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Abstract

Geomorphic surfaces of the Ganga plain are depositional surfaces, and the succession of sediment
deposited on their top is younger than the time of the formation of the relevant surface. The relative
timing of their deposition is recognized based on their morphological interrelationship and order of
superposition.

In the middle Ganga plain, three geomorphic surfaces are well-developed. The oldest geomorphic surface
(T,), formed by sheet flow processes during monsoon season, consists of silt, sandy silt, and silty sand.
Sediments are poorly to very poorly sorted, very fine skewed to fine skewed, and kurtosis ranges from
leptokurtic to platykurtic. The Ganga River is incised into the T, surface up to 4-8 m in the study area; T,
also known as the river valley terrace, is incised into the T, surface exposing cliffs of 8 to 20 m heights.
T+ surface representing older sediments of active channels is characterized by rippled and cross-bedded
silt, sand, and lensoid units of silty mud. Mean grain size ranges from very fine sand to medium silt;
sediments are poorly to moderately sorted, Skewness ranges from very fine skewed to fine skewed, and
kurtosis ranges from very leptokurtic, leptokurtic, and mesokurtic. The T, surface is the youngest
geomorphic surface of the Ganga basin representing river channels and their associated flood plains. The
Ganga River shows varied channel patterns, from meandering to braided and straight channels. Channels
carry medium sand to very fine silt; sorting is very poorly to poorly sorted, Skewness is very fine skewed to
fine skewed, and kurtosis ranges from leptokurtic, mesokurtic, and platykurtic.

1. Introduction

The Ganga plain's geomorphic surfaces are depositional surfaces with sediment deposited on top that is
more recent. The relative timing of their deposition is recognized based on their morphological
interrelationship and order of superposition. In the Ganga plain, six geomorphic (Fig. 1 (B)) surfaces have
been identified; these are marginal plain upland surface (MP), Piedmont fan surface (PF), Upland terrace
surface (T5,), valley terrace surface (T;) Megafan surface (F), river and active flood plain surface (T)

(Singh, 1996; Singh, 1999; Shukla et al., 2001; Shukla and Bora 2003)

MP is located south of the axial river Ganga. It comprises sediments derived from Peninsular craton
(Singh, 1999; Shukla et al., 2001). T-2 is considered time equivalent to MP surface (Singh, 1999;
Srivastava et al., 2003). The upland terrace surface of the Ganga basin is a flat surface with a gentle
slope (5-10 cm/km). This surface is often designated as Older alluvium (Varanasi Older alluvium) or
Banger (Singh, 1999; Srivastava et al., 2003). Megafan surface resting over the oldest T, surface is
mainly sandy and represents sedimentation under higher sediment—water discharge conditions (Singh,
1999; Shukla et al., 2001). The surface developed adjacent to the Himalayan front all along its length
from east to west (Singh, 1999; Srivastava et al., 2003). PF overlaps the megafan surface and is gravely
in nature. T, surface developed within the broad river valleys, entrenched in T,, MP, and MF surfaces
(Singh, 1999; Shukla et al., 2001). T, surfaces are believed to be formed under high rainfall and sediment
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input compared to modern times (Singh, 1996). T, surfaces are the youngest geomorphic surface of the
Ganga basin (Singh, 1999; Srivastava et al., 2003). The river shows varied channel patterns ranging from
meandering to braided and straight reaches in different basin parts.

The grain size analyses are generally based on sediment size distribution, i.e., mean (Phi), sorting,
Skewness, and kurtosis. The sediment's mean size indicates the water or current force that can cause the
sediments to move. It suggests the transportation dynamic system's general proficiency (Singh et al.,
2007; Flemming, 2007). The sorting of sediments depends on the sediments’ size, strength, and variation
in the energy condition of the depositing agent (Folk and Ward, 1957). Poorly sorting in sediments
indicates variable current velocities and turbulence during deposition, while good sorting indicates steady
currents (Amaral and Pryor, 1977). Skewness gives the degree of symmetry of the sediment distribution.
Sediments that are favorably skewed (towards the negative phi values) are those that are weighted
towards the coarse end-member. Members are considered to be negatively skewed (towards the positive
phi values) at the fine end. The variable energy conditions of the sedimentary deposition settings cause
variation in the sign of Skewness (Friedman, 1967). According to Friedman (1979), the river sediments
are typically positively skewed. The river's one-way flow causes positive Skewness because it chops off
the coarse end of the size frequency curve. (Valia and Cameron, 1977). Negatively skewed sediments are
due to higher energy depositional environments and are subject to transportation for a long time or
velocity variation (Sahu, 1964). Kurtosis is the measure of how peaked the grain size frequency curve is
(Folk and Ward, 1957). Leptokurtic and platykurtic, respectively, are terms used to describe frequency
curves that have higher peaks than typical distribution curves (Folk and Ward, 1957).

