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Abstract 

In this study, several quantum mechanical-based computational approaches have been 

used in order to propose accurate protocols for predicting the pKa’s of quinazoline derivatives, 

which constitute a very important class of natural and synthetic compounds in organic, 

pharmaceutical, agricultural and medicinal chemistry areas. Linear relationships between the 

experimental pKa’s and nine different DFT descriptors (atomic charge on nitrogen atoms (Q(N), 

ionization energy (I), electron affinity (A), chemical potential (), hardness (), electrophilicity 

index (), fukui functions (f +, f -), condensed dual descriptor (f) and local hypersoftness (𝑠𝑘(2)
) 

were considered. Several DFT methods (a combination of five DFT functionals and two basis 

sets) in conjunction with two different implicit solvent models were tested, and among them, 

M06L/6-311++G(d,p) level of theory employing the CPCM solvation model was found to give 

the strongest correlations between the DFT descriptors and the experimental pKa’s of the 

quinazoline derivatives. The calculated atomic charge on N1 atom (Q(N1)) was shown to be the 

best descriptor to reproduce the experimental pKa’s (R2=0.927), whereas strong correlations 

were also derived for A, , , 𝑠𝑘(2)
 and Δf. The QM-based protocols presented in this study will 

enable fast and accurate high-throughput pKa predictions of quinazoline derivatives and the 

relationships derived can be effectively used in data generation for successful machine learning 

models for pKa predictions. 

Keywords: pKa, DFT descriptors, atomic charge, quinazoline derivatives 
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1. Introduction 

Quinazoline (1,3-diazanaphthalene; 1,3-benzodiazine) derivatives are the privileged 

scaffolds in drug discovery due to their distinct and wide range of bioactivities. Anti-cancer [1–

4], anti-bacterial [5–7], anti-virus [8], anti-microbial [9], anti-inflammatory [10,11], analgesic 

[5,9,11], anti-cytotoxic [12], anti-convulsant [13], anti-tuberculosis [14,15], anti-psychotic 

[16], anti-malarial [17,18], anti-obesity [19] and anti-diabetes [19] activities of quanizoline 

derivatives make these compounds valuable potent therapeutic agents. Recently, the Food and 

Drug Administration has approved several quinazoline derivatives as anticancer drugs, such as 

gefitinib, erlotinib and lapatinib. The functions of the quinazoline based compounds can be 

easily modified due to the fact that highly delocalized  electrons in N=C double bonds enhance 

the reactivity of quinazolines towards many types of nucleophiles (Scheme 1) [20, 21]. 

 

Scheme 1 2D representation of quinazoline molecule. 

Acidic and basic sites within a drug molecule govern the solubility, lipophilicity and 

permeability in a cell membrane as well as its ADMET (absorption, distribution, metabolism, 

excretion and toxicity) properties. Therefore, the biological activity of a ligand is dependent on 

the pKa’s of the ionizable functional groups which form acid-base interactions with the target 

receptor environment [22]. The pKa of the ionizable groups can be tuned by introduction of 

suitable functional groups to the parent lead compound, and the ligand’s ADMET properties 

can be easily modulated.  

The two nitrogen atoms at positions 1 and 3 are the hydrogen-bond acceptors in 

quinazoline molecule and the protonation can take place on one of the nitrogen atoms. For the 
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case of substituted quinazoline derivatives, the protonation of N1 or N3 depends on many factors 

such as steric hindrance, inductive or electron donating/withdrawing effects induced by the 

substituents. The identification of the most favorable protonation site and the determination of 

the pKa’s of these sites is still a challenge today. There are many experimental techniques for 

pKa determination [23]; nevertheless the accuracy is affected when multiple tautomeric species 

are present in the medium, the concentration of the solution gets closer to the limits of 

quantification, the intermediates have short life-times, other solutes interfere and the isolation 

cannot be performed properly [24-26]. Besides, experimental methods are less practical for the 

pKa determination of a large number of compounds. Therefore, the accurate pKa calculations 

by theoretical protocols are of great interest to complement the experimental approaches.   

The acid dissociation constant can be calculated by the use of the thermodynamic cycle 

which takes into account the free energy of solvation, desolvation and deprotonation in the gas 

phase of the acidic species. However, large uncertainties emerging from the solvation free 

energy of the proton (H+), instability of the species in the gas phase and large conformational 

differences between the gas and the solvent calculations make this method less applicable [27]. 

In order to improve the accuracy of estimated pKa values, there is a tremendous effort based on 

computational approaches [27-50]. The isodesmic reaction scheme appeared as an alternative 

protocol to the thermodynamic cycle in which the errors due to gas phase calculations are 

minimized [25]. Applications of isodesmic reactions for pKa estimations of small organic 

molecules  (pyridines, alcohols, carboxylic acids, amines, phenols, benzoic acids) [51], 

nitrogen-containing organic superbases [52], amino acids and peptides [27], N-acyl 

sulfonamide based drug-like compounds [53] and aromatic arsonic acids [52] have been 

reported to present succesful correlations between experimental and calculated pKa’s. On the 

other hand, quantitative structure property relationship (QSPR) techniques offer faster and 

accurate pKa calculations by linking the molecular descriptors to the pKa’s of organic 
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molecules. An accurate protocol was developed by Ugur et al. by computing the atomic charges 

for the prediction of pKa’s of thiols and alcohols by testing several DFT functionals, basis sets, 

semiempirical methods, solvation and charge models [54]. The same approach was used by 

Haslak et al. in order to calculate the pKa’s of carboxylic acids [55]. Considering its strong 

accuracy and high computational efficiency, these pKa prediction calculations using atomic 

charges have also indicated a promising method for predicting amino acids’ pKa in a protein 

environment. Conceptual DFT descriptors, such as ionization energy (I), electron affinity (A), 

chemical potential (μ), global hardness (ƞ), electrophilicity index (ω) and fukui functions (f), 

can be succesfully applied in order to identify the protonation sites and to predict the pKa’s of 

molecules. Recently, by using the reactivity descriptors that arise from Conceptual DFT, 

different equations were derived for predicting the pKa’s of several peptides [27,36,56].  

