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Supplementary Figure 1 | CuHCFe electrodes are fabricated in both nanoparticles and thin-film. (a) Scanning electron microscopy (SEM) image of CuHCFe nanoparticles. The nanoparticle was prepared through the co-precipitation method. (b) The photos of CuHCFe electrodes. (left) Slurry deposition of CuHCFe nanoparticle and (right) Electrodeposited CuHCFe thin-film. Both electrodes are fabricated on the surface of conductive glass (ITO-coated). All area, except for the desired area of 1 cm x 1 cm, are protected by an insulating tape (Kapton) to inhibit electric shorting. (c) SEM image of CuHCFe thin-film. The film was fabricated by electrodeposition method. (d) cross-sectional SEM image of CuHCFe slurry electrode. On the glass substrate, a thin layer of ITO are deposited for electric conductivity and slurry of CuHCFe is deposited in sequence.
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Supplementary Figure 2 | Electrochemical characterizations of CuHCFe electrodes in aqueous and ionic liquid electrolytes. CuHCFe slurries were deposited on carbon cloth. Separate electrolyte DI water with 0.2 M NaTFSI ((a) and (b)). The scan rate is 5 mV s-1. EmimTFSI with 0.2 M NaTFSI ((c) and (d)). The c-rates were calculated based on the previous literatures. (a) CV in DI water with 0.2 M NaTFSI electrolyte. (b) cyclic performance in DI water with 0.2 M NaTFSI electrolyte. (c) CV in ionic liquid of EMI TFSI with 0.2 M NaTFSI. (d) cyclic performance in ionic liquid of EMI TFSI with 0.2 M NaTFSI. 
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Supplementary Figure 3 | Continuous observations on the height of interface level of IL/Aq. The same electrolytes of the main experiments were prepared to examine there is no macro change volume of each phase. 0.2 M of NaTFSI was added in DI water and EmimTFSI. Then 3 ml of each electrolyte were made into a two-phase electrolyte. Even after more than 6 weeks, there was no noticeable mixing or volume change at the very first water level.
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Supplementary Figure 4 | The TGA measurement for the ionic liquid and the IL phase. The TGA measurement for (b) and (c) was conducted within 30 min after it was taken from an Ar-filled glove box. The two-liquid in (d) was shaken robustly and remained 24 hrs. To take the TGA sample for (d), the upper Aq layer was taken away gently, and the lower IL layer was taken. From 25oC to 350oC, the three samples do not show sharp decrease in their mass, but after 350oC, the mass of three samples drop to 0 when the temperature reaches 450oC. The dramatic mass losses during 350oC – 450oC are well matched with the decomposition temperature of EmimTFSI and NaTFSI.
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Supplementary Figure 5 | Galvanostatic Intermittent Titration Technique (GITT) of CuHCFe slurry electrodes in the Aq phase and the IL phase. With 1 C current, current flows for 5 min, and rest for 15 min to reach its saturation. Each points are the last moments after the rest. Both in charging and discharging states, the IL phase has always higher voltage than the Aq phase. It shows that the potential difference between the two phase does not come from the thermodynamic fluctuation. 
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Supplementary Figure 6 | Changes in potential of LiMn2O4 (LMO) and LiCoO2 (LCO) electrodes with switching the electrolyte phase. LMO and LCO powder are dissolved in NMP with Carbon black and PVdF and the slurry were deposited on ITO-coated glass. Potential change with time of (a) LMO and (b) LCO. (c) experimental details. A standard three-cell electrode set-up is used. For counter electrode, activated carbon is used. 0.2 M of LiTFSI was added in DI water and EmimTFSI and then the two liquid were made the two-phase electrolyte. 
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Supplementary Figure 7 | Changes in potential of CuHCFe electrodes with switching the 
electrolyte phase. Potential change with time of (a) CuHCFe and (b) experimental details. A standard three-cell electrode set-up is used. For counter electrode, activated carbon is used. 0.2 M of LiTFSI was added in DI water and EmimTFSI and then the two liquid were made the two-phase electrolyte. 
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Supplementary Figure 8 | Open-circuit voltage increase between the Aq phase and the IL phase varying salt concentrations in each phase. In the Aq phase, two CuHCFe electrodes of E1 and E2 had been shorted to confirm there is no voltage difference. Then, E1 was switched to the IL phase. The OCV increase (E1-E2) was measured. The saturated OCV increasements were recorded. The Aq phase is DI water with the desired salt concentration. The IL phase is EmimTFSI with the desired salt concentration. For * (dark-green bar), another ionic liquid of betainium bis(trifluoromethylsulfonyl)imide (Hbet TFSI) was used.
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Supplementary Figure 9 | Raman analysis on various liquid samples. (a) In the pure EmimTFSI (blue), NaTFSI is added with 0.2 M (yellow) and 1 M (grey) concentration. (b) two control groups of IL phase and the ionic liquid with and without adding salt were compared. Among the four comparing sets, their peak shifts are at 742 cm-1 within error of 1 cm-1. (c) two control group of Aq phase and the DI water with and without adding salt were compared. Pure DI water (grey) does not show any peaks, indicating there is no TFSI- molecules. Once the salt is added, all of them exhibit the TFSI- peak at 745 cm-1. The Raman results are corresponding with previous works. P. Johansson. et al.,5 dissolved NaTFSI salts into an EmimTFSI, thus resulting NaxEmim(1-x)TFSI with the molar fraction 0<x<0.3. The free TFSI peak, without adding the salt, while increasing the NaTFSI concentration, TFSI peak is shifted up to 744 cm-1 at the saturation point.  










