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Abstract 

Background 

HCC is the most common digestive system malignancy, with unclear pathogenesis and low survival 

rates. AP1M2 is associated with tumor progression, but its role and molecular mechanisms in HCC 

remain poorly understood and require further investigation. 

Methods 

We utilized the Gene Expression Omnibus (GEO) and Expression Analysis Interactive Hub (XENA) 

databases to assess AP1M2 mRNA expression levels in HCC patients. Additionally, we employed the 

Cancer Genome Atlas (TCGA) database to identify pathways associated with both AP1M2 and HCC 

development. To evaluate the effect of AP1M2 on hepatocellular Carcinoma cell proliferation and 

migration, we employed various techniques including EdU, CCK8, Colony formation assay, and 

Transwell assays. Furthermore, Western blot analysis was conducted to examine the signaling pathways 

influenced by AP1M2. 

mailto:yanghui@gzhu.edu.cn
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Results 

AP1M2 expression was significantly increased at the mRNA level in HCC tissues(P < 0.001). 

Importantly, overall survival (OS) analysis confirmed the association between higher AP1M2 expression 

and a poorer prognosis in HCC patients compared to those with lower AP1M2 expression (P < 

0.019).Multivariate Cox regression analysis showed that AP1M2 was an independent prognostic factor 

and a valid predictor for HCC patients. Furthermore, GSEA results indicated differential enrichment of 

lipid, bile acid, metal metabolism, and coagulation processes in HCC samples demonstrating a high 

AP1M2 expression phenotype. In vitro experiments supported these findings by demonstrating that 

AP1M2 promotes HCC cell proliferation and migration, while activating the JNK/ERK pathway. 

Conclusion 

Our findings indicate that AP1M2 expression may serve as a potential molecular marker indicating 

a poor prognosis for HCC patients. Furthermore, we have demonstrated that AP1M2 significantly 

influences HCC cell proliferation and migration, with the JNK/ERK signaling pathway playing a key 

role in AP1M2-mediated regulation in the context of HCC. 
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Introduction 

Hepatocellular Carcinoma（HCC） is a common and widespread malignancy, ranking among the 

most prevalent types of cancer globally. HCC, accounting for 80-90% of all primary liver cancer cases, 

is the second leading cause of cancer-related mortality, following lung cancer[1][2]. Unfortunately, a 

significant proportion of patients diagnosed with HCC are already in advanced stages, making surgical 

intervention impractical and limiting treatment options to palliative care[3][4]. However the median 

survival time for these patients receiving palliative treatment is only 6 to 12 months, and the 5-year 

survival rate is only 10%[5]. Therefore, the identification of innovative and effective molecular-based 

therapies for HCC patients is of utmost clinical significance. 

AP1M2 is a gene that encodes a protein subunit of the heterotetrameric adaptor-related protein 

complex 1.Being a member of the adaptor complex subunit family, it plays an important role in cell 

signal transduction by participating in the interaction of tyrosine sorting signals on the cell membrane 

https://www.ncbi.nlm.nih.gov/geo/
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surface. Within this complex, AP1M2 serves as a protein subunit and plays a crucial role in cell signal 

transduction by participating in the sorting signal interaction of tyrosine on the cell membrane 

surface[6][7]. AP1M2 is of significant clinical relevance as it may influence the tumor environment in 

patients with invasive breast cancer and potentially serve as a valuable target for early screening and 

treatment of this disease[8]. Exploring its role could improve the efficiency of early screening and overall 

survival rates for individuals diagnosed with invasive breast cancer[9]. Studies have shown that the 

deficiency of AP1M2 in mice leads to the development of chronic colitis, alterations in intestinal 

carbohydrate metabolism and nutrient transport mechanisms, as well as exacerbation of colitis by 

promoting the growth of sulfur-reducing and lactic acid-producing bacteria[10]. However, the specific 

role of AP1M2 in HCC has not been extensively researched. 

This study aims to analyze the role of AP1M2 in HCC using bioinformatics methods, investigate its 

effects on the migration and proliferative phenotypes of HCC cell lines in vitro, and explore the 

downstream pathways associated with AP1M2. Through these investigations, we aim to uncover the 

mechanism by which AP1M2 influences HCC and provide a new theoretical basis for the clinical 

treatment of hepatocellular carcinoma. 

