 100 samples can fit on a single hot plate. Characterization for com-
puting band gap takes 255 minutes per 100 samples manually by a domain expert. It
takes 3 minutes per 100 samples using the band gap extractor autocharacterization
algorithm developed in this paper.

Experimental Reproducibility

Variability exists across samples manufactured using our high-throughput combi-
natorial printer, as the setup is designed for low-cost, scalable, and high-throughput
screening rather than high-fidelity experiments. Although the purpose of the paper
is not to highlight the perovskite manufacturing method but to focus on the rate
matching of characterization, it is important to understand the sources of variability
from experiment to experiment, as these sources of variability will arise for those who
replicate the proposed approaches. Figure S-2 shows the post-degradation structural
morphology differences between two of the same sample compositions across two sep-
arate batches, manufactured using the same printing conditions. Both batches were
degraded under the same environmental conditions for 2 hours at 35°C, 40% relative
humidity, and 0.5 suns of AM1.5 illumination (without UV). During crystallization,
batch A achieved more uniform and compact grain boundaries, whereas the crystalliza-
tion in sample B produced jagged boundaries, inducing more pathways for degradation.
This crystallization mismatch explains the accelerated degradation noted in batch B
relative to batch A. Samples that are prone to phase changes (e.g., compositions near
phase boundaries such as 0.0 < z < 0.15, for FA;_,MA_Pbl3), may experience high
sample-to-sample variances using any sample preparation approach. Therefore, the
effects of these variations must be carefully considered in high-throughput manufac-
turing scenarios, where not every sample can be fully characterized at high fidelity.
These morphological variations in the high-throughput manufacturing process must
be further studied to ascertain better control over experimental reproducibility. In this
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Fig. S-2: Optical microscopy of deposit morphology between two different batches of
FAg.67MA(.33Pbl3 after controlled degradation.

study, three batches of samples were selected with similar morphology in an attempt
to minimize this variation and maintain the emphasis of the paper on the assessment
of the proposed automatic characterization methods, rather than on the method of
synthesis.

Material Characterization

Computer Vision Segmentation and Composition Mapping

Figures S-4a-b illustrate the process of going from a raw hyperspectral datacube
(Q) to computer vision-segmented data (®), which is used as input to the autochar-
acterization methods developed in this paper. An image, 2, which can be in either
Hyperspectral or RGB format, is segmented using Algorithm 1, producing the seg-
mented pixels, (X,Y), and their corresponding set of reflectance values, R()A). The
matched sets of (X,Y) and R()) are denoted as ®. The compositions of each deposited
sample are then able to be mapped onto the segmented ® using the G-code raster
path of the printer head, the pump speed traces from Figure S-3, and Equation 1.
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Fig. S-3: Traces of motor velocity over time for each perovskite precursor, MAPbI3
and FAPDI3, for high-throughput combinatorial deposition as droplets.

Figure S-4c illustrates this complete mapping of all material deposits with their derived
compositions within the FA;_,MA_ Pbls series.

Band Gap

The materials within the FA;_,MA_Pbls compositional series are direct band
gap semiconductors [67, 68]. To compute the band gap of these materials, first, the
reflectance spectra of all samples are measured using a hyperspectral camera (Resonon
Pika L) that measures reflectance within the wavelength range A € [380nm, 1020nm] at
2nm resolution. Figure S-5 illustrates the measured reflectance spectra for all N = 201
samples in the paper, gathered using the computer vision-segmentation of the raw
hyperspectral datacube, as shown in Figure S-4. Then, the reflectance spectra are
converted to their corresponding absorption spectra using the Kubelka-Munk equation
[19, 55] for sufficiently thick samples (the thickness of our samples is approximately
300pum — which is considered sufficiently thick for reflectance measurement):

(1-R)
F(R) = =, (5-2)

where R is the reflectance for the entire range of A for a given segmented pixel in the
reflectance hypercube, (X,Y). Next, the Tauc curves are computed from F(R) [54]:

(F(R) - )Y = B(hv — E,), (S-3)
where hv is energy (hv = %), v = % for direct band gap and -« = 2 for indirect band
gap, B is a constant that allows the band gap, Ey, to be the x-intercept of a regression
fit line to the slope of Tauc curve. Hence, the following equation arises that enables
computation of the direct band gap from the initial reflectance spectra by equating

Equation S-4 to Equation S-3:

1-R)? 1240\° [620(1 — R)?\’