The Indo-Gangetic Plain has obtained considerable interest from many earth scientists for the last three
decades. Several works have been done in the Ganga plain in context of Sedimentological,
Geomorphological, Chronological, neo-tectonic and channel migration (Oldham, 1917; Singh, 1996,
Agarwal et al., 2002; Srivastava et al., 2003; Singh, 2004; Sinha et al., 2005; Singh et al., 2009; Shukla et
al., 2012; Shukla 2013; Prakash et al., 2016; Sinha et al., 2017; Varma et al., 2017; Ghosh et al.,, 2017). The
works in the Ganga plain are helpful in linking these Quaternary sediments from an environmental
perspective for predicting future changes and also in the circumstances with the evolution of Himalaya,
which resulted from the continent-continent collision of the Indian plate to Eurasian plate (Pilgrim, 1919;
Philip et al., 1991; Singh, 2004; Shukla 2013; Prakash et al., 2016; Sinha et al., 2017). Thus, studying the
Ganga plain and its Quaternary sedimentological history has become significant. But till now, only limited
and sporadic sedimentological studies are available. The Banger surface may have depositional terraces,
according to Mukherji (1963), who also examined how the formation of these terraces was influenced by
climate and sea level variations. Pathak (1966) distinguished the Bhabar Belt, Terai Belt, Central Alluvial
Plain, and Marginal Alluvial Plain as the four geomorphic components of the Ganga Plain. The regional
upland surface was Varanasi older alluvium, Banda older alluvium, and the Piedmont fan deposits Bhat
alluvium by Joshi and Bhartiya (1991); Khan et al. (1988). The Ganga Plain has also been the reports the
tectonic and neotectonic activity (Singh and Rastogi, 1973; Mohindra and Parkash, 1994; Misra et

al., 1994, Singh, 1999; Agarwal et al., 2002; Singh et al., 2009; Prakash et al., 2016). According to Agarwal
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et al. (2002), the pattern of neotectonic activity varies from Himalayan Orogen (compressional regime)
toward the craton margin (extensional regime). Because of the craton, the peripheral bulge developed
deformational features like extensional normal faults. Sinha et al. (2006) recognized a connection
between the growth of calcrete and monsoonal precipitation in the Ganga plain's interfluves region. The
Ganga River's shift and its impact on the hydrogeological potential of the Varanasi region were
investigated by Shukla and Raju in 2008. Shukla et al. (2012) studied a 750 m-long Ramnagar cliff part
that was exposed on the Ganga River's right bank close to Varanasi. Kanhaiya et al. (2017) have reported
different grain-size variations and facies types in the floodplain of the Ganga River between Kanpur and
Tanda (Chandauli). Sinha et at. (2017) suggest that the Ganga basin geomorphic framework can help
develop a sustainable river management program, habitat suitability, environmental flows, and flood risk.
Lithofacies and Textural analysis of the geomorphic surfaces (T,, T4, and T,) have mainly been ignored.

Geomorphic elements have been studied based on lithofacies and grain size characters in the central
Ganga Plain between Allahabad and Buxar. The studied geomorphic elements are active channel (T,
surfaces), river valley traces/ younger terrace (T, surfaces), and older terrace/ Upland terrace surface (T,
surface). The Ganga River flows from Chunar to Saidpur, exposing 10 to 15 m high cliffs of T, and T,
surfaces, providing an opportunity to characterize them sedimentologically. Sedimentological
documentation of geomorphic units has also been done to understand the geological-geomorphological
evolution of the area.

2. Geological setting

The study area forms the Ganga river valley (GRV) sector Il of M. Singh et al. (2007). In this sector, the
Ganga River flows to SE and then turns to NE, flowing against the general slope of the Ganga Plain. From
Allahabad to Chunar, the river flows in the SE direction, and after that, the river takes an acute turn and
flows towards NE from Chunar to Buxar. Distorted menders, huge point bars, Islands, and narrow flood
plains are observed within this river's reach. From Mirzapur to Chunar, the river flows along the Ganga
Plain's southern peripheral bulge (Vindhyan Super Group). Sediment samples were collected from the
older terrace (T,), younger terrace (T,), and present-day stream channel (T,) along the Ganga River bank
between Allahabad and Buxar. Location of the studied sections of T,, T;, and T, geomorphic elements in
Fig. 1(C).

3. Methods

Sediment samples were taken in areas of exposed cliffs near the active channel. Polyethylene bags were
used to collect the samples. Before the textural examination, all collected sediment samples were dried in
a hot air oven at 50°C. To remove organic matter, 15% H,0, was applied to the samples. To remove the

extra moisture in the samples, the samples were heated up to 70°C until the sparkle disappeared. For
grain size analysis, the treated samples have been used. Total 203 {90 (T5), 56 (T4), 57(T)} samples are

collected and analyzed for grain size. Particle size distributions were measured with a Malvern Laser
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Particle Size Analyzer Mastersizer 2000 with a stirring speed of 2500 rpm and a measurement time of 25
seconds. All samples were ultrasonicated for 10 seconds to break up any aggregation of particles. Each
sample was run three times to check the analysis's consistency. The Mean of each set of results was
taken to textural analysis for each sample. Grain size analyses were conducted in the Department of
Geology, Banaras Hindu University, Varanasi.