To the best our knowledge, there is no QM-based protocol that yields precise pKa values 

for the quinazoline derivatives. Inspired by the succesful applications of DFT descriptors, in 

this study we aim to suggest fast and accurate protocols for the prediction of pKa’s of 

quinazoline derivatives, which constitute a very important class of natural and synthetic 

compounds in organic, pharmaceutical, agricultural and medicinal chemistry areas.  

2. Methodology 

Experimental Database: A total of 46 quinazoline derivatives were selected from the literature 

with experimentally determined pKa’s which range from 2.40 to 8.98 (Table 1). The training 

set composed of 30 molecules (Table 2) was used for obtaining linear relationships between 

the experimental pKa’s and several DFT descriptors. Then, the applicability of the suggested 

protocol was tested on the test set composed of 16 molecules (Table 3). 
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Table 1 Selected quinazoline and its derivatives in this study: Molecule number, IUPAC 

Name, 2D Representation and Experimental pKa’s. 

Molecule 

Number 
IUPAC Name 2D Representation 

Experimental 

pKa 

1 Quinazoline 
 

3.31 [57] 

2 2-Quinazolinamine 
 

4.43 [58] 

3 4-Quinazolinamine 

 

5.73 [58] 

4 6-Quinazolinamine 

 

3.20 [58] 

5 8-Quinazolinamine 

 

2.40 [59] 

6 4-Methoxyquinazoline 

 

3.13 [59] 

7 6-Methoxyquinazoline 
 

2.85 [59] 

8 8-Methoxyquinazoline 

 

3.51 [59] 

9 6-Hydroquinazoline 
 

3.12 [60] 

10 8-Hydroquinazoline 

 

3.41 [59] 

11 6-Chloroquinazoline 
 

3.55 [59] 

12 8-Chloroquinazoline 

 

3.30 [59] 

13 6-Nitroquinazoline 

 

4.18 [59] 
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14 8-Nitroquinazoline 

 

4.00 [59] 

15 
2-Phenyl-4-

quinazolinamine 

 

5.44 [61] 

16 
6-Methyl-2-phenyl-4-

quinazolinamine 

 

5.16 [61] 

17 
6-Methoxy-2-phenyl-4-

quinazolinamine 

 

5.33 [61] 

18 
7-Methoxy-2-phenyl-4-

quinazolinamine 

 

5.62 [61] 

19 
6-Nitro-2-phenyl-4-

quinazolinamine 

 

4.54 [61] 

20 
7-Nitro-2-phenyl-4-

quinazolinamine 

 

4.27 [61] 

21 
6-Bromo-2-phenyl-4-

quinazolinamine 

 

4.78 [61] 

22 
6-Chloro-2-phenyl-4-

quinazolinamine 

 

4.98 [61] 

23 
2-N,2-N-diethyl 

quinazoline-2,4-diamine 

 

7.79 [61] 
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24 

2-N,2-N-diethyl 

quinazoline-6-methoxy-

2,4-diamine 

 

7.82 [61] 

25 

2-N,2-N-diethyl 

quinazoline-7-methoxy-

2,4-diamine 

 

8.31 [61] 

26 

2-N,2-N-diethyl 

quinazoline-6-chloro-

2,4-diamine 

 

6.98 [61] 

27 
4-(N,N-dimethylamino)-

2-phenyl quinazoline 

 

6.31 [61] 

28 

4-(N,N-dimethylamino)-

6-methoxy-2-phenyl 

quinazoline 

 

6.61 [61] 

29 

4-(N,N-dimethylamino)-

7-methoxy-2-phenyl 

quinazoline 

 

6.20 [61] 

30 

4-(N,N-dimethylamino)-

6-methyl-2-phenyl 

quinazoline 

 

6.52 [61] 

31 

4-(N,N-dimethylamino)-

6-bromo-2-phenyl 

quinazoline 

 

5.88 [61] 

32 

2-(diethylamino)-4-

(N,N-dimethylamino) 

quinazoline 

 

8.88 [61] 
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33 

6-Chloro-2-

(diethylamino)-4-(N,N-

dimethylamino) 

quinazoline 
 

7.91 [61] 

34 

6-Methoxy-2-

(diethylamino)-4-

(dimethylamino) 

quinazoline 
 

8.98 [61] 

35 

6-Nitro-2-

(diethylamino)-4-

(dimethylamino) 

quinazoline 
 

6.63 [61] 

36 

4-(N,N-dimethylamino)-

6-methoxy-2-phenyl 

quinazoline 
 

6.62 [61] 

37 

4-(N,N-dimethylamino)-

2-(p-methylphenyl) 

quinazoline 
 

6.40 [61] 

38 

4-(N,N-dimethylamino)- 

2-(o-methylphenyl) 

quinazoline 

 

6.28 [61] 

39 

4-(N,N-dimethylamino)- 

2-(p-chlorophenyl) 

quinazoline 
 

5.88 [61] 

40 

4-(N,N-dimethylamino)- 

2-(o-chlorophenyl) 

quinazoline 
 

5.54 [61] 

41 

N-[3-(trifluoromethyl) 

phenyl]-4-

quinazolinamine 
 

5.03 [61] 

42 
N-(4-chlorophenyl)-4-

quinazolinamine 

 

6.02 [62] 
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43 
N-phenyl-4-

quinazolinamine 

 

6.08 [62] 

44 
N-(3-methoxyphenyl)-  

4-quinazolinamine 

 

5.37 [62] 