F(R)-hv)? = (= R)7 1240" _ (62001 — R)” _ S4

R - (s-)
In this paper, we use the theory formulated above from optics to automatically

compute the median band gap across all vision-segmented pixels (X,Y) for a given
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Fig. S-4: Computer vision segmentation and composition mapping.
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Fig. S-5: Hyperspectral reflectance of all N = 201 samples synthesized in this study,
color mapped as a function of composition.

perovskite sample, as described by the autocharacterization algorithm illustrated in
Figure 4. Currently, the autocharacterization algorithm is configured to operate only
on materials with a single direct band gap. The band gaps computed using the auto-
matic Tauc segmentation and regression RMSE minimization processes employed by
the autocharacterization algorithms are benchmarked against the band gaps calcu-
lated manually by a domain expert. This band gap comparison between algorithm
and expert is used to determine an accuracy metric for the algorithm, assuming the
expert-calculated output as ground truth. The accuracy is calculated by taking the
average of a binary 0/1 for all N = 201 samples, determined based on whether or not
the differences between the automatic and the expert band gap values fall within a
specified energy difference threshold (shown along the z-axis of Figure S-6b).

Figure S-6a illustrates the autocharacterization output band gaps as a function of
composition for the three independent batches. Figure S-6b illustrates the accuracy of
the automatic algorithm as a function of the energy difference threshold. The algorithm
achieves 98.5% accuracy within 0.02eV and as the threshold becomes tighter, the
algorithm accuracy is expected to decrease.

Stability

To conduct the degradation experiments in this paper, we put the samples in a
degradation chamber and monitor the conditions for 2 hours, capturing RGB images
(Thorlabs DCC1645C camera with the infrared filter removed to increase sensitiv-
ity towards dark samples) every 30 seconds. The construction and operation of the
degradation chamber setup are detailed in Keesey & Tiihonen et al. [8]. Figure S-
7(a) shows the time series of temperature and humidity conditions over the course of
the experiment. Over the 2-hour degradation experiment, the temperature conditions
were maintained at 34.5°C £ 0.5°C with a relative humidity of 40% + 1%. An initial
jump in temperature with a respective dip in humidity is noted as the samples are
placed into the degradation chamber before the internal environment equilibrates. A
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Fig. S-6: (a) Direct band gap values output by the automatic band gap extraction
algorithm, split by batch, as a function of FA;_,MA_Pbl3 composition. (b) Automatic
band gap extraction algorithm accuracy as a function of the maximum allowable dif-
ference in energy between the domain expert-calculated and automatically calculated
band gaps.
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Fig. S-7: (a) Temporal degradation conditions for each of the 3 batches of samples over
the course of 2 hours, measured using a temperature and humidity sensor (Adafruit,
AHT10). (b) Spatial uniformity of illumination measured across the substrate within
the degradation chamber, measured using a lux sensor (Adafruit, VEML7700).

class AAA solar simulator (G2V Optics Sunbrick Base, with visible-only part of the
AM1.5G spectrum) is used to illuminate the 3" x2” substrate of samples during the
2-hour degradation experiment. Figure S-7(b) shows the spatial uniformity of the illu-
mination across the substrate internal to the degradation chamber, measured using a
lux sensor (Adafruit, VEML7700). These illumination conditions are held fixed over



the course of the experiment. Most of the substrate experiences 0.50-0.55 suns of illu-
mination, however, in the top-left corner of the substrate, a dip in illumination occurs
as a result of minor occlusion due to sensor placement. Figure S-8 illustrates that this
dip in illumination at the top-left corner of the substrate does not have a major effect
on the degradation pattern of the FA;_,MA ,Pbl3 compositional series. Degradation,
as indicated by the yellowing, is shown to begin in the formamidinium (FA)-rich end
of the samples and migrates towards the methylammonium (MA)-rich end over time.

Fig. S-8: Degradation of the high-throughput manufactured FA;_,MA_ Pbls compo-
sitional series over 2 hours.

After segmenting each sample across the entire time domain of the experiment, the
full matrix of degradation time series is populated and color calibrated automatically,
as shown in Figure S-9. In this specific experiment, spatial non-uniformity of reflected
surfaces was detected in the post-analysis, which does not noticeably affect the insta-
bility index calculation but does give rise to artificial color differences in the samples,
depending on their location on the substrate. These spatially-dependent color differ-
ences arise due to the physical configuration of the environmental chamber and the
RGB camera. To account for these color differences in the final output matrix time
series, an additional color correction step was applied that initializes all deposited
samples to the same color. This color correction is only cosmetic and was not used
in the calculations for determining the degradation intensity, I.. Color correction aids
in the interpretation of the visualized time series data by making the color changes
due to degradation easier to see while diminishing the unwanted effects of spatially-
dependent reflectivity aberrations. After the color correction, a fully calibrated matrix
of degradation time-series is acquired, showing the color change over time for each
perovskite sample within its batch, shown in Figure S-9.