Grain-size data obtained from Malvern Mastersizer 2000 were used to determine grain-size parameters
using GRADISTAT software (Blott and Pye, 2001). The present work uses the logarithmic Folk & Ward
method (based on a log-normal distribution with ¢ size) and calculated mean grain size (Mz), standard
deviation (SD), Skewness (SK), kurtosis (KG).

Bivariate plots of Mean versus sorting have been constructed. These plots are useful in understanding
the geological implication of the textural parameters concerning the energy of transporting and
depositing medium and the deposition conditions (Folk & Ward, 1957; Stewart, 1958; Tanner, 1991).

Sedimentary lithofacies were identified using sedimentological observation in the field and substantiated
using sand-silt-clay ratios following subdivisions in the ternary diagram proposed by Blott and Pye
(2012). Similar approaches to lithofacies classification have been used in the earlier workers (Friedman,
1967; Miall, 1996; Friend et al., 1986; Martinius, 2000).

4. Sediment facies of T2, T1, and TO

Three geomorphic surfaces, namely T,, T4, and T, are prominently developed within the study area.

4.1. T-2 Surface

The most prominent surface occurring south of the axial river Ganga is the Doab or interfluve surface. It
characterizes highland areas of the older alluvium making the Upland Terrace Surface known as the T,

surface. T, surface in Varanasi is also known as Varanasi Older Alluvium or Bhangar (Singh et al. 1999).

On the surface, Upland interfluves exhibit various river channels, abandoned channel belts, and micro-
geomorphologic features such as ponds and lakes. The river channels are mostly incised on this surface.
T, surface is away from the reach of recurring floods by overtopping the river channels. Four sections of

T, surfaces, namely the Shartri bridge section (Allahabad), Ram-Gaya Ghat section (Mirzapur), Nar Ghat

section (Mirzapur), and Narbatpur section (Buxar), have been studied for lithofacies and grain size
analyses.

4.1.1. Grain size parameters and sedimentary facies (based
on Blott and Pye (2012) classification)

All the samples from all the studied sections were plotted on the Blott and Pye (2012) diagram to deduce
grain-sized based facies constitution of the T-2 surface as a whole. The distribution of the sediments in
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the ternary diagram of Sand-The silt—Clay plot after Blott and Pye (2012) (Fig. 2) indicates that T-2
sediments fall well within the Slightly sandy-slightly clayey-silt, Slightly clay-sandy-silt, Very slightly clay-
silty-sand, Very slightly sandy-slightly clayey-Silt (Fig. 3). The mean grain size of the T-2 surfaces lies
between very coarse to medium silt (Table-1 and Fig. 4). Sorting of T-2 surface sediments varies from
very poorly to poorly sorted. The Skewness of the T-2 surface sediments ranges from very fine skewed to
fine skewed. Kurtosis of T-2 surface sediments varies from leptokurtic to platykurtic (Table-1 and Fig. 4).

4.1.1.1. Very slightly clay- silty- sand

Very slightly clay-silty-sand occurs only in the Jushi (Allahabad) section. These facies contains 49.58—
53.73% sand, silt 42.71-45.84%, and clay3.55-4.56%. Very slightly clay-silty-sand facies locally constitute
5.2% of the entire T-2 surface. These facies are poorly sorted with very fine to fine Skewness and
leptokurtic grain-size distribution.

4.1.1.2. Slightly clay-sandy-silt

Slightly clay-sandy-silt facies constitutes 31.57% of the sedimentary succession in the T-2 surface. These
facies occurs in Jushi, Ramgya Ghat, Nar Ghat, and Buxar. This facies contains 21.2-39.8% sand, silt
53.1-69.3%, and clay 5.31-9.5%. Sediments are very poorly to poorly sorted with very fine skewed and
mesokurtic to very leptokurtic grain-size distribution.

4.1.1.3. Slightly sandy-slightly clayey- silt

This facies contains 21.2-39.8% sand, silt 53.1-69.3%, and clay 5.31-9.5%. Slightly sandy-slightly
clayey-silt facies constitute 58.03% of the spectrum. These samples are very poorly to poorly sorted with
fine skewed and platykurtic to mesokurtic grain-size distribution.

4.1.1.4. Very slightly sandy- slightly clay- Silt

Very slightly sandy- slightly clay- Silt facies form 5.2% of the succession in the T-2 surface deposit. This
facies contains 3.72-4.78% sand, silt 84.16—87.22%, and clay 7.02-11.0%. Samples are poorly sorted,
fine skewed, and leptokurtic grain-size distribution.

4.1.2. Lithofacies

Field-based characters, grain size parameters, and the probable deposition environment of identified
lithofacies are summarized in a tabular form in Table 2.

4.2. T-1 Geomorphic Surface
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The T-1 geomorphic surface is developed within the Ganga River valley, which is entrenched into the T-2
surface. T-1 surface is believed to have undergone the conditions of high rainfall and sediment input
compared to modern times (Singh et al. 1999). In the present study, two sections of the T-1 surface
investigated are the HRI section (Allahabad) and Hanuman Ghat (Ramnagar Varanasi).