 

Materials and methods 

RNA Expression and Data Mining 

mRNA expression data from HCC samples was collected from the XENA and GEO databases.. We 

employed various keywords, including HCC, program name, project ID, HTseq-counts, data category, 

transcriptome analysis, and data type, for the search. Furthermore, gene expression data was obtained. 

Clinical and pathological information, such as sex, race, age,  coagulation tests, stage, grade, 

radiotherapy, and primary treatment outcome, were also collected. It is important to note that since this 

study was conducted using bioinformatics methods and did not involve human subjects directly, no 

approval from an ethics committee or institutional review board was necessary. 

Construction and Prediction of the Nomogram  

To improve the customization of life expectancy prediction, we developed a nomogram using the 

rms package in R. The nomogram incorporates the results of our multivariate analysis, including essential 

clinical features and calibration plots. Calibration and discrimination are commonly used techniques for 
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assessing model performance. Based on the median risk score, we divided the TCGA HCC data into two 

groups: the AP1M2 high-risk group and AP1M2 low-risk group. We used the Kaplan-Meier method and 

a two-sided log-rank test to assess the difference in overall survival (OS) between these high-risk and 

low-risk groups. Additionally, we created a calibration plot to evaluate the predictive accuracy of the 

nomogram using the prognostic model. 

Gene Set Enrichment Analysis（GSEA） 

We utilized GSEA to identify gene sets associated with AP1M2 expression.We divided the samples 

into high and low expression groups, using them as training sets to explore potential functions and 

address significant differences in survival. We selected the annotated gene set c2.cp.v7.0 from the msigdb 

collection as the reference GMT file, utilizing genes as reference gene sets with a false discovery rate 

<0.25 and an adjusted p-value <0.05, thus considering them as significantly enriched. Multiple 

permutations of the gene sets were performed for each test. The pathways enriched in each phenotype 

were ranked using standardized enrichment scores and adjusted p-values. 

Enrichment analyses of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes 

for Identification of Differentially Expressed Genes 

We used the Cluster Profiler R package to identify significant differentially expressed genes (DEGs) 

between HCC and normal samples. [18]. DEGs were identified using an unpaired t-test, with the 

threshold values set at adjusted P ≤  0.05 and |logFC| ≥  1.5, as determined by the Benjamini-

Hochberg method. The DEGs then underwent Gene Ontology (GO) analysis, revealing their 

representation in various functional categories, including biological process, molecular function, and 

cellular component. For further analysis, we conducted Kyoto Encyclopedia of Genes and Genomes 

(KEGG) enrichment analysis and pathway analysis of the DEGs. We conducted this analysis using the 

online tools provided by the Database for Annotation, Visualization, and Integrated Discovery (DAVID) 

at https://david.ncifcrf.gov/. A significance threshold of P < 0.05 was used to identify enriched pathways. 

Composition of Invasive Immune Cells in HCC 

We identified marker genes for 24 immune cells through a literature analysis [19]. We assessed the 

infiltration of these immune cells in HCC using the single-sample Gene Set Enrichment Analysis 

(ssGSEA) method. We conducted correlation analysis between AP1M2 and immune cells using the 
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Spearman correlation method. Additionally, we compared the infiltration of these cells between the high-

expression and low-expression AP1M2 samples using the Wilcoxon rank-sum test. 

Protein-Protein Interaction Network Construction and Analysis 

We constructed the protein-protein interaction (PPI) network using the Search Tool for the Retrieval 
of Interacting Genes (STRING) database (http://string-db.org/). We applied a significance threshold of 
>0.4 to the scores.  

Cell culture 

The human hepatoma cell line 97H, and Hep3B were obtained from the Institute of Cell Research, 

Chinese Academy of Sciences in Shanghai. The cell lines were cultured in Dulbecco's Modified Eagle's 

Medium (DMEM; Gibco, Carlsbad, CA, USA), supplemented with 10% FBS, and incubated at 37°C 

in a humidified incubator with 5% CO2. 

CCK8 assay 

Cell viability was assessed using the Cell Counting Kit‐8 (CCK8) from Beyotime (Shanghai, 

China) according to the manufacturer's instructions.Cells were seeded at a density of 5 × 10³ cells per 

well in 100 μL of medium in 96‐well microplates (Corning, NY, USA). After 24 hours of treatment, 

10 μL of CCK‐8 reagent was added to each well and incubated for 2 hours at 37°C. Each experiment 

was performed in triplicate. The absorbance was measured at 450 nm using a microplate reader (Bio‐

Rad, Hercules, CA, USA), and the blank samples without cells were used for baseline correction.Cell 

proliferation was assessed based on the absorbance values obtained. 