[image: A collage of several molecules

Description automatically generated with medium confidence]
Supplementary Figure 10 | Additional overall structures and solvation structures for Aq phase. Among the structures used for calculation, some are represented at 10 ps intervals: 10 ps (top left), 20 ps (top right), 30 ps (bottom left), and 40 ps (bottom right).
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Supplementary Figure 11 | Additional overall structures and solvation structures for IL phase. Among the structures used for calculation, some are represented at 10 ps intervals: 10 ps (top left), 20 ps (top right), 30 ps (bottom left), and 40 ps (bottom right). 


	Aq phase
	(eV)
	(eV)
	(eV)
	Solvation energy (eV)

	5ps
	-0.229 
	-70.488 
	-72.732 
	-2.016 

	10ps
	-0.229 
	-70.579 
	-72.768 
	-1.961 

	15ps
	-0.229 
	-56.515 
	-58.283 
	-1.539 

	20ps
	-0.229 
	-84.834 
	-87.075 
	-2.013 

	25ps
	-0.229 
	-70.104 
	-72.279 
	-1.946 

	30ps
	-0.229 
	-70.283 
	-72.587 
	-2.076 

	35ps
	-0.229 
	-70.416 
	-72.607 
	-1.962 

	40ps
	-0.229 
	-70.463 
	-72.580 
	-1.888 

	45ps
	-0.229 
	-70.526 
	-72.579 
	-1.824 

	50ps
	-0.229 
	-84.408 
	-86.897 
	-2.260 




	IL phase
	(eV)
	(eV)
	(eV)
	Solvation energy (eV)

	5ps
	-0.229 
	-241.513 
	-248.201 
	-6.459 

	10ps
	-0.229 
	-240.829 
	-247.683 
	-6.626 

	15ps
	-0.229 
	-241.116 
	-247.571 
	-6.227 

	20ps
	-0.229 
	-240.238 
	-246.886 
	-6.419 

	25ps
	-0.229 
	-240.784 
	-247.355 
	-6.342 

	30ps
	-0.229 
	-240.890 
	-247.295 
	-6.176 

	35ps
	-0.229 
	-241.623 
	-248.081 
	-6.229 

	40ps
	-0.229 
	-241.460 
	-247.703 
	-6.014 

	45ps
	-0.229 
	-241.529 
	-248.169 
	-6.411 

	50ps
	-0.229 
	-240.960 
	-247.626 
	-6.437 



Table S1 | Solvation energies of Na+ ions in Aq and IL phase. The Solvation energies of Na+ ions, utilizing necessary variables obtained from DFT, were calculated at every 5 ps time interval.
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Supplementary Figure 12 | Electrochemical Impedance Spectroscopy (EIS) results with Nyquist plots. (a) When CuHCFe nanoparticle electrode is in the Aq phase. (b) When CuHCFe nanoparticle electrode is in the IL phase. The EIS experiments were conducted at the OCV with the frequency ranging from 3 MHz to 10 mHz. Slurry electrodes are prepared on a glass for the working electrodes. The concentration of salt (NaTFSI) in each phase is 0.2 M.
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Supplementary Figure 13 | Long-term test with various frequency. (black) the positions of CuHCFe electrodes were switched every 10 seconds. (red) the positions of CuHCFe electrodes were switched every 100 seconds
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Supplementary Figure 14 | The single-pair microfluidic harvester. (a) the mold design of microfluidic channel. After preparation the mold, PDMS was poured on it and cured. (b) the design of mask for CuHCFe deposition. The area for active material is 10 mm x 1 mm. (c) a photograph of CuHCFe thin-film electrodes (E1 and E2, highlighted by red dots) on a glass substrate. Additional two Pt electrodes were inserted to act at a counter electrode and a reference electrode. (d) a photograph of the final product of the single-pair microfluidic harvester. (e) a photograph of the device during experiments. The IL phase is running on E1, while the Aq phase is on E2. 
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Supplementary Figure 15 | The Reynold number of water and EmimTFSI. The calculations of the Reynolds number (Re) for water and the ionic liquid were conducted. The values of μ and ρ for EmimTFSI come from the company’s data sheet. To make a laminar flow, the Reynold number should less than 2000. Based on the size of our channel, Re>2000 occurs when the flow velocity is larger than 1 m s-1 for water and 20 m s-1 for EmimTFSI. Considering that the flow rate in this paper was in mm s-1 scale, the two liquids flowed in a laminar flow. 