45 
N-(3-chlorophenyl)-     

4-quinazolinamine 

 

5.28 [62] 

46 

6,7-dimethoxy-N-(3-

methylphenyl)-             

4-quinazolinamine 

 

5.77 [62] 

Quantum Mechanical Calculations: All of the quantum mechanical calculations were done by 

using the Gaussian16 program package [63].  A systematic conformational analysis was 

conducted for 46 molecules in their neutral forms using the semi-empirical PM6 method by using 

the conformer search module implemented in the Spartan program [64]. The geometries 

corresponding to local minima were further optimized by using five different density functionals 

(B3LYP [65], M06L [66], M06-2X [67], B97XD [68], MN12SX [69]). We considered these 

functionals based on their different families: B3LYP as a Generalized Gradient Approximation 

Exchange-Correlation (GGA XC) functional, M06L as a meta-GGA XC functional, 

M06-2X as hybrid meta-GGA XC functional, B97XD as hybrid-GGA XC functional and 

MN12SX as a meta-GGA hybrid screened XC functional. We did not use the Local Density 

Approximation (LDA) functionals, because previous studies showed that models based on 

meta-GGA and GGA functionals are substantially better than those including LDA functionals 

[70]. Two different basis sets (6-31+G(d) and 6-311++G(d,p)) and solvation models (SMD and 

CPCM) were tested. The partial atomic charges were derived from Natural Population Analysis 
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(NPA) [71]. Vibrational frequency analysis was performed to ensure that there is no imaginary 

frequency.  

The chemical potential () is the derivative of the energy as a function of the number of 

electrons at constant external potential and measures the tendency of an electron to escape from 

the system:  μ = (𝜕𝐸𝜕𝑁)𝑣(𝑟)  ≅  − 12   (𝐼 + 𝐴) ≅  12   (𝜀𝐿𝑈𝑀𝑂 + 𝜀𝐻𝑂𝑀𝑂)                             (1) 

where I is the ionization potential, A is the electron affinity, εLUMO is the lowest unoccupied 

molecular orbital energy and εHOMO is the highest unoccupied molecular orbital energy.  

The hardness () is the second derivative of the energy as a function of the number of 

electrons at constant external potential [72] and expresses the system’s reaction to change in the 

number of electrons: ƞ = (𝜕𝐸2𝜕𝑁2)𝑣(𝑟)  ≅  12   (𝐼 − 𝐴) ≅  12   (𝜀𝐿𝑈𝑀𝑂 − 𝜀𝐻𝑂𝑀𝑂)                               (2) 

The electrophilicity index () [73] measures the stabilization energy of the system when 

the electron density increases, and it can be expressed as: 𝜔 = 𝜇22ƞ                                                                (3) 

The Fukui function (f) [74] is the derivative of the electron density as a function of the 

number of electrons at constant external potential and describes how easily a molecular site can 

accept or donate electrons: 𝑓 = (𝜕𝜌𝜕𝑁)𝑣(𝑟)                                                              (4) 

The reactivity of an atom k with N electrons for a nucleophilic attack (equation 5) and 

electrophilic attack (equation 6) are given as: 𝑓𝑘+ = 𝑞𝑘(𝑁 + 1) − 𝑞𝑘(𝑁)                                                    (5) 𝑓𝑘− = 𝑞𝑘(𝑁) − 𝑞𝑘(𝑁 − 1)                                                (6) 
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The condensed dual descriptor (∆fk) characterizes if the process on atom k is driven by a 

nucleophilic attack (∆fk > 0) or an electrophilic attack (∆fk < 0) [75-80]: 

 ∆𝑓𝑘 = 𝑓𝑘+ − 𝑓𝑘−                                                            (7) 

The Local Hyper Softness (𝑠𝑘(2)
) has been defined to measure the local reactivity on atom 

k with respect to the molecular size [78,80]: 𝑠𝑘(2) = ∆𝑓𝑘ƞ2                                                                        (8) 

3. Results and Discussion 

In this study, we present several QM-based protocols for fast and accurate pKa prediction 

of quinazoline derivatives. In the first part, linear relationships between the experimental pKa’s 

and calculated partial atomic charges on nitrogen atoms of quinazoline derivatives were 

constructed, the effect of DFT functionals, basis sets, the implicit solvent models and the atomic 

charge to be considered were evaluated. In the second part, the linear relationships between the 

experimental pKa’s and eight different conceptual DFT descriptors were derived.  

3.1. Linking Partial Atomic Charges to pKa’s of Quinazoline Derivatives 

One of the core components of determining a molecule's physical and chemical 

characteristics is its electronic distribution. Intuitively, partial atomic charges fit into the 

narrative of comprehending physical and chemical activity since they are a direct consequence 

of the electron distribution. The acidic or basic character of a ligand is closely related to the 

partial atomic charges as suggested before [54,55,81,82], therefore, in this part of the study the 

relationship between partial atomic charges and experimental pKa’s of quinazoline derivatives 

is investigated. For the different classes of molecules, the natural tendency of the experimental 

pKa values is to cluster in distinct ranges. Previous work of Haslak and Ugur showed that 

carboxylic acids obeyed  pKa = -43.968Q-32.411 (where Q=max{q(O1), q(O2)}, R2=0.955) [55] 

whereas alcohols obeyed pKa = -38.847Q(O-)-17.647 (R2=0.995) and thiols obeyed pKa = -

24.744Q(S-)-10.880 (R2=0.986) [54]. Different "best methodologies"  are expected to emerge 
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since the reactive functional groups are attached to different molecule classes in each molecule 

type. For instance, the best linearities between pKa’s of carboxylic acids and atomic charges 

were obtained when the NPA charges were derived at M06L/6-311G(d,p) level using the SMD 

implicit solvent model, whereas M06-2X/6-311G and B3LYP/3-21G in conjunction with 

CPCM were found to be the most reliable methods for thiols and alcohols, respectively. 