4.2.1. Grain size parameters and sedimentary facies (based on Blott and Pye (2012) classification) of T-1
surface

All the samples from all the studied sections were plotted on the Blott and Pye (2012) diagram to deduce
grain-sized based facies constitution of the T-1 surface as a whole. The distribution of the sediments in
the ternary diagram of Sand-Silt-Clay after Blott and Pye (2012) is shown in Fig. 2. In the ternary
diagram, T-1 sediments fall well within the Very slightly clayey-silty-sand, Silty clayey-sandy-silt, Slightly
sandy-slightly clayey-silt, Very slightly clayey-silty-sand, Slightly silty-sand (Fig. 2 and Fig. 3). So grain
size based lithofacies are highly varied in the T-1 surface.T-1surface varies from very fine sand to medium
silt (Table-1, Fig. 4(B)). T-1 surface sediments vary from poorly to moderately sorted (Table-1, Fig. 4(B)).
The Skewness of the T-0 surface sediments ranges from very fine skewed to fine skewed. Kurtosis of
Sediments of T-1 surface ranges from very leptokurtic to mesokurtic (Table-1, Fig. 4(B)).

4.2.1.1. Very slightly clayey- silty-sand

Very slightly clayey- silty-sand facies constitutes 21.24% of the sedimentary succession in the T-1
surface. This facies occurs in HRI (Allahabad) and Hanuman Ghat (Varanasi) sections. This facies
contains 49.9-55.6% sand, silt 41.4-45.6%, and clay 3.00-4.5%. Sediments are poorly sorted with very
fine skewed and very leptokurtic to leptokurtic grain-size distribution.

4.2.1.2. Silty clayey- sandy-silt

Silty clayey- sandy-silt facies form 21.24% of the succession in the T-1 surface deposit. This facies
contains 27.00-38.5% sand, silt 49.8—-65.3%, and clay 6.11-7.7%. Samples are very poorly sorted, fine
skewed, and leptokurtic grain-size distribution.

4.2.1.3. Slightly sandy- slightly clayey- silt

Slightly sandy- slightly clayey-silt facies constitutes 42.85% of the sedimentary succession in the T-1
surface. This facies occurs in HRI (Allahabad) and Hanuman Ghat (Varanasi). This facies contains 9.4~
20% sand, silt 70.3-78.2%, and clay 7.2-13.2%. Sediments are poorly sorted with fine skewed and
mesokurtic to leptokurtic grain-size distribution.

4.2.1.4. Slightly silty-sand

Slightly silty-sand facies occurs only in the HRI (Allahabad) section. These facies contains 79.19-80.63%
sand, silt 19.25-19.62%, and clay 00-1.5%. Slightly silty-sand facies locally constitutes 7.14% of the
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entire facies recorded in the T-1 surface. These facies are moderately sorted with symmetrically fine
Skewness and mesokurtic to leptokurtic grain-size distribution.

4.2.1.5. Very slightly clayey-silty-sand

Very slightly clayey-silty-sand facies locally constitutes 7.14% of the entire facies recorded in the T-1
surface. Slightly clayey-silty-sand facies occur in the HRI (Allahabad) section. These facies contains
77.12-80.64% sand, silt 16.38—19.83%, and clay 2.97-3.03%. These facies sediments are poorly sorted
with fine Skewness and very leptokurtic grain-size distribution.

4.2.2. Lithofacies of T-1 surface

T-1 surface is 4—8 m above the present river channel. Remote sensing images show meander scars on
the T-1 surface. Field-based characters, grain size parameters, and the probable deposition environment
of identified lithofacies are summarized in a tabular form in Table 3.

Table.1. Sedimentary facies (based on Blott and Pye (2012) classification) and textural parameters of the
T-2, T-1, and T-0 surface along the Ganga River, middle Ganga plain, India.
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Sedimentary facies Mean Sorting Skewness  Kurtosis Sand Silt%  Clay%