The degradation intensity, I., is computed from the color-changing time series per
sample using Equation 3 [7, 8]. The degradation detection algorithm automatically
computes I. for every sample. High values of I, correspond to high degradation. To
benchmark the algorithm, the difference in domain expert-computed band gaps before
and after degradation is used as a ground truth to quantify whether the material has
truly degraded or not. This is possible due to the change in band gap that occurs in
perovskites during either a phase transition or chemical decomposition [7, 63]. Hence,
in Figure S-10(a), any expert-calculated post-degraded band gaps (red points) samples
that fall outside of the +0.02eV bounds, with respect to the regression fit line to the
expert-calculated pre-degradation band gaps (blue points), are considered to exhibit
“Ground Truth Degradation”. These ground truth-degraded samples are denoted by
yellow scatter points in Figure S-10(b). The bounds of £0.02eV are used because they
empirically fit the expert-calculated pre-degradation band gaps (blue points) with
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Fig. S-9: Final stability time series matrix of all batches of segmented droplets over
the course of a 2-hour degradation experiment. All samples begin the experiment
colored as dark gray and over the course of degradation, samples with MA proportions
between 0% to 20% exhibit yellowing around the 20min to 40min mark, thus indicating
degradation.
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Fig. S-10: Automatic degradation detection algorithm performance benchmarking.
(a) Shows how the ground truth degradation is determined using post-degradation
band gap measurement. The break in the graph is used to visualize which compositions
had no band gap after degradation, reported as 0.0eV. (b) Values of I as a function of
composition, split by batch with a total of N = 201 samples. I, is used as a classifier
for degradation, where the dashed line indicates the separation of high I. versus low
I.. (c) Precision-recall performance of I. as a classifier for degradation based on the
classification rate of false negatives and false positives. (d) Accuracy of I.. as a classifier
for determining high and low degradation. The z-axis indicates the decision boundary
value of I., where values above are considered degraded and values below are not. The
optimal value of I.. as a decision boundary for degradation is I. = 0.92 x 10°px-hr, and
is shown as a dashed vertical line. This value is where the accuracy of the algorithm
is maximum at 96.9%.

little to no tolerance. Thus, the region where “Ground Truth Degradation” occurs in
the post-degraded samples is indicated by the yellow shaded region in Figure S-10(a).
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Figure S-10(b) illustrates that the magnitude of I, strongly corresponds with the
ground truth determination of degradation using band gap difference as a metric. This
correspondence can be quantified using the precision-recall (PR) of the autocharac-
terization algorithm. A PR curve quantifies the performance of using a classifier, in
this case, I., to predict a ground truth, in this case, degradation:

TP
|
Reeall = 2 p T PN
TP (S-5)
Precision = W,

where T'P are the true positives, F'N are the false negatives, F'P are the false positives.
We use the PR curve instead of the ROC (receiver operating characteristic) curve
here due to the large class imbalance between the number of degraded samples versus
non-degraded samples (there are significantly more non-degraded samples than there
are degraded samples).

Figure S-10(c) illustrates the PR curve of the automatic degradation detection
algorithm based on the degradation decision boundary (horizontal black dashed line
in Figure S-10b). The goal is to have both high precision and high recall simultane-
ously. The PR-AUC (precision-recall area under the curve) figure of merit boils the PR
curve down to a single number that determines the performance of I. as a good pre-
dictor for degradation. The value of PR-AUC falls between 0.0 and 1.0, where a value
of 1.0 represents perfect performance. The I. values computed by the autocharacteri-
zation algorithm achieve a PR-AUC of 0.853 € [0, 1], implying that high values of I,
do strongly correspond to ground truth degradation. Figure S-10d shows the effect of
moving the decision boundary on the accuracy in detecting the degradation. Consider-
ing recall, precision, and accuracy, I. performs optimally, with an accuracy of 96.9%,
in detecting degraded samples when the decision boundary is set to 0.92 x 10°px-hr.
However, accuracies of over 90% are achieved for a wide range of I. decision bound-
aries: 0.7 x 10°px-hr < I, < 1.6 x 10°px-hr. Hence, indicating that I, is a general yet
strong predictor of degradation.