Colony formation assay 

97H and Hep3B cell lines were seeded at a density of 3 ×  10³  cells per well in DMEM 

supplemented with 10% FBS in six‐well plates and cultured for 24 hours. After treatment, the cells 

were resuspended in DMEM supplemented with 10% FBS and cultured in a 5% CO₂, 37°C incubator 

for 15 days to promote colony formation. The plate was gently washed with cold PBS, and the colonies 

were fixed with 4% polyformaldehyde solution at room temperature. Then, the colonies were stained 

with 1% crystal violet solution for 30 minutes at room temperature. Colonies with more than 100 cells 

were counted under a microscope (Leica Microsystems, Germany). Each experiment was conducted in 

triplicate.  
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EdU staining assay 

Cancer cell proliferation was assessed using EdU staining according to the following protocol. 97H 

and Hep3B cell lines were treated with EdU at a concentration of 20 mmol/L for 2 hours. The cells were 

fixed with 4% paraformaldehyde at room temperature for 20 minutes. Apollo staining, DNA staining, 

and fluorescence microscopy were performed for photographic preservation. The experiment was 

independently repeated three times. 

Western blot 

Total protein was extracted from the cells, and western blot analysis was performed according to 

the provided instructions. Subsequently, the membranes were incubated with primary antibodies at 

specified dilutions: AP1M2 (1:1000, proteintech, 10618-1-AP), MMP9 (1:1000, Affinity, #AF5228), E-

cadherin(1:1000, CST, #AF0131), CHOP (1:1000, CST, #2895S), β-actin (1:1000,CST,3700S),and c-

MYC (1:1000, CST, #13987),ERK(1:1000, Affinity, #AF0155),p-ERK (1:1000, Affinity, 

#AF1015),JNK(1:1000, Affinity, #AF6318),p-JNK(1:1000, Affinity, #AF3318). Signal detection was 

performed using the ECL chemiluminescence system. 

 

Statistical analysis 

Data are presented as mean ± standard deviation (SD).Differences between groups were analyzed 

using either the two-tailed paired t-test or the unpaired t-test.A P-value less than 0.05 was considered 

statistically significant. 

 

Result 
The expression of AP1M2 is upregulated in human HCC tissues. 

The cohort data for this study was obtained from the XENA database, which included 110 GTEx normal 

cases, 50 TCGA para-cancer cases, and 371 TCGA tumor cases. The histogram illustrates an increased 

expression of AP1M2 in tumor samples compared to normal samples (Figure 1A). Paired plots were used 

to verify the expression of AP1M2 in normal and tumor samples, revealing a statistically significant 

difference (Figure 1B). Furthermore, we confirmed these results by analyzing the sequencing data from 

the GEO databases GSE50579, GSE101685, and GSE113996, which also showed higher expression of 

AP1M2 in tumor samples compared to normal samples (Figure 1C). The significant difference in AP1M2 
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expression between normal and tumor tissues suggests that patients with high AP1M2 mRNA expression 

are more likely to develop cancer cell metastasis compared to patients with low AP1M2 mRNA 

expression (Table 1). Receiver operating characteristic analysis showed that AP1M2 expression can be 

utilized as a differentiating factor, with an area under the curve of 0.654 for distinguishing AP1M2 

expressing HCC from normal tissue (Figure 1D). 
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Figure 1．The expression difference of AP1M2 in normal tissue and tumor tissue.  

(A)(B)Differential expression of AP1M2 in normal and tumor tissues. (C) The differential expression of 

AP1M2 between normal and tumor samples was validated using sequencing data from GEO databases 

GSE50579, GSE101685, and GSE113996.(D) The expression patterns of AP1M2 were analyzed in both 

normal and HCC tissues. 
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Increased AP1M2 expression is associated with a poor prognosis in patients with HCC 

Patients with high AP1M2 expression in HCC exhibited a poorer prognosis than those with low 

AP1M2 expression (Figure 2A). A nomogram was constructed to assess the association between AP1M2 

expression and other predictors (Figure 2B). Negative predictors were assigned higher total points in the 

nomogram. A bias correction line was constructed in the calibration plot to approximate the ideal 45-

degree curve, indicating perfect agreement between prediction and observation (Figure 2C). Univariate 

analysis revealed significant associations between AP1M2 and T stage (hazard ratio [HR] 2.126; 95% CI 