(phi) (phi) %
T-2 Surface
Very Slightly clay-silty- 4.38- 1.74- 0.38-0.4 1.16- 49.58- 42.71- 3.55-
sand 5.42 1.85 1.28 53.73 4584 4.56
Slightly clay-sandy-silt 5.56- 1.82- 0.32-0.46  0.97- 21.2- 53.1- 5.31-
4.93 2.48 1.37 39.8 69.3 9.5
Slightly sandy-slightly 5.59- 1.84- 0.17-0.38  0.79- 6.3- 75.12-  7.9-
clayey-silt 6.73 2.12 1.26 17.1 8223 13.1
Very slightly sandy- 5.34- 1.69- 0.27-0.28 1.11- 3.72- 84.16- 7.02-
slightly clayey-silt 6.38 1.80 1.22 4.78 87.22 11.05
T-1 Surface
Very Slightly clay-silty- 3.8- 1.54- 0.12-0.33 1.22- 49.9- 41 .4- 3.00-
sand 4.21 1.71 1.57 55.6 45.6 4.5
Slightly clay-sandy-silt 4.67- 2.01- 0.25-0.34  1.02- 27.00- 49.8- 6.11-
5.38 2.17 1.33 38.5 65.3 7.7
Slightly sandy-slightly 5.45- 1.85- 0.14-0.38  0.94- 9.4-20 70.3- 7.2-
clayey-silt 6.51 2.06 1.22 78.2 13.2
Slightly silty- sand 2.27- 0.76- 0.08-0.13  1.08- 79.19- 19.25- 0QO0-
3.30 0.94 1.18 80.63 19.62 1.5
Very slightly clayey- 2.15- 1.71- 0.31-0.34  1.74- 77.12- 16.38- 2.97-
slightly silty- sand 3.21 1.93 1.84 80.64 19.83 3.03
T-0 Surface
Very Slightly clay-silty- 3.76- 1.16- 0.33-0.37  1.06- 50.2- 32.7- 2.6-
sand 4.56 2.44 1.58 64.7 42.3 7.5
Slightly clay-sandy-silt 4.69- 1.97- 0.28-0.36  1.12- 23.4- 51.2- 6-8.1
5.37 2.19 1.20 42.3 68.5
Very slightly clayey- 2.88- 1.02- 0.30-0.53 1.24- 76.7- 8.4- 1.7-
slightly silty- sand 4.83 1.94 1.74 89.3 19.5 3.8
Very Slightly silty- sand 0.97- 1.09- 0.26-0.28  1.10- 97.59- 2.07- 0
1.09 1.14 1.12 9792 240
Slightly clayey-silty- 3.62- 1.89- 0.27-0.38  1.13- 40.40- 50.16- 5.25-
sand 4.63 2.00 1.24 43.55  55.31 6.28
Clayey silt 7.25- 1.27- 0.19-0.30 0.67-78 00 65.26- 29.66-
8.26 1.37 70.33  35.73

Table.2. Summary of the lithofacies analysis of T-2 surface.
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Lithofacies

Rippled silt

Silt

Bedded

Calcrete

Sandy silt

Mottled silt

Ferruginous
nodules
and
calcrete
bearing silt

Characteristic

1-1.5 m thick, Ripple-parallel laminated, Minute calcrete
nodules. Grain size distribution shows, Mean, 5.88 phi;
Skewness, 0.31; Sorting, 1.91; Kurtosis, 0.99.

0.8-4.2 m thick, sheet like, burrowing activity, calcrete
nodules. Grain size distribution shows, Mean, 5.84-6.36
phi; Skewness, 0.17-0.28; Sorting, 1.79-2.01; Kurtosis,
1.11-1.28.

Make 0.15-0.60 thick bands of calcrete, interlayer with
silty sediments, channelized. Grain size distribution
shows, Mean, 5.77 phi; Skewness, 0.28; Sorting, 1.8;
Kurtosis, 1.11.

0.6-2.5 m thick, calcrete nodules, bioturbation, plant
remains, basal contact is distinctly sharp, emphasizing
the channelized character. Grain size distribution shows,
Mean, 4.8-6.01phi; Skewness, 0.28-0.46; Sorting, 1.8
-2.09; Kurtosis, 1.06-1.37.

Occurs as 0.8-2.5 m thick sheet-like or lensoid units.
Mottling is common, Containing abundant calcrete
nodules.

Grain size distribution shows, Mean, 5.79-6.18 phi;
Skewness, 0.25-0.38; Sorting, 1.83-2.04; Kurtosis, 0.87-
1.27.

3.5 m thick, calcrete and ferruginous nodules, absent of
primary structure. Grain size distribution shows, Mean,
6.3 phi; Skewness, 0.29; Sorting, 2.05; Kurtosis, 0.88.

Depositional
environment

Small channel (Carling,
1996; Singh et al., 1999)

Dominant process of
sedimentation is the
sheet flow during
monsoon rains (Kumar et
al.,, 1995; Singh et al.,
1999).

Calcretized gully deposits
(Machette, 1985; Singh et
al., 1999)

Deposits of small gullys
(Singh et al., 1999;
Nichols and Fisher, 2007)

It represents sheet flow
deposits (Mack and
James, 1994; Kumar et
al., 1995)

It represents sheet flow
deposits (Kumar et al.,
1995; Singh et al., 1999)
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Table 3

Summary of the lithofacies analysis of T-1 surface.

Lithofacies

Cross
bedded
sand

Laminated

sand

Silt

Clayey silt

Sandy silt

Silty sand

Characteristic

Tm thick micaceous sand, animal and plant traces,
calcrete nodules. Grain size distribution shows, Mean,
3.18 phi; Skewness, 0.32; Sorting, 1.74; Kurtosis, 1.93.

0.8 to 1 m thick micaceous sand, animal and plant
traces. Grain size distribution shows, Mean, 3.28;
Skewness, 0.1; Sorting, 0.08-0.94; Kurtosis, 1.48.