Phase and Elemental Analysis

Phase analysis, such as X-ray diffraction (XRD), of perovskites is used to deter-
mine the structure and quality of the manufactured samples. In this study, we measure
our samples using the Bruker X-ray Diffractometer with a Cobalt Source D8 and
General Area Detector Diffraction System. Figure S-11 illustrates the pre- and post-
degradation XRD traces for equally spaced compositions along the FA;_,MA_Pblg
series. The reference peak locations for both the favorable cubic a-FAPbI3 [61] and
favorable tetragonal MAPDbI3 phases [62] are shown together as black vertical lines
and “x” symbols since a shift of only A20 ~ 0.16° is seen from FAPbI3 to MAPDbI;
at around the 20 = 31.5° peak. High-resolution scans of this peak shift along
FA,_,MA_,Pbl; are shown in Figure 3b and can be used as an additional valida-
tion tool for composition shift. During degradation, FAPbI3 phase transitions from a
favorable cubic a-phase to a non-perovskite hexagonal d-phase [61]. Hence, XRD is a

11
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Fig. S-11: XRD peak intensities for uniformly-spaced compositions along the
FA,_,MA_PDbl; series before and after degradation.

useful validation tool for pre- and post-degradation determination. Prior to degrada-
tion, Figure S-11a illustrates that the samples exhibit high adherence to their favorable
phases with only minor contribution of d-FAPbI3 phase. However, after the degra-
dation test, Figure S-11b illustrates high degradation (indicated by the high peak
intensities of the §-FAPbI; phase at 20 = 26.3°, denoted by the red diamond) in the
FA-rich compositions. This XRD result matches the detected yellowing degradation
pattern of the FA-rich samples, as shown in Figure S-8 and Figure S-9.

Elemental analysis, such as X-ray photoelectron spectroscopy (XPS), is used to
determine the shift in the binding energy of bonds present within the different A-site
cations (FA and MA) along the FA;_,MA_Pbl3 series, in turn corresponding to a
“composition” shift. XPS is a surface-sensitive quantitative spectroscopic technique
that can identify crystalline phases. In this study, we measure our samples using the
PHI 5000 Versa Probe II Focus X-ray Photoelectron Spectrometer, equipped with a
monochromated AlKa X-ray source for excitation at 1486.6eV with an X-ray beam
size of 200um. Survey spectra of FAPbl3 to MAPbDI; series are depicted in Figure S-
12. Using the survey spectra alone, there are variations in A-site composition that can

12
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Fig. S-12: Full XPS spectra for uniformly-spaced compositions along the
FA,_,MA_ Pbl; series.

not be distinguished clearly in survey spectra due to the many similarities between
the FA and MA molecules [50]. However, the primary distinguishing feature of these
is the presence of the carbon-nitrogen double bond (C=N), clearly detectable in the
high-resolution XPS scans, as shown in Figure 3c. In the high-resolution scans of C1sl
and N1s2, the calibration is performed on the lowest Cls energy peak of 284.8eV.
Hence, the shift in C=N peak intensity quantifies the presence of FA relative to MA,
in turn, determining composition along the FA;_,MA_ Pbls series.

Figure S-13 shows the quantitative XRD peak shifts and XPS peak intensities
from the high-resolution scans for the phase and elemental shifts that occur along the
FA;_,MA_Pbl; series. The XRD peak of the (012) crystallographic plane shifts from
lower to higher 26 angles as more MA is added to the composition. Conversely, the
XPS peak for the presence of C=N bonds shifts from higher to lower intensity as more
MA is added to the composition. Thus, both of these measurements validate the pres-
ence of a compositional gradient occurring across the synthesized batches of samples.

13
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Size of the Perovskite Search Space

A commonly explored metal halide perovskite search space for photovoltaic appli-
cations from literature consists of the following eight-component material system:
(FA;MA,Cs1_4—y)(Pb,Sni_,)(Br,Clyli_q—p)3 [7, 9, 14, 22-24]. Figure S-14 shows the
discretization of these eight components within the archetypal ABX3 perovskite struc-
ture. The number of steps per edge, n, determines the compositional resolution for
each subspace. As the number of steps increases, the number of potential compositions
increases, and, in turn, the search space becomes more vast. For this eight-component
search space, the number of possible compositions is proportional to the product of
each subspace’s (A, B, and X) step size to the power of the number of components
within each subspace (here, 3-components for A (FA, MA, and Cs), 2-components for
B (Pb and Sn), and 3-components for X (Br, Cl, and 1)) = n?® x n x n® for the
A xBxX subspaces. A caveat in this equation is that for binary subspaces, the power
of the step size is 1 instead of 2 since the space is linear, as shown by the B-site sub-
space in Figure S-14. Hence, for a low-resolution search space of n = 10 steps, 1 x 10°
total compositions are considered; and for a high-resolution search space of n = 100
steps, 7 x 1012 compositions are considered.