1.481-3.052), pathologic M stage (HR 4.077; 95% CI 1.281-12.973), tumor status (HR 2.317; 95% CI 

1.590-3.376), and AP1M2 (HR 1.515; 95% CI 1.068-2.149; P = 0.020). The Cox proportional hazards 

model multivariate analysis identified AP1M2 expression (HR 1.582; 95% CI 1.004-2.492; P = 0.048), 

tumor status (HR 1.995; 95% CI 1.257-3.168; P = 0.003), pathologic T stage (HR 2.150; 95% CI 1.325-

3.489; P = 0.002) as independent prognostic factors for HCC patients (Table 2). 
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Figure 2．Effect of AP1M2 expression on survival outcome and multivariate examination. (A) 
The influence of AP1M2 expression levels on the prognosis and survival of hepatocellular carcinoma 
(HCC) patients. (B) Development of a predictive nomogram that integrates AP1M2 expression and 
clinical features to predict 1-year survival rates. (C) Calibration curves for precise prediction of survival 
outcomes. 
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AP1M2 potentially functions as an oncogene in HCC by activating multiple signaling 

pathways. 

We conducted RNAseq gene expression analysis to compare the gene expression profiles between 

the high and low expression groups of AP1M2, aiming to elucidate the role of AP1M2 in the occurrence 

and development of hepatocellular carcinoma (HCC). For the analysis of TCGA database data, we 

employed the cluster Profiler package in R language, using a cutoff of corrected p-value < 0.05 and 

log2FC > 1.5. Consequently, we identified a total of 612 DEGs, including 518 up-regulated genes and 

94 down-regulated genes, and visualized their expression patterns in a volcano plot (Figure 3A). To gain 

a deeper understanding of the biological pathways involved in HCC pathogenesis stratified by AP1M2 

expression levels, we performed gene set enrichment analysis (GSEA). The GSEA enrichment map 

revealed the top five significantly enriched pathways in patients with high AP1M2 expression, which 

encompassed fatty acid metabolism, metal ions, coagulation function, amino acid metabolism, and 

metallothionein-binding metal (Figure 3B).This suggests that AP1M2 may play a carcinogenic role in 

HCC by activating multiple signaling pathways.Additionally, we presented a graph illustrating the 

AP1M2 and its potential co-expressed gene network among the DEGs related to AP1M2 (Figure 3C). 
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Figure 3．GSEA identified AP1M2-related signaling pathways 

(A)Comparative analysis of AP1M2 expression in high and low expression groups within the volcanic 
atlas. (B) GSEA enrichment map to identify pathways enriched in patients with high AP1M2 expression. 
(C) Co-expression gene network map highlighting the potential interactions between AP1M2 and other 
differentially expressed genes (DEGs) associated with AP1M2. 
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GO and KEGG enrichment analysis of differential genes 

 We performed GO function and KEGG pathway enrichment analysis on the differentially 

expressed genes to gain further insights. In terms of biological processes, the differentially expressed 

genes were mainly enriched in stress response to metal ions, inorganic compound metabolism, and stress 

response to copper ions. In the "molecular function" category, the differentially expressed genes 

exhibited significant enrichment in transferase activity involving sulfur-containing groups and 

sulfotransferase activity. Additionally, the KEGG analysis revealed that the DEGs were predominantly 

enriched in Mineral absorption, Bile secretion, Pentose and glucuronate metabolism, and Ascorbate and 

aldarate metabolism, along with other signaling pathways. Previous studies have suggested that the 

proliferation and migration of HCC cells are influenced by lipid, bile acid, and mineral metabolism, 

which play crucial roles in the occurrence and development of HCC. Therefore, we plan to verify these 

mechanisms in future experiments (Figure 4). 
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Figure 4．GO and KEGG enrichment analysis of differential genes 

Enrichment analysis was conducted to investigate the functional implications of the differentially 
expressed gene AP1M2, employing the GO and KEGG databases. 
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Elevated AP1M2 expression could potentially impact the immune response in HCC 

The Spearman correlation analysis was performed to examine the association between AP1M2 

expression and the enrichment of immune cells using ssGSEA. The results revealed a positive correlation 

between AP1M2 expression and the presence of CD56+ NK cells, Th2 cells, and macrophages. 