Common lithofacies developed in T-1 surfaces. 0.5-1 m
thick, calcrete nodules ranges from mm to 12 cm in size,
animal burrows and plant remains common. Grain size
distribution shows, Mean, 4.67-6.51 phi; Skewness,
0.14-0.38; Sorting,1.87-2.17; Kurtosis, 0.97-2.05.

0.5-0.8 m thick, minute, sheet like, calcrete nodules,
plant remains common. Grain size distribution shows,
Mean, 4.21 phi ; Skewness, 0.33; Sorting, 1.71;
Kurtosis,1.47.

0.6—1.3 m thick, disseminated calcrete, root traces. Grain
size distribution shows, Mean, 5.45-5.71; Skewness,
0.33; Sorting, 1.85-2.06; Kurtosis, 0.98-1.15.

1-4.2 m thick, Light grey coloured sand, calcrete
nodules, root traces, animal burrow. Grain size
distribution shows, Mean, 3.83-4.04; Skewness, 0.12—
0.26; Sorting, 1.22-1.57; Kurtosis: 1.54-1.69.

Depositional environment

Sediment deposition in
high energy sinuous
channels under lower flow
regime fluctuating energy
condition (Allen, 1982;
Ashley, 1990)

Deposition in channels
under lower flow regime
(Kraus and Aslan, 1993;
Shukal et al. 2012)

Abandoned channel fill
deposits viewing
vegetation and animal
activity (Kraus and
Gwinn,1997; Shukla et al.
2009)

Deposited in low lying
over bank areas by
suspension fall out (Farrel,
1987; Citterio and Gay,
2009)

Deposition in channels
(point bars and flood
bank) (Singh et al., 1999;
Nichols and Fisher, 2007)

Deposition in channels
(point bars and flood
bank) (Singh et al., 1999;
Nichols and Fisher, 2007)

Table.4. Summary of the lithofacies analysis of T-0 surface.

Page 11/27




Lithofacies

Sand bar
lithofacies

Rippled fine
sand

Rippled
and cross-
bedded
sand

Rippled
and
burrowed
sand and
silt

Over-bank

Silty clay
lithofacies

Mud

Characteristic

1.5 -2 m thick, ripple-cross lamination,
root traces, bioturbation. Grain size
distribution shows, Mean, 2.5-2.6 phi;
Skewness, 0.39-0.41; Sorting, 1.53-1.56;
Kurtosis, 1.56-1.58.

0.5- 1 m thick, root traces.

Grain size distribution shows, Mean, 4.5-
4.8 phi; Skewness, 0.36-0.38; Sorting,
2.43-2.49; Kurtosis, 0.97-1.06.

0.4 -4 m thick, laminated, root traces

Grain size distribution shows, Mean,3.25-
3.28; Skewness, 0.52-0.53; Sorting, 1.93-
1.95; Kurtosis, 1.62-1.64.

0.6-1.2 m thick, laminated, bioturbation

Grain size distribution shows, Mean, 5.8;
Skewness, 0.59; Sorting, 1.45; Kurtosis,
1.31.

Thickness of the beds laterally varying
between 10 and 30 cm, light grey to
whitish grey, desiccation cracks. Grain
size distribution shows, Mean, 8.25;
Skewness, 0.29; Sorting, 1.26; Kurtosis,
0.77.

Depositional environment

Deposition in wide shallow
ephemeral channels under
lower flow regime condition
(Rygel et al. 2004; Shukla et
al 2006)

Deposition in channels
under fluctuating energy
forming both 2D and 3D
bedforms ( Kraus and
Aslan, 1993; Nichols and
Fisher, 2007)

Migration of bed form in
the channel (Rygel et al.
2004; Shukla et al 2006)

Flood plain- crevasse
deposits (Shukla et al 2004;
Shukla et al. 2012)

Low lying flood plain
deposits (Kraus and Gwinn,
1997; Citterio and Gay,
2009)

4.3. T-0 Geomorphic Surface

The T-0 is the youngest geomorphic surface of the Ganga plain. The Ganga River shows varied channel
patterns ranging from meandering to braided in different parts of the study area. In T-0 surface sand-bar
deposits, channel and over-bank deposits have been studied.

4.3.1. Grain size parameters and sedimentary facies (based on Blott and Pye (2012) classification) of T-0

surface

The distribution of the sediments in ternary diagram of Sand-Silt-Clay after Blott and Pye (2012) in
which T-0 sediments fall well within the Very slightly clayey-silty-sand, Slightly clayey-sandy-silt, Very
slightly clayey-slightly silty-sand, Very slightly silty-sand, Slightly clayey-silty-sand, Clayey-silt (Fig. 2 and
Fig. 3). T-0 surface varies from very fine sand to coarse silt (Table-1, Fig. 4(C-D)). T-0 surface sediments
vary from very poorly to poorly sorted. The Skewness of the T-0 surface sediments ranges from very fine
skewed to fine skewed. Kurtosis of Sediments of T-0 surface ranges from very leptokurtic to mesokurtic

(Table-1, Fig. 4(C-D)).
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4.3.1.1. Very slightly clayey- silty- sand

Very slightly clayey- silty-sand facies constitutes 15.38% of the overall facies spectrum of T-0 surface.
Sediments are represented very poorly to poorly sorted, with very fine to fine skewed and mesokurtic to
leptokurtic grain-size distribution. This facies contains 50.2-64.7% sand, silt 32.7-42.3%, and clay 2.6—
7.5%.