A B X,

%o% (FAMA,Cs;_5—y)  (Pb,Sny_,)  (BraClyli—g-p)s

(x,y,1-x-y)

Pb Sn

n steps

“es

Fig. S-14: Archetypal metal halide perovskite compositional search space.
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Full Experimental Results

Table S-1 contains the full readout of the characterization results extracted by the
autocharacterization algorithms for all N = 201 samples. We report the numeri-
cal values of calculated composition, autocharacterization-calculated band gap (Auto
E,), human domain expert-calculated band gap (Expert E,), autocharacterization-
calculated degree of degradation (I.), and the ground truth degradation determined
by the human domain expert. Dashes indicate values unable to be determined for that
composition due to missing data.

Table S-1: Results readout for all perovskite samples produced in this study.

Sample Computed Composition Auto E, Expert Ey 1. Degradation

(eV) (eV) (px-hr)x10°  (Ground Truth)
1 FAl_()OoMAOVOO()PbIg 1.471 1.460 1.581 Yes
2 FAl_()OoMAOVOO()PbIg 1.463 1.474 1.737 Yes
3 FAl_()OoMAOVOO()PbIg 1.463 1.475 1.562 Yes
4 FAl_()OoMAOVOO()PbIg 1.467 1.479 1.799 Yes
5 FAl_()OoMAOVOO()PbIg 1.458 1.464 1.335 Yes
6 FAl_()OoMAOVOO()PbIg 1.469 1.470 1.739 Yes
7 FAl_()OoMAOVOO()PbIg 1.454 1.460 1.465 Yes
8 FAl_()OoMAOVOO()PbIg 1.455 1.470 - Yes
9 FAl_()OoMAOVOO()PbIg 1.450 1.460 - Yes
10 FAl_()OoMAOVOO()PbIg 1.457 1.470 - Yes
11 FAl_()OoMAOVOO()PbIg 1.457 1.465 1.607 Yes
12 FA1 000MAg.000Pbl3 1.475 1.475 1.501 No
13 FAl_()OoMAOVOO()PbIg 1.473 1.470 1.098 Yes
14 FAl_()OoMAOVOO()PbIg 1.471 1.470 1.623 Yes
15 FA0_987MA0V013Pb13 1.464 1.470 1.209 Yes
16 FAo.9s3MAg 017Pbl3 1.460 1.474 0.655 No
17 FA0_968MA0V032Pb13 1.488 1.490 0.436 Yes
18 FA0_955MA0V045Pb13 1.479 1.484 0.453 Yes
19 FA0_950MA0V050Pb13 1.474 1.480 0.809 Yes
20 FAo.950MAg.050Pbl3 1.475 1.484 0.538 No
21 FA0_950MA0V050Pb13 1.478 1.485 1.012 Yes
22 FA0_945MA0V055Pb13 1.490 1.494 1.034 Yes
23 FA0_933MA0V067Pb13 1.471 1.480 1.215 Yes
24 FA0_933MA0V067Pb13 1.470 1.480 1.165 Yes
25 FA0_933MA0V067Pb13 1.494 1.497 1.223 Yes
26 FA0_917MA0V083Pb13 1.473 1.484 1.040 Yes
27 FAo.917MAg 0s3Pbl; 1.474 1.485 0.918 No
28 FA0_917MA0V083Pb13 1.492 1.496 1.231 Yes
29 FAo.907MAg 993 Pbl5 1.473 1.482 0.652 No
30 FAo_ggoMonlo()PbIg 1.464 1.480 1.170 Yes
31 FAo.900MAg 100Pbl3 1.466 1.485 - -
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Table S-1: Continued from previous page.