Therefore, to identify the best methodology for quinazoline class of molecules, many factors 

such as the choice of the DFT functional, the basis set, the implicit solvent model and the 

identity of the atomic charges to be considered are tested. The full detailed results are presented 

in the Supplementary Information (Table S1-S5). A deep analysis of the tested DFT functionals 

(B3LYP, M06L, M06-2X, B97XD, MN12SX), basis sets (6-31+G(d) and 6-311++G(d,p)), 

implicit solvent models (SMD and CPCM) and atomic charges (q(N1), q(N3), max{q(N1), 

q(N3)}, min{q(N1), q(N3)}, avg{q(N1), q(N3)}) was performed by constructing the linear 

equations by a least-square fit: 

pKa = a·Q + b                                                                  (9) 

where a and b are the fitted parameters and Q is the calculated NPA charge of the choice. 

Quinazoline and its derivatives have two N atoms in their cyclic structure at 1 and 3 positions 

and both can act as H-bond acceptors. The substituents on the ring may act as electron 

withdrawing or donating groups, increasing or decreasing the electron population on the N 

atoms. Thus, the protonation may take place on N atoms and the atomic charges on N atoms, 

Q, can be considered in different ways: 

Q = q(N1)                                                                            (10) 

Q = q(N3)                                                                            (11) 

Q = max{q(N1), q(N3)}                                                          (12) 

Q = min{q(N1), q(N3)}                                                            (13) 

Q = avg{q(N1), q(N3)}                                                        (14) 
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The charge on N1  (equation 10), the charge on N3 (equation 11), the highest value of 

charges on N atoms (equation 12), the lowest value of charges on N atoms (equation 13) or the 

average value of charges on N atoms (equation 14) have been extracted and correlated with the 

experimental pKa’s. Fig. 1 displays the distribution of Pearson correlation coefficients (R2) 

obtained from each linear fit with respect to the DFT functionals and the atomic extraction 

scheme. Each plot was generated by holding a basis set and a solvent model fixed. According 

to the results, all the DFT methods and charge descriptor combinations give strong correlations 

between the experimental pKa’s and calculated NPA atomic charges with 0.780 ≤ R2 ≤ 0.930. 

The relationship is observed to deviate from linearity when the charge on N3 atom is considered 

(0.773 ≤ R2 ≤ 0.864), becoming more reliable when N1 is considered (0.864 ≤ R2 ≤ 0.930). 

Among the DFT functionals, while the most accurate methods are found to be M06L, B3LYP 

and B97XD; MN12SX and M06-2X gave slightly weaker linear relationships with the 

experimental pKa’s.  

 

Fig. 1 R2 distributions of the linear equations for five different DFT functionals and five 

different atomic charge descriptors considered in this work. Geometry optimizations and NPA 
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charge calculations were performed using (a) 6-31+G(d) basis set and CPCM solvent model, 

(b) 6-31+G(d) basis set and SMD solvent model, (c) 6-311+G(d,p) basis set and CPCM solvent 

model, (d) 6-311+G(d,p) basis set and SMD solvent model. 

Out of the 125 combinations of DFT functionals, basis sets, solvation models and charge 

descriptors tested, the N1 charge computed with NPA at the M06L/6-311++G(d,p) level of 

theory employing the SMD solvent model presented the best regression (R2=0.930). Except for 

molecule 26, all of the predicted pKa’s are found to be within the range of ±1 unit compared to 

experimental values, with mean absolute deviation (MAD) value of 0.40 and MAX-pKa value 

of 1.05. On the other hand, when the CPCM solvation model is used, R2 is calculated as 0.927 

with MAD=0.40 and MAX-pKa=0.96. Due to lower MAX-pKa values obtained from CPCM 

model, the discussions will be based on the calculations performed at M06L/6-311++G(d,p) 

level of theory employing the CPCM solvent model, in the rest of the manuscript. Fig. 2 

displays the relationship between the calculated NPA atomic charges of atom N1 and 

experimental pKa’s for the training set. The predicted pKa’s are calculated by using the 

parametrized equations in each fitting and the results are presented in Table 2 for the training 

set and Table 3 for the test set. These results indicate the presence of a strong correlation 

between experimental pKa’s and the charges on N1 atom. 

 

Fig. 2 Linear regression between experimental pKa and the calculated NPA atomic charges on 

atom N1 at M06L/6-311++G(d,p) level of theory with CPCM solvation model. 
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Table 2 Molecule number, experimental pKa, predicted pKa, difference between experimental 

and predicted pKa values for the training set (M06L/6-311++G(d,p) // CPCM). 

Molecule 

number 
pKa (exp.) pKa (pred.) ΔpKa 

1 3.31 3.32  0.01 

3 5.73 5.44 -0.29 

4 3.20 3.32  0.12 

7 2.85 3.25  0.40 

8 3.51 2.98 -0.53 

9 3.12 3.21  0.09 

10 3.41 4.23  0.82 

11 3.55 3.10 -0.45 

12 3.30 2.98 -0.32 

15 5.44 5.71  0.27 

16 5.16 5.71  0.55 

17 5.33 5.33  0.00 

18 5.62 5.93  0.31 

21 4.78 5.71  0.93 

22 4.98 5.63  0.65 

23 7.79 8.16  0.38 

24 7.82 8.24  0.42 

25 8.31 7.98 -0.33 

26 6.98 7.94  0.96 

27 6.31 5.86 -0.45 

28 6.61 5.93 -0.68 

29 6.20 6.05 -0.15 

32 8.88 8.16 -0.71 

33 7.91 7.98  0.07 

34 8.98 8.20 -0.78 

36 6.62 6.20 -0.42 

37 6.40 6.01 -0.39 

38 6.28 5.82 -0.46 

39 5.88 5.78 -0.10 

40 5.54 5.63  0.09 

 

Table 3 Molecule number, experimental pKa, predicted pKa, difference between experimental 

and predicted pKa values for the test set (M06L/6-311++G(d,p) // CPCM). 