4.3.1.2. Slightly clayey-sandy-silt

Slightly clayey-sandy-silt facies form 30.76% of the succession in the T-0 surface deposits. It comprises
23.4-42.3% sand, 51.2-68.5% silt, and 6-8.1% clay. Samples that are very poorly to poorly sorted with a
very fine skewed and vary leptokurtic to leptokurtic grain size distribution.

4.3.1.3. Very slightly clayey-slightly silty-sand

Very slightly clayey-slightly silty-sand facies comprises 76.7-89.3% sand, 8.4-19.5% silt,and 1.7-3.8%
clay. These facies constitutes 30.76% of the entire facies recorded in the sedimentary succession of the T-
0 surface. Samples of this unit show poorly sorted, very fine skewed, and very leptokurtic to leptokurtic
grain-size distribution.

4.3.1.4. Very slightly silty-sand

Very slightly silty-sand facies locally constitutes 7.69% of the sedimentary deposit in the T-0 surface. It
comprises 97.59-97.92% sand, 2.07-2.40% silt, and 0% clay. This unit consists of poorly sorted, fine-
skewed, and leptokurtic grain-size distribution.

4.3.1.5. Slightly clayey- silty- sand

These facies contains 40.40-43.55% sand, silt 50.16—55.31%, and clay 5.25-6.28%. Slightly clayey-silty-
sand facies locally constitutes 7.69% of the entire facies recorded in the T-0 surface. These facies
sediments are poorly sorted with very fine to fine Skewness and leptokurtic grain-size distribution.

4.3.1.6. Clayey- silt

Clayey-silt facies constitutes 7.69% of the sedimentary succession in the T-0 surface. This facies occurs
in bypass bridge (Varanasi) sections. This facies contains 0% sand, silt 65.26-70.33%, and clay 29.66-
35.73%. Sediments are poorly sorted with fine skewed and platykurtic grain-size distribution.

4.3.2. Lithofacies of T-0 surface

Based on field characters and grain-size parameters, lithofacies are summarized in tabular form in
Table 4.

5. Bivariate plots
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Bivariate plots show the relationship between textural parameters for the geomorphic surface sediments
of the Ganga plane. Relationship between the textural parameters of the grain size used as environmental
indicators by various workers (Mason and Folk, 1958; Sahu, 1964; Doeglas, 1968; Solohub and Klovan,
1970; Buller and McManus, 1972; Valia and Cameron, 1977; Goldbery, 1980; Kanhaiya, 2017). Sediments’
mean size and sorting are controlled by the energy of the environment and the degree of sediment
processing (Griffiths, 1967; Tanner, 1991; Long et al., 1996; Lario et al., 2000; Nag et al., 2016).

5.1. Stewart bivariate plot

Stewart (1958) proposed a bivariate plot of mean grain size and sorting showing different zone of the
depositional environments such as beach, river, quiet water, and inner self. In the present study, sediments
mean grain size (T-2, T-1, and T-0) was plotted against sorting values (T-2, T-1, and T-0) (Fig. 6(A)). It
shows that most samples fall well within the quiet water condition.

5.2. Tanner bivariate plot

Textural parameters (Mean and Sorting) of Sediments (T-2, T-1, and T-0) plotted in the Tanner (1991)
bivariate plot. It shows that all the sediments (T-2, T-1, and T-0) fall well within the fluvial and stream
episode zone. Tanner (1991) plot further suggested that fluvial processes were responsible for sediment
deposition (Fig. 6(B) ).

6. Discussion

The deeply incised Ganga River into the T-2 surface, exposing 8—14 m high cliffs, indicates an incision by
the river. The cliff sections expose laterally extensive sedimentary successions of the Upland terrace (T-1)
surface and River valley terrace (T-1) surface. Four sections (Shashtri Bridge, Ram Gya Ghat, Nar Ghat,
and Narbatpur section) are studied in different locations along the Ganga River between Allahabad and
Buxar. The stratigraphic section comprises various lithofacies such as rippled silt, bedded calcrete, sandy
silt, mottled silt, ferruginous nodules, and calcrete bearing silt. Mean grain size varies from very coarse to
medium silt. Sediments are very fine skewed to fine skewed with leptokurtic to platykurtic grain size
distribution (Fig. 4 (A)). These sedimentary deposits do not show any character of deposition by the river.
The development of the T-2 surface in the study area may be the consequence of sedimentation in small
channel and sheet flow processes, which indicates that these surfaces are not related to the fluvial
processes of the Ganga River. This finding is in accordance with the view proposed by Singh et al., 1999;
Srivastava et al,, 2003a,b. The T-2 surfaces are dated and signify that interfluve (Doab) facies depositions
have formed during 128 - 74 ka, and topmost sediments are deposited during 50 - 7 ka (Srivastava et al.,
2003a,b).