Sample Computed Composition Auto £, Expert E, 1. Degradation
(eV) (eV) (px-hr)x10°  (Ground Truth)

32 FAo.900MAg 100Pbl3 1.494 1.500 0.645 No
33 FAg.80sMAg 102Pbl3 1.471 1.480 . -

34 FAo.ss0MAg 111 Pbls 1.494 1.502 . -

35 FAg.ss3MAg 117Pbl; 1.470 1.480 . -

36 FAg.ss3MAg 117Pbl; 1.494 1.502 . -

37 FAo.ss1MAg 119Pbl3 1.478 1.487 . No
38 FA¢.867MA.133Pbls 1.496 1.507 0.759 No
39 FAo.s67MAg 133Pbl; 1.474 1.490 0.773 No
40 FA01867MA0.133Pb13 1.475 1.487 0.684 No
41 FA¢.857MAg.143Pbls 1.502 1.510 0.866 -

42 FAo.s50MAg 150Pbls 1.494 1.505 0.851 No
43 FAo.s50MAg 150Pbls 1.477 1.490 0.565 No
44 FAo.s50MAg 150Pbl3 1.482 1.490 0.849 No
45 FAo.846MAg 154Pbl3 1.481 1.490 0.438 No
46 FAg.833MAg 167Pbl3 1.487 1.495 0.529 No
47 FA01833MA0.167Pb13 1.493 1.500 0.703 No
48 FA01833MA0.167Pb13 1.503 1.510 0.747 No
49 FAo.s19MAg 151 Pbls 1.484 1.495 0.649 No
50 FAo.s17MAg 153Pbl3 1.503 1.512 0.549 No
51 FA01817MA0.183Pb13 1.490 1.495 0.600 No
52 FAo.803MAg 197Pbl5 1.494 1.500 0.452 Yes
53 FAOI792MA0.208Pb13 1.491 1.500 0.354 No
54 FAg.783MAg 217Pbl3 1.492 1.502 0.403 No
55 FAOI783MA0.217Pb13 1.502 1.512 0.518 No
56 FAOI782MA0.218Pb13 1.498 1.505 0.504 No
57 FAg.779MAg 221 Pbls 1.503 1.512 . -

58 FAg.767MAg 233Pbl; 1.494 1.503 0.446 No
59 FAOI767MA0.233Pb13 1.508 1.513 0.628 No
60 FAOI767MA0.233Pb13 1.494 1.505 0.623 No
61 FAOI750MA0.250Pb13 1.494 1.508 0.480 No
62 FAOI750MA0.250Pb13 1.506 1.514 0.576 No
63 FAq.750MAg 250Pbls 1.492 1.505 0.551 No
64 FAg.73sMAg 262Pbl3 1.493 1.504 0.532 No
65 FAOI733MA0.267Pb13 1.487 1.505 0.531 No
66 FAg.733MAg 267Pbls 1.503 1.514 0.320 No
67 FAg.733MAg 267Pbl3 1.497 1.509 0.621 No
68 FA¢.733MAg.267Pbls 1.490 1.500 - -

69 FAg.724MAg 276Pbl; 1.504 1.514 . -

70 FA¢.717MAg 233Pbls 1.495 1.500 - -

71 FAg.717MAg 253 Pbls 1.503 1.512 . -

72 FA¢.712MAg 23sPbls 1.498 1.512 0.555 No

16



Table S-1: Continued from previous page.

Sample Computed Composition Auto £, Expert F, 1. Degradation
(eV) (eV) (px-hr)x10°  (Ground Truth)

73 FAg 700MAg 300Pbl3 1.505 1.512 0.477 No
74 FAg 700MAg 300Pbl; 1.499 1.510 0.414 No
75 FAO_697MAO.303Pb13 1.501 1.510 0.433 No
76 FAO_686MAO.314Pb13 1.511 1.522 0.567 No
T FAp.683MAg.317Pbls 1.502 1.510 0.595 -