Conversely, a negative correlation was observed with Th17 cells, CD8+ T cells, and eosinophils (Figure 

5A, B). These findings indicate that AP1M2 may influence the immune response in liver cancer. However, 

further investigation is needed to understand the precise immunophenotype and underlying mechanisms. 
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Figure 5．Correlation between AP1M2 expression and immune infiltration 

(A)The correlation between AP1M2 expression and immune cell enrichment was assessed using 
Spearman correlation analysis. (B) The association between AP1M2 expression and immune cell 
infiltration. 
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AP1M2 promotes the proliferation and migration of hepatocellular carcinoma cells and 

activates the JNK/ERK pathway 

To investigate the in vitro role of AP1M2, we conducted cell proliferation and migration assays 

using Hep3B and 97H cells. Our findings revealed that knockdown of AP1M2 resulted in a decrease in 

the proliferation ability of Hep3B and 97H cells, as demonstrated by colony formation assay, EdU, and 

CCK8 assays (Figure 6A, B, C, and D). Additionally, the transwell assay showed a reduction in the 

migration ability of Hep3B and 97H cells after AP1M2 knockdown (Figure 6E). To elucidate the 

downstream pathways through which AP1M2 influences proliferation and migration phenotypes, we 

performed a western blot analysis. The results demonstrated decreased phosphorylation levels of JNK 

and ERK proteins, as well as reduced protein expression levels of CHOP, E-cadherin, c-MYC, and 

MMP9, which are associated with proliferation and migration (Figure 6F). 
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Figure 6．AP1M2 enhances the growth and movement of liver cancer cells and triggers the 
JNK/ERK pathway 

(A) Hep3B and MHCC97H cells were plated and divided into two groups: the NC group and the si-
AP1M2 group. (B) Hep3B and MHCC97H cells were stained with Edu and DAPI, respectively, and 
then divided into the NC group and the si-AP1M2 group. (C) (D) Hep3B and MHCC97H cells were 
subjected to a CCK8 assay, and the absorbance curve was determined by incubation for 2 hours over 
a period of 5 days. (E) A Transwell assay was performed using Hep3B and MHCC97H cells to 
assess cell migration capacity.(F) A Western blot assay was performed to identify the downstream 
signaling pathway involved in AP1M2-mediated proliferation and migration phenotypes. 
 

 

 

 

 

 

 

 

 

Discussion 
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In this study, we evaluated the expression levels of AP1M2 in patients with hepatocellular 

carcinoma (HCC) using both the Gene Expression Omnibus (GEO) database and The Cancer Genome 

Atlas (TCGA) database. Our objective was to investigate the correlation between AP1M2 and 

clinicopathological features, as well as the overall survival of HCC patients. Additionally, we examined 

the impact of AP1M2 on patient survival. To gain further insights into the molecular mechanism 

underlying AP1M2 in HCC development, we analyzed the protein interactions of AP1M2. Furthermore, 

we conducted in vitro cell experiments to investigate the regulatory function of AP1M2 during HCC 

development.Our findings revealed a significant increase in AP1M2 expression levels not only in HCC 

tumor samples but also in various other tumor types, indicating its potential as a valuable target for the 

development of diagnostic strategies for HCC patients. 

Histological grading of hepatocellular carcinoma enables the prediction of key factors such as 

survival, recurrence risk, and treatment response[11].In general, a higher histological grade corresponds 

to a greater degree of malignancy and a poorer prognosis[12]. The expression of AP1M2 in HCC 

demonstrates a potential correlation with histological grade, indicating that AP1M2 might serve as a 

predictive marker in assessing the malignancy and prognosis of HCC. The prognosis of HCC is 

commonly influenced by multiple factors, including tumor characteristics, treatment modalities, and 

patient-specific factors[13]. Survival rate analysis provides a valuable means to assess the influence of 

these factors on the overall survival of individuals diagnosed with hepatocellular carcinoma[14]. Our 

analysis of survival rates reveals a significant correlation between AP1M2 expression levels and the 

prognosis of patients with HCC. Specifically, patients exhibiting high AP1M2 expression exhibit a more 

unfavorable prognosis compared to those with low AP1M2 expression. Our study conducted a univariate 

logistic regression analysis to investigate the association between AP1M2 expression and two clinical 

parameters: vascular invasion and prothrombin time. The results indicated a significant relationship 

between AP1M2 expression and both vascular invasion and prothrombin time. Vascular invasion greatly 

impacts the prognosis of hepatocellular carcinoma by elevating the likelihood of tumor dissemination 

and recurrence[15]. Prolonged prothrombin time serves as an indicator not only of liver function but also 

of potential implications for the progression and prognosis of hepatocellular carcinoma[16][17][18]. Our 

findings suggest that elevated AP1M2 expression may serve as a potential marker for prolonged 

coagulation time, indicating compromised liver function, as well as a potential indicator of distant 

metastasis and dissemination of HCC cells. Further research is required to establish the clinical 
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significance of AP1M2 in hepatocellular carcinoma. 