The Ganga River shows a broad alluvial terrace (T-1 surface) incised in the T-2 surface in the study area,
while the active channel of the Ganga River (T-0) is incised in the T-1 surface. The T-1 surface is 4-8 m
above the present river channel.
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HRI (Allahabad) and Hanuman Ghat section (Varanasi) of T-1 surfaces of the Ganga Pain were studied.
The stratigraphic section comprises various lithofacies such as cross-bedded sand, laminated sand, silt,
clayey silt, sandy silt, and silty sand. Mean grain size varies from very fine sand to medium silt.
Sediments are very poorly to poorly sorted, fine to very fine skewed, and mesokurtic to leptokurtic grain-
size distribution.

The present-day Ganga River in the Varanasi region is incised within the River valley Terrace (T-1-Surface),
while the Upland Interfluve Surface (T-2 surface) is located much above the T-1-Surface, which Shukla
and Raju, 2008 also report; Srivastava and Shukla, 2009. The Ganga River makes high cliffs at places
where T-1-Surface has been eroded. The cliff height is essentially a result of up warping of the surface
around 7 ka. Before coming to its present location, the Ganga River had a wide valley, shifting within its
valley and changing its position many times between 40 ka to 7 ka. It appears that in the Varanasi, the
river incision and cliff development is essentially related to the intra-basinal tectonics; though, this phase,
in particular, is characterized by high precipitation and discharge (Prell and Kutzbach, 1987) and
therefore, the incision might have initiated due to increased river discharge. Moreover, looking at the
deformation in the Ramnagar, the role of climate and base-level as the cause of incision seems
subordinate.

T-0 surfaces include the active channel of the Ganga River and its flood plains. The Ganga River shows
varied channel patterns ranging from meandering to braided and straight channels. This narrow surface
ranges from 1.5 km to 15 km wide within the studied stretch. Two fluvial landforms, sand bars, and
levees, have been analyzed based on lithofacies and grain size variation. The sand bar comprises various
lithofacies such as interstratified sand-silt mud, rippled sand, and cross-bedded bar sand. The mean grain
size in sand bars varies from medium sand to silt. Kurtosis ranges from very leptokurtic to mesokurtic.
Skewness varies from very fine skewed to fine skewed. Sorting runs from very poorly sorted to poorly
sorted.

Two lithofacies, silty clay, and mud, have been identified in levees. Mean grain size varies from very fine
sand to coarse silt with very poorly to poorly sorted sediments. Skewness ranges from very fine to fine
skewed. Kurtosis ranges from very leptokurtic to leptokurtic.

7. Conclusion

The oldest geomorphic surface, the T-2 surface, formed by sheet flow processes during monsoon season,
consists of silt, sandy silt, and silty sand. Sediments are poorly to very poorly sorted, very fine skewed to
fine skewed, and kurtosis ranges from leptokurtic to platykurtic.

The Ganga River is incised into T-1 surface up to 4-8m in the study area. Rippled and cross-bedded silt,
sand, and lensoid units of silty mud characterize T-1 representing older sediments of active channels.
Mean grain size ranges from very fine sand to medium silt; sediments are poorly to moderately sorted;
Skewness ranges from very fine skewed to fine skewed, and kurtosis ranges from very leptokurtic,

leptokurtic, and mesokurtic.
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T-0 is the youngest geomorphic surface of the Ganga basin. The Ganga River shows varied channel
patterns ranging from meandering to braided and straight channels. Channels carry medium sand to very
fine silt; sorting is very poorly to poorly sorted; Skewness is very fine skewed to fine skewed, and kurtosis
ranges from leptokurtic, mesokurtic, and platykurtic.
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Particle size distribution of T-2, T-1, and T-0 sediments (Classification suggested by Blott and Pye, 2012).
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Figure 3

Lithological profiles of the studied geomorphic surfaces T-2, T-1, T-0 cliff sections showing the various
sedimentary facies and sample numbers.
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Bivariate plots (A) T-2 surface (B) T-1 surface (C) T-0 (sand bar) (D) T-0 surface (Levee).
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Figure 5

Photograph exhibiting different lithofacies in T-2, T-1, and T-0 surfaces. A-E are T-2 surfaces. F — T-1
surface and G-H are sand bar lithofacies (A) Calcrete bands in the cliff section at Jushi (B) contact
between mottled silt and sandy silt at Ramgya ghat (C) sharp contact between sandy silt and silt at Nar
ghat section (D) Ferruginous nodules and calcrete bearing silt at Narbatpur section (E)ripple silt at Jushi
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section (F) cross-bedded sand with calcrete nodules at HRI section (G) rippled fine sand and mud (H)
rippled and burrowed sand and silt in sand bar deposit.
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(A) Bivariate plots, mean size against sorting plot with subdivisions after Strewart (1958). (B) Bivariate
plots, mean size against sorting plot with subdivisions after Tanner (1991).
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