78 FAO_683MAO.317Pb13 1.503 1.510 0.528 No
79 FAO_683MAO.317Pb13 1.514 1.525 - No
80 FAg 677MAg 325 Pbl; 1.502 1.510 0.282 No
81 FAO_667MAO.333Pb13 1.516 1.528 0.498 No
82 FAg 667MAg 3335Pbl; 1.504 1.515 0.423 No
83 FAg 667MAg 3335 Pbl; 1.498 1.510 0.219 No
84 FAO_650MAO.350Pb13 1.501 1.510 0.353 No
85 FAO_650MAO.350Pb13 1.502 1.510 0.383 No
86 FAO_650MAO.350Pb13 1.507 1.515 0.302 No
87 FAO_625MAO.375Pb13 1.503 1.513 0.250 No
88 FAO_624MAO.376Pb13 1.510 1.515 0.389 No
89 FAO_617MAO.383Pb13 1.509 1.520 0.335 No
90 FAO_614MAO.386Pb13 1.505 1.515 0.196 No
91 FAO_611MAO.389Pb13 1.522 1.530 0.549 No
92 FAO_600MAO.400Pb13 1.518 1.530 0.391 No
93 FAO_600MAO.400Pb13 1.509 1.520 0.255 No
94 FAg 600MAg 400Pbl3 1.509 1.520 0.241 No
95 FAO_583MAO.417Pb13 1.510 1.520 0.331 No
96 FAg 583MAg 417Pbl; 1511 1.522 0.280 No
97 FAg 583MAg 417Pbl; 1.518 1.530 0.344 No
98 FAO_569MAO.431Pb13 1.512 1.523 0.303 No
99 FAO_567MAO.433Pb13 1.520 1.530 0.325 No
100 FAg 567MAg 435Pbl; 1.508 1.520 0.429 No
101 FAO_559MAO.441Pb13 1.501 1.510 0.433 No
102 FAO_558MAO.442Pb13 1.512 1.526 0.366 No
103 FAg 555MAg 445 Pbl; 1511 1.523 0.320 No
104 FAg 550MAg 450Pbl; 1.524 1.530 0.414 No
105 FAO_550MAO.450Pb13 1.503 1.510 0.270 No
106 FAO_545MAO.455Pb13 1.513 1.523 0.365 No
107 FAg 535MAg 467Pbl; 1517 1.532 0.372 No
108 FAO_533MAO.467Pb13 1.509 1.520 0.288 No
109 FAg 520MAg 471 Pbl; 1.515 1.526 0.252 No
110 FAg 517MAg 453 Pbl; 1.529 1.532 0.282 No
111 FAO_517MAO.483Pb13 1.523 1.530 0.340 No
112 FAO_517MAO.483Pb13 1.513 1.528 0.356 No
113 FAO_511MAO.489Pb13 1.528 1.532 0.286 No
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Table S-1: Continued from previous page.

Sample Computed Composition Auto £, Expert E, 1. Degradation
(eV) (eV) (px-hr)x10°  (Ground Truth)
114 FAOI504MA0.496Pb13 1.514 1.530 0.270 No
115 FAOI500MA0.500Pb13 1.500 1.535 0.254 No
116 FAo.500MAg 500Pbl3 1.518 1.530 0.216 No
117 FAOI498MA0.502Pb13 1.518 1.525 0.253 No
118 FAg.453MAg 517Pbl; 1.522 1.525 0.244 No
119 FAg.450MAg 541 Pbls 1.524 1.530 0.210 No
120 FAg.450MAg 550Pbls 1.523 1.530 0.241 No
121 FAOI447MA0.553Pb13 1.520 1.530 0.306 No
122 FAOI445MA0.555Pb13 1.530 1.537 0.282 No
123 FAOI433MA0.567Pb13 1.523 1.530 0.331 No
124 FAOI433MA0.567Pb13 1.527 1.533 0.305 No
125 FAOI433MA0.567Pb13 1.529 1.537 0.288 No
126 FA¢.417MAg 583Pbls 1.524 1.533 0.416 No
127 FAOI417MA0.583Pb13 1.525 1.530 0.262 No
128 FA¢.417MAg 583Pbls 1.528 1.537 0.351 No
129 FA¢.40oMAg 508Pbls 1.524 1.533 0.312 No
130 FAo.400MAg 600Pbls 1.518 1.530 0.248 No
131 FAOAO()MAO.GO()PbIg 1.521 1.530 0.287 No
132 FAOAO()MAO.GO()PbIg 1.527 1.539 0.408 No
133 FA01392MA0.608Pb13 1.524 1.530 0.279 No
134 FAg 301 MAg 609Pbl3 1.527 1.535 0.271 No
135 FA01383MA0.617Pb13 1.531 1.538 0.347 No
136 FA01383MA0.617Pb13 1.517 1.530 0.457 No
137 FAg.367MAg 633Pbls 1.529 1.539 0.274 No
138 FAg.367MAg 633Pbls 1.527 1.535 0.410 No
139 FA01367MA0.633Pb13 1.530 1.540 0.278 No
140 FAolgﬁoMAO.640Pb13 1.529 1.540 0.352 No
141 FA01350MA0.650Pb13 1.529 1.540 0.332 No
142 FA01350MA0.650Pb13 1.528 1.535 0.256 No
143 FA01350MA0.650Pb13 1.531 1.540 0.347 No
144 FA01342MA0.658Pb13 1.531 1.540 0.335 No
145 FA01336MA0.664Pb13 1.529 1.535 0.291 No
146 FAg.333MAg 667Pbl3 1.532 1.542 0.227 No
147 FA01333MA0.667Pb13 1.532 1.542 0.369 No
148 FA01332MA0.668Pb13 1.529 1.540 0.289 No
149 FAg.317MAg 6s3Pbls 1.532 1.540 0.244 No
150 FA.304MAg 606 Pbls 1.535 1.542 0.283 No
151 FAg.303MAg 6o7Pbls 1.531 1.542 0.281 No
152 FAOIQQQMAO.708Pb13 1.530 1.540 0.236 No
153 FAg.050MAg 720Pbls 1.533 1.546 0.254 No
154 FA01278MA0.722Pb13 1.537 1.545 0.266 No
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Table S-1: Continued from previous page.