	
	Absolute viscosity (at 25oC), μ (cP)
	Density, ρ (g ml-1)
	Kinematic viscosity, ν (mm2 s-1)

	Water 
	0.890 
	0.9970
	0.8927

	EmimTFSI
	35.55 
	1.52
	23.459



Table S2. | Absolute viscosity, density, and kinematic viscosity of water and EmimTFSI.
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Supplementary Figure 16 | The three-cell experiment results for the single-pair microfluidic harvester. (a) CV. (b) GCPL. For the electrolyte, 0.2 M of NaTFSI added DI water was used. 
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Supplementary Figure 17 | The 8-pair microfluidic energy harvester. (a) The CuHCFe thin-film electrodes on a glass substrate. Each pair of CuHCFe electrodes is highlighted by red dots. In the blue dots and black dots, Pt electrodes for a counter electrode and reference electrode are presented, respectively. (b) the design of mask for CuHCFe deposition. The area for active material is 5 mm x 1.5 mm. (c) the mold design of microfluidic channel. After preparation the mold, PDMS was poured on it and cured. (d) a photograph of the final product of multi-pair microfluidic harvester. 
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Supplementary Figure 18 | Short-circuit current of the 8-pair microfluidic energy harvester. The 8-pair (16 pieces) of electrodes are shorted and the short-circuit current was measured.
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Supplementary Figure 19 | Voltage profile between the two-phase electrolyte. (a) Two Ag/AgCl reference electrodes (RE1 and RE2) are immersed in the Aq phase at the beginning. The voltage difference between RE1 and RE2 was measured. At 20s, RE2 is switched to the IL phase and backed to the Aq phase at 90s. There is a negligible voltage drift. (b) and (c) red rectangle areas in (a).















Supplementary Notes 

Note 1. Deriving cell voltage equation in the two-phase electrolyte


Here, we drive the cell potential from chemical potentials of the two-electrolyte system. The two half-cell reactions are written as below: 


The solid-state sodium means the intercalated state of sodium in the CuHCFe structure. When we measure the open-circuit voltage of the two electrodes, they are at equilibrium. Equilibrium of electrochemical potentials are as below:

We can deduce  and  as . Also, as electrochemical potential () is the sum of chemical potential component () and electrostatic component (), now, the equation 3 can be written as,

or

The last term is the liquid-junction potential between the interface of the electrolytes, (). Thus, the cell potential between the two CuHCFe electrodes is follow:

or
(5)

The first term () is the solvation energy difference of sodium ions in the ionic liquid and aqueous phases. The second term (is result from the difference in intercalation states of sodium when they enter into CuHCFe. Since the inserted ions all same in the Aq and the IL phase,  can be reduced to 0. Also, we measured  in Fig. S19, and the value is negligible (few mV). Then Eq. (5) is deduced to,
   (6)
The cell voltage between two CuHCFe electrodes in two different electrolytes only are affected by the solvation energy difference.


	Load (W)
	Power density (mW cm-2)
	Ref.
	Type

	1E7
	0.84
	1
	TENG

	4000000
	35
	2	TENG

	100
	14.5
	3	TENG

	3.055E8
	722
	3	TENG

	4E8
	0.0065
	4	TENG

	6000000
	6.2
	5	TENG

	1000000
	236
	6	TENG

	5E8
	0.12
	7	TENG

	300
	6.4
	
	In this work

	34
	1
	8	Electrochemical

	300
	0.53
	9	Electrochemical

	7E7
	8.75
	10	PENG

	5000000
	1.14
	11	PENG

	1E8
	0.85
	12	PENG

	2.5E11
	39
	13	PENG

	1000000
	4
	13	PENG

	10000
	0.6
	14	PENG

	1E7
	80
	15	PENG

	3E8
	38.46
	16	Electret

	2.1E7
	5.01
	17	Electret

	1E8
	14
	18	TENG

	8.8E7
	5
	19	TENG

	2E8
	300
	20	TENG

	8.8E7
	3
	21	TENG

	100000
	1.266
	22	TENG

	332000
	50100
	23	TENG

	1E7
	1.18
	24	TENG

	1E7
	2.653
	25	TENG

	80000
	50
	26	TENG

	4.4E7
	131
	27	TENG

	999
	23.09
	28	Osmotic energy harvesting

	13000
	766
	29	Osmotic energy harvesting

	23000
	520
	30	Osmotic energy harvesting

	20000
	250
	30	Osmotic energy harvesting

	10000
	590
	31	Osmotic energy harvesting

	27000
	370
	32	Osmotic energy harvesting

	27000
	419
	33	Osmotic energy harvesting

	36000
	195
	33	Osmotic energy harvesting

	17000
	507
	34	Osmotic energy harvesting

	60000
	230
	35	Osmotic energy harvesting

	13000
	587
	36	Osmotic energy harvesting

	18000
	506
	37	Osmotic energy harvesting

	14000
	410
	38	Osmotic energy harvesting



[bookmark: _Hlk142255030]Table S3 | The comparisons of the maximum power and load resistors of several main KEH methods
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