Molecule 

number 
pKa (exp.) pKa (pred.) ΔpKa 

2 4.43 6.16  1.73 

5 2.40 3.78  1.38 

6 3.13 4.42  1.29 

13 4.18 3.02 -1.16 

14 4.00 2.76 -1.24 

19 4.54 5.59  1.05 
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20 4.27 5.14  0.87 

30 6.52 5.71 -0.81 

31 5.88 5.67 -0.21 

35 6.63 7.33  0.70 

41 5.03 4.84 -0.19 

42 6.02 4.99 -1.03 

43 6.08 5.06 -1.02 

44 5.37 5.06 -0.31 

45 5.28 4.87 -0.41 

46 5.77 5.21 -0.56 

 

The strongest outliers in the test set are two amino substituted compounds 2 and 5, a 

methoxy substituted compound 6 and two nitro substituted compounds 13 and 14. The two 

nitrogen atoms of quinazoline ring are potential protonation sites and the protonation of N atoms 

is a dynamic process; with the proton exchange between two N atoms, equilibrium is achieved. 

While the proton transfer from N1 to N3 atom takes place, -NH2 substituent on position 2 

(molecule 2) might be involved in equilibrium, this fact results in deviations in pKa 

measurements. On the other hand, when the amino moieties are away from N1, in the case of 

molecules 3 and 4 which have amino substituents at 4 and 6 positions of quinazoline ring, our 

model is found to be successful in predicting the pKa’s of these molecules. Compound 6 has a 

bulky methoxy substituent attached to position 4, in which -CH3 interacts with N3 atom in its 

ground state to make favorable interactions. However, as the proton exchange occurs between 

N1 and N3, -CH3 of methoxy moiety is assumed to induce extra electrostatic repulsion which 

results in a more destabilized conjugate base compared to other methoxy substituted 

quinazolines. In this respect, we would expect more basic character for molecule 4, as our model 

predicted (pKa
calc = 4.42), as opposed to molecules 7 (pKa

exp = 2.85) and 8 (pKa
exp = 3.51). For 

nitro substituted compounds 13 and 14, our model suggests more acidic characters, i.e. lower 

pKa’s, compared to experimental values. The strong electronegativity of -NO2 group induces 

strong electron-withdrawing effect and thus alters the π-electron delocalization of the ring it is 

attached to, this could lead to shifts in the equilibrium between N atoms during the proton 
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exchange. These compounds have only nitro substituents on the quinazoline ring, whereas 

compounds 19, 20 and 35 have a phenyl or diethylamino at position 2 and amino substituents 

on position 4 in addition to -NO2, for which the model predicts less acidic characters (pKa= 

1.05, 0.87, 0.70, respectively). Therefore, the electron donating substituents on quinazoline ring 

in compounds 19, 20 and 35 stabilize the nature of the electron delocalization in these molecules 

and thus enables us to predict more accurate pKa’s.  

Fig. 3 displays the relationships between the experimental pKa’s of quanizoline 

derivatives, and the calculated atomic charges as expressed in equations 10-14 employing 

M06L/6-311++G(d,p) level of theory with CPCM solvation model. When the charge on N3 

atom is considered, the relationship is the least trustworthy (Fig. 3a) among all the charge 

descriptors considered, while the highest N atomic charge (least negative) scheme (Fig. 3b) 

gives closer relationship to the N1 atomic charge (Fig. 3, R2=0.927). When the lowest N charge 

(most negative) is used to relate with experimental pKa’s (Fig. 3c), the relationship is slightly 

more accurate than N3 scheme and less accurate than the average sum of N1 and N3 charges 

(Fig. 3d). As stated before, both N atoms are prone to be protonated: the most negative N (N3) 

is supposed to attack the proton more easily and the equilibrium will quickly shift to the left 

towards the protonated species. However, the equilibrium constant between the proton and the 

base -and thus the pKa- may be better correlated with the rate determining step which is 

expressed by the charge of the least negative N (N1) which takes part in the rate determining 

step. As indicated in our previous study the least negative center (N1) indicates its relative 

stability as compared to N3, thus its dominance as an acid [55]. 
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Fig. 3 Effect of choice of the charge descriptor on the linear regression between experimental 

pKa’s and (a) charge on N3 atom, (b) highest value of charges on N1 and N3 atoms, (c) lowest 

value of charges on N1 and N3 atoms, (d) average value of charges on N1 and N3 atoms 

(M06L/6-311++G(d,p) // CPCM). 

Since the correct description of the solute and solvent interactions are vital in charge 

derivation, the aqueous environment was mimicked by two different implicit solvent models: 

SMD and CPCM. Therefore, the relationships between the atomic charges calculated in the 

presence of implicit water and the experimental pKa’s of the training set molecules were 

examined. Fig. 4 displays the relationship between the experimental pKa’s and the calculated 

N1 atomic charges employing M06L/6-311++G(d,p) level of theory with the SMD solvent 

model. According to the data obtained, SMD can also be used with confidence (R2=0.930). For 

all the combinations of DFT methods, basis sets and charge descriptors, the linear regression 

fits of SMD and CPCM are very similar. Thus, both models are good in describing the 

interactions between the quinazoline-like molecules and water.  
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Fig. 4 Effect of choice of the solvent model on the linear regression between experimental 

pKa’s and the charge on N1 atom (M06L/6-311++G(d,p) // SMD). 