Through the application of GSEA analysis on liver cancer data from TCGA, we investigated the 

potential involvement of AP1M2 in hepatocellular carcinoma (HCC)-related signaling pathways. The 

analysis revealed the top five differentially enriched phenotypes, namely fatty acid metabolism, 

metalions, coagulation function, amino acid metabolism, and metallothionein-binding metal. 

Additionally, GO and KEGG analysis indicated significant enrichment in copper metabolism, pentose 

and glucuronate metabolism, ascorbate and aldarate metabolism, retinol metabolism, and bile acid 

metabolism. Previous studies have reported that increased fatty acid synthesis can promote the growth 

and proliferation of hepatocellular carcinoma cells, while abnormal fatty acid oxidation may disrupt 

energy metabolism and inhibit hepatocellular carcinoma cell proliferation[19][20][21]. Moreover, 

enhanced glucose uptake, activation of glycolytic pathways, and increased gluconeogenesis provide 

hepatocellular carcinoma with sufficient energy and building blocks for growth[22][23][24]. 

Furthermore, hepatocellular carcinoma cells in HCC patients exhibit enhanced uptake and utilization of 

copper, and elevated copper levels can potentially promote tumor growth and metastasis through 

involvement in angiogenesis [25][26][27]. By participating in abnormal changes in metabolism, 

coagulation function, angiogenesis, and invasion, AP1M2 may promote the progression of hepatocellular 

carcinoma. 

Previous studies have shown that hepatocellular carcinoma (HCC) is correlated with decreased NK 

cell activity and numbers, leading to immune evasion by tumors and suppression of anti-tumor immune 

responses[28][29][30]. The activation and increased presence of TH2 cells can potentially weaken the 

cytotoxic effect of NK cells and additionally impair tumor immune surveillance[31][32][33]. Eosinophils 

have the ability to secrete various cytokines and mediators, such as interleukin-5, eosinophil protein, and 

eosinophil peroxidase. These secretions could potentially contribute to the proliferation, invasion, and 

metastasis of hepatocellular carcinoma cells[34][35]. It is worth noting that AP1M2 expression exhibits 

a positive correlation with CD56+ NK cells and a negative correlation with eosinophils, suggesting that 

AP1M2 may affect the immune response in hepatocellular carcinoma through these cellular components. 

However, additional experiments are required to explore the specific immunophenotype and underlying 

mechanisms. 

However, the specific role of AP1M2 in hepatocellular carcinoma (HCC) remains unclear. In order 

to address this gap, we performed experiments on 97H and Hep3B cells to investigate the phenotypic 
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effects of AP1M2 in HCC.Our results showed that suppressing AP1M2 expression resulted in decreased 

proliferation and migration capabilities of both 97H and Hep3B cells..Moreover, Western blot analysis 

revealed that downregulating AP1M2 expression suppressed the activation of the JNK/ERK pathway. 

These in vitro findings corroborated the observed correlation between AP1M2 and clinical features 

identified in the preceding bioinformatics analysis, emphasizing the role of AP1M2 in cell proliferation, 

migration, and the JNK/ERK pathway. 

This study employed an open database platform, which may have inherent limitations that need to 

be acknowledged. To address these limitations, it is crucial to augment our dataset with supplementary 

clinical data. Furthermore, additional evidence is needed to establish the correlation between the 

JNK/ERK signaling pathway and AP1M2. We plan to investigate these aspects in future experiments, 

which will enable us to acquire a more profound understanding of these relationships. 

Conclusions 

In summary, the expression of AP1M2 holds promise as a valuable molecular marker for predicting 

an unfavorable prognosis in HCC.Moreover, AP1M2 has been demonstrated to impact HCC cell 

proliferation and migration, with the JNK/ERK signaling pathway potentially serving as a vital mediator 

of AP1M2's effects. However, additional experimental investigations are necessary to achieve a 

comprehensive understanding of the biological effects and underlying mechanisms through which 

AP1M2 operates in HCC. 
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