Sample Computed Composition Auto £, Expert F, 1. Degradation
(eV) (eV) (px-hr)x10°  (Ground Truth)
155 FAO_276MAO.724Pb13 1.529 1.540 0.276 No
156 FAg 267 MAg 735Pbl; 1.538 1.548 0.243 No
157 FAg 267 MAg 735Pbl; 1.532 1.548 0.312 No
158 FAO_267MAO.733Pb13 1.530 1.540 0.305 No
159 FAO_250MAO.750Pb13 1.537 1.547 0.258 No
160 FAO_250MAO.750Pb13 1.534 1.540 0.333 No
161 FAO_250MAO.750Pb13 1.538 1.547 0.354 No
162 FA.234MAg 766 Pbls 1.537 1.548 0.344 No
163 FAO_233MAO.767Pb13 1.530 1.540 0.331 No
164 FAO_233MAO.767Pb13 1.538 1.550 0.441 No
165 FAO_233MAO.767Pb13 1.525 1.533 0.312 No
166 FAO_226MAO.774Pb13 1.538 1.550 0.353 No
167 FAO_221MAO.779Pb13 1.539 1.550 0.433 No
168 FAO_217MAO.783Pb13 1.540 1.550 0.501 No
169 FAO_217MAO.783Pb13 1.524 1.535 0.457 No
170 FAg 200MAg s00Pbl 1.540 1.550 0.344 No
171 FAo_ggoMAo.go()PbIg 1.532 1.540 0.415 No
172 FAo_ggoMAo.go()PbIg 1.542 1.550 0.541 No
173 FAo_lglMAo.g()ngIg 1.539 1.550 0.361 No
174 FAO_183MAO.817Pb13 1.536 1.540 0.470 No
175 FAO_183MAO.817Pb13 1.545 1.550 0.229 No
176 FAg 183MAg g17Pbl; 1.548 1.552 0.324 No
177 FAO_172MAO.828Pb13 1.539 1.552 0.503 No
178 FAO_167MAO.833Pb13 1.537 1.545 0.307 No
179 FAg 167MAg g33Pbl; 1.547 1.552 0.247 No
180 FAO_166MAO.834Pb13 1.539 1.552 0.489 No
181 FAO_163MAO.837Pb13 1.537 1.545 0.374 No
182 FAO_150MAO.850Pb13 1.537 1.546 0.316 No
183 FAO_150MAO.850Pb13 1.536 1.552 0.209 No
184 FAO_133MAO.867Pb13 1.540 1.550 0.345 No
185 FAO_125MAO.875Pb13 1.544 1.552 0.261 No
186 FAO_117MAO.883Pb13 1.544 1.550 0.300 No
187 FAo_llgMAo.gggprg 1.553 1.556 0.279 No
188 FAo_lllMAo.gggprg 1.550 1.555 0.276 No
189 FAo_lggMAo.gglprg 1.545 1.550 0.383 No
190 FAo_lgoMAo.go()PbIg 1.548 1.555 0.309 No
191 FAo_lgoMAo.go()PbIg 1.549 1.560 0.494 No
192 FAo_lgoMAo.go()PbIg 1.540 1.550 0.368 No
193 FAO_083MAO.917Pb13 1.541 1.550 0.468 No
194 FAO_083MAO.917Pb13 1.549 1.560 0.434 No
195 FAO_083MAO.917Pb13 1.548 1.555 0.361 No
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Table S-1: Continued from previous page.

Sample Computed Composition Auto £, Expert E, 1. Degradation
(eV) (eV) (px-hr)x10°  (Ground Truth)
196 FAp.067MAg.933Pbl3 1.552 1.555 0.442 No
197 FAp.067MAg.933Pbl3 1.547 1.560 0.444 No
198 FAp.067MAg.933Pbl3 1.537 1.550 0.543 No
199 FA01067MA0.933Pb13 1.551 1.558 0.516 No
200 FAp.067MAg.933Pbl3 1.533 1.548 0.554 No
201 FA01058MA0.942Pb13 1.553 1.560 0.498 No
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