Lastly, the effect of DFT functionals and basis sets on pKa predictions of quinazoline 

derivatives was analyzed by following the same protocol outlined above. The NPA charges on 

N1 atom computed at various levels of theories with the CPCM model were related with the 

experimental pKa’s of the training set molecules. According to Fig. 5, all the DFT functional 

and basis set combinations give very accurate correlations between the NPA atomic charges on 

N1 atom calculated with CPCM solvation model and experimental pKa’s with R2 range of 0.864 

≤ R2 ≤ 0.927. Additional diffuse and polarization functions are observed to increase the power 

of predictivity, i.e., 6-311++G(d,p) basis set gives more accurate correlations compared to 6-

31+G(d), independent of the DFT functional. Among five DFT functionals, M06-2X and 

MN12SX give the poorest relationships (0.874 ≤ R2 ≤ 0.900, 0.45 ≤ MAD ≤ 0.50 and 0.864 ≤ 

R2 ≤ 0.896,  0.47 ≤ MAD ≤ 0.53 ), M06L has the highest R2’s (0.915 ≤ R2 ≤ 0.927) , smallest 

MADs (0.40 ≤ MAD ≤ 0.41) and pKa’s (0.00 ≤ |pKa |≤ 1.24), and overall, M06L/6-

311+G(d,p) level of theory gives the most accurate pKa’s.  
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Fig. 5 R2 distributions of the constructed linear equations for five different DFT functionals 

and two different basis sets considered in this work. Geometry optimizations and NPA charge 

calculations on N1 atom were performed using CPCM solvent model. 

We have also considered a Boltzmann distribution (BD) taking into account the Gibbs 

free energies for all the conformations with the specified methodology, in addition to the ground 

state (GS) conformation. The results in Table 4 indicate that the regression coefficient is almost 

similar in both cases.  

Table 4 R2 distributions of the linear equations for five different atomic charge descriptors 

considered in this work (M06L/6-311++G(d,p) // CPCM) (GS = ground state, BD = 

Boltzmann distribution). 

Atomic Extraction Scheme R2 (GS) R2 (BD) 

q(N1) 0.927 0.927 

q(N3) 0.822 0.835 

max{q(N1), q(N3)}     0.922 0.933 

min{q(N1), q(N3)}      0.863 0.874 

avg{q(N1), q(N3)}      0.904 0.915 

 

Additionally, we attempted to use the mixed solvation model, however in our calculations 

with explicit water molecules (one and three) we have found that the results were not consistent 

with each other, the position of the explicit water molecules have changed the results 

tremendously. Indeed, the results with mixed solvation model should be treated with care  since 
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they can be very much dependent on the position of the explicit solvent molecules included in 

the calculations [83].  

3.2. Linking Conceptual DFT Descriptors to pKa’s of Quinazoline Derivatives  

The chemical information about the intrinsic properties of the molecules is encoded by 

the quantum chemical descriptors and they can be associated with reactivity and activity 

behaviors of the molecules. Due to the inexpensive and fast calculations of the QM descriptors, 

their applications for various reactivity measurements of chemical structures are very attractive. 

In this part of the study, the pKa’s of the quinazoline derivatives are intended to be predicted by 

using the global and local conceptual DFT descriptors. Ionization energy (I), electron affinity 

(A), chemical potential (), hardness (), electrophilicity index (), Fukui functions (f +, f -), 

condensed dual descriptor (f) and local hypersoftness (𝑠𝑘(2)
) were calculated, and their linear 

relationships with the experimental pKa’s of quinazoline-derived compounds were investigated.  

In the previous part, we concluded that M06L and B3LYP functionals give very 

reasonable correlations between the NPA atomic charges on N1 atom of quinazoline-derived 

compounds and their experimental pKa’s, which points out that these functionals describe the 

electronic nature of quinazoline derivatives successfully. Thus, the QM descriptors are 

calculated by M06L and B3LYP functionals in combination with 6-311++G(d,p) basis set 

employing SMD and CPCM solvation models. As in the previous section, the atomic extraction 

scheme was taken into account for calculation of the local descriptors (Ẋ(N1), Ẋ(N3), 

max{Ẋ(N1), Ẋ(N3)}, min{Ẋ(N1), Ẋ(N3)}, avg{Ẋ(N1), Ẋ(N3)}, where Ẋ represents f +, f -, f or 

s(2). The analysis of the tested DFT functionals, implicit solvent models, global and local 

descriptors were performed by constructing the linear equations by a least-square fit: 

pKa = a·Ẋ + b                                                                         (15) 

where a and b are the fitted parameters and Ẋ is the calculated global or local descriptor of the 

choice. The full detailed results are presented in the Supplementary Information (Table S6-

S30). Fig. 6 displays the distribution of Pearson correlation coefficients (R2) obtained from each 
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linear fit with respect to the methodology applied by using the 6-311++G(d,p) basis set and 

global descriptors calculated. According to the results, the strength of the relationship between 

the global descriptors and the experimental pKa’s is observed to be slightly dependent on the 

choice of the DFT functional employed. Overall, M06L/6-311++G(d,p) level of theory in 

conjunction with CPCM solvation model gives the strongest correlations between the global 

descriptors calculated and the experimental pKa’s of the quinazoline derivatives.  

 

Fig. 6 R2 distributions of the linear equations for two different DFT functionals, solvation 

models and five different global QM descriptors considered in this work. 

Among the tested global descriptors (A, I,   ), very poor relationship between the 

calculated chemical hardness () and the experimental pKa’s of the quinazoline derivatives was 

found with a R2 range of 0.142 ≤ R2 ≤ 0.266. On the other hand, the electron affinity (A), 

electrophilicity index () and chemical potential () calculated at the M06L/6-311++G(d,p) 

level of theory employing the CPCM solvent model presented the best regressions (R2=0.893, 

0.892, 0.847, respectively). These descriptors are related with the molecule’s attraction towards 

the electron pair or bond, consequently, they govern the charge rearrangement during the 

protonation/deprotonation process of a molecule [84]. They have been used before as a measure 

for Lewis acidity and their close relation with pKa has been shown [85-88]. A is the negative of 

LUMO energy of a molecule, and the lower LUMO energy is associated with larger ability to 

gain electron, and thus, larger A boosts higher acidity (lower pKa) [89]. Fig. 7 displays the 
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relationship between the calculated A and experimental pKa’s for the training set. The predicted 

pKa’s are calculated by using the parametrized equation in fitting and the results are presented 

in Table S31 for the training set and Table S32 for the test set. The predicted pKa’s are within 

the range of ±1 unit compared to experimental values for 28 molecules in the training set, and 

the maximum pKa deviation is 1.47 unit, with mean absolute deviation (MAD) value of 0.44. 

These results indicate the presence of a strong correlation between experimental pKa’s and the 

electron affinity of the quinazoline derived molecules. However, the predicted pKa’s of nitro 

substituted quinazolines deviate more than 5 units, as presented in Table S32, probably due to 

the inefficiency in the calculated electron affinities because of their strong electronegativities. 

The electrophilicity index () which is the extent of the electron deficiency of a molecule, the 

ability of a molecule to accept the electrons, is inversely proportional to the acidity degree in 

the same manner as A. Fig. S1a represents the relationship between the calculated  and the 

experimental pKa’s which shows that the predictivity power of  is as accurate as the 

predictivity power of A  with MAD value of 0.48 and MAX-pKa value of 1.13. Since  is the 

negative of electronegativity () [90], as  value is more negative the molecule tends to gain 

electrons more easily and as a result, smaller  promotes the acidity.  As can be observed from 

Fig. S1b, which displays the relationship between the calculated  and the experimental pKa’s, 

there is a strong correlation with a MAD value of 0.53. However, MAX-pKa is calculated to 

be 2.31 for molecule 4 which is observed to be the strongest outlier in all calculations when the 

global descriptors are used.  
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Fig. 7 Linear regression between experimental pKa and calculated electron affinity (A) at 

M06L/6-311++G(d,p) level of theory with CPCM solvation model. 

Following the successful applications of global descriptors on the pKa estimation of 

quinazoline derivatives, the predictive power of local descriptors is examined. The distributions 

of Pearson correlation coefficients (R2) obtained from each linear fit with respect to the 

methodology applied and local descriptors computed by employing five different atomic 

descriptor extraction schemes are presented in Fig. 8 (a-d). For the local descriptors considered 

(𝑓𝑘+, 𝑓𝑘−, Δfk, 𝑠𝑘(2)
), both M06L and B3LYP functionals in conjunction with SMD or CPCM 

solvation models give similar R2’s for each atomic extraction scheme. As a general trend, no 

relationship between any of the descriptors calculated for N3 atom and the experimental pKa’s 

of the quinazoline derivatives was found.  On the other hand, all the descriptors calculated for 

N1 atom give strong correlations with the experimental pKa’s of the molecules in the training 

set with a R2 range of 0.766 ≤ R2 ≤ 0.853. These results emphasize the relative stability of N1 

compared to N3 as an acid in accordance with the results obtained in the previous section. When 

the nucleophilic (𝑓𝑘+) and electrophilic (𝑓𝑘−) Fukui functions are considered (Fig. 8a-b), for the 

two of the functionals and the solvent models employed, the linearities obtained with f +(N1) 

and f -(N1) are observed to be the most accurate (0.786 ≤ R2 ≤ 0.833 and 0.766 ≤ R2 ≤ 0.812, 

respectively), and no relationships were found when max{f +(N1), f 
+(N3)}, max{f -(N1), f 

-(N3)}, 
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f +(N3) and f -(N3) are considered. Based on the frontier-electron theory of chemical reactivity 

[74],   f + gives information about the sites in a molecule which are prone to nucleophilic attack 

and f – identifies the sites which are more susceptible to electrophilic attacks, which can be 

interpreted as large f + values indicate the electron acceptance and large f - values indicate the 

electron donation. Fukui functions can provide useful information about the acid-base reactions, 

since proton acts as an electrophile which attaches itself to the lone pairs located on the N atoms 

of quinazoline derivatives (the nucleophilic site). The relationship between the calculated f + 

values on N1 atom and the experimental pKa’s of quinazoline molecules are observed to be 

directly proportional, whereas the relationship between the calculated f - values on N1 atom and 

the experimental pKa’s are inversely proportional to each other, as displayed in Fig. S2(a-b). 

According to the data obtained, the calculated fukui functions for N1 and N3 atoms are all 

negative irrespective of the functionals and solvation models employed and sometimes there 

are overlapping results. As stated by Martinez-Araya [91], condensed dual descriptor (Δfk) and 

its analogue local hypersoftness (𝑠𝑘(2)
) can provide more accurate conclusions about the 

preferred sites for nucleophilic and electrophilic attacks. As can be seen from Fig. 8(c-d), the 

relationships obtained with max{Δf(N1), Δf(N3)}, max{s(2)(N1), s
(2)(N3)}, Δf (N1) and s(2)(N1) 

are linear (0.840 ≤ R2 ≤ 0.863, 0.847 ≤ R2 ≤ 0.883, 0.795 ≤ R2 ≤ 0.840, and 0.805 ≤ R2 ≤ 0.853, 

respectively), as opposed to the relationships with min{Δf(N1), Δf(N3)}, min{s(2)(N1), s
(2)(N3)}, 

Δf (N3) and s(2)(N3).  
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Fig. 8 R2 distributions of the linear equations for two different DFT functionals, solvation 

models and four different atomic descriptor extraction schemes for (a) 𝑓𝑘+, (b) 𝑓𝑘−, (c) Δfk and 

(d) 𝑠𝑘(2)
. 

Overall, the best linearity was obtained when the highest local hyper softness (𝑠𝑘(2)
) 

calculated for N1 and N3 atoms with M06L/6-311++G(d,p) level using the CPCM implicit 

solvent model is considered, with a R2 of 0.883, as illustrated in Fig. 9. The predicted pKa’s are 

within the range of ±1 unit compared to experimental values for 27 molecules in the training 

set, and the maximum pKa deviation is 1.58 unit, with mean absolute deviation (MAD) value 

of 0.47 which indicates the presence of a strong correlation between experimental pKa’s and 

the maximum value of the calculated local hyper softness on the N atoms of the quinazoline 

derived molecules. Since 𝑠𝑘(2)
 strongly resembles the Δfk, the linear relationship obtained from 

calculated Δf values is as accurate as 𝑠𝑘(2)
 when the highest Δf calculated for N1 and N3 atoms 

at the same level of theory is considered, with R2=0.863, MAD=0.53 and MAX-pKa=1.70 

(Fig. S3). The stronger relationship of 𝑠𝑘(2)
 is accounted on the fact that local hypersoftness 
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takes into account the size differences.  For both cases, the predicted pKa’s of molecules 25 and 

34, which carry methoxy substituents on 7 and 6 positions of quinazoline ring, deviate the most 

from experimental pKa’s. On the other hand, none of the derived models, concerning the 

conceptual DFT descriptors, work well for nitro substituted quinazoline molecules. 

 

Fig. 9 Linear regression between experimental pKa and calculated local hyper-softness (s(2) = 

max{s(2)(N1), s
(2)(N3)}) at M06L/6-311++G(d,p) level of theory with CPCM solvation model. 

The prediction power of our methods developed in sections 3.1 and 3.2 is additionally 

assessed by comparing the predicted pKa’s of quinazoline derivatives with ChemAxon [92], 

which is a commercial pKa prediction tool widely used in drug development processes. With 

ChemAxon, the micro pKa’s are identified by the usage of the empirically calculated partial 

atomic charges in molecules as parameters. Although the predicted pKa’s of the molecules in 

the training set by ChemAxon listed in Table 5 are mostly found to be in good agreement with 

the experimental values, 7 molecules out of 30 deviate more than 1 unit. On the other hand, the 

correlation between the predicted and experimental pKa’s are observed to be weaker (R2=0.820) 

with higher MAD value (0.75) compared to the methodologies developed in this study. 

Table 5 Molecule number, experimental pKa, predicted pKa by using the ChemAxon’s pKa 

Prediction Tool, difference between experimental and predicted pKa values for the training set 

(M06L/6-311++G(d,p)//CPCM). 
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Molecule 

number 

pKa 

(exp.) 

pKa 

(pred.) 
ΔpKa 

1 3.31 3.28 -0.03 

3 5.74 5.54 -0.20 

4 3.21 3.95  0.74 

7 2.86 3.42  0.56 

8 3.52 2.6 -0.92 

9 3.13 3.44  0.31 

10 3.42 2.65 -0.77 

11 3.56 2.35 -1.21 

12 3.31 1.72 -1.59 

15 5.45 5.73  0.28 

16 5.17 5.83  0.66 

17 5.34 5.77  0.43 

18 5.63 6.3  0.67 

21 4.79 4.84  0.05 

22 4.99 4.82 -0.17 

23 7.80 7.21 -0.59 

24 7.83 7.26 -0.57 

25 8.32 7.78 -0.54 

26 6.99 6.29 -0.70 

27 6.32 5.52 -0.80 

28 6.62 5.55 -1.07 

29 6.21 6.05 -0.16 

32 8.89 6.99 -1.90 

33 7.92 6.07 -1.85 

34 8.99 7.04 -1.95 

36 6.63 5.62 -1.01 

37 6.41 5.59 -0.82 

38 6.29 5.52 -0.77 

39 5.89 5.51 -0.38 

40 5.55 4.65 -0.90 

 

4. Conclusions 

In this study we have undertaken the task of testing five different DFT functionals 

(B3LYP, M06L, M06-2X, B97XD, MN12SX), two basis sets (6-31+G(d) and 6-

311++G(d,p)) and two solvation models (SMD and CPCM) to construct relationships between 

quantum mechanical descriptors and experimental pKa’s of quinazoline derivatives. We have 

demonstrated that the calculated atomic charge on N1 atom (Q(N1)), electron affinity (A),  
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electrophilicity index (), chemical potential (), the highest local hyper softness calculated for 

N1 and N3 atoms (max{s(2)(N1), s
(2)(N3)}) and the highest condensed dual descriptor calculated 

for N1 and N3 atoms (max{Δf(N1), Δf(N3)}) have strong correlations with the experimental 

pKa’s. The most accurate pKa’s are obtained via correlations with calculated atomic charge on 

N1 atom (NPA/ M06L/6-311++G(d,p) // CPCM)  with R2=0.927. Furthermore, the Boltzmann 

distribution of the ground state stationary structures have been  taken into account by 

considering the Gibbs free energies for all the conformations with the specified methodology, 

this study has yielded similar results as the ones obtained with GS conformation via correlation 

with atomic charges on N1. Correlation with the electronic charge on N1 rather than N3 has been 

attributed to the protonation of the former being pKa determining. The results of Conceptual 

DFT have indicated the presence of a strong correlation between experimental pKa’s and the 

electron affinity of the quinazoline derived molecules. Nevertheless, the constructed models, 

especially conceptual DFT descriptors, fail to estimate the pKa’s of nitro substituted quinazoline 

molecules (M06L/6-311++G(d,p) // CPCM). Overall, we believe that generating the data from 

multiple linear regressions using the descriptors suggested in this study can be useful in data 

production for successful machine learning models for pKa prediction.  
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