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Supplementary Methods and Discussion
Chemical reagent
[bookmark: _Hlk129959941]The Hβ zeolites were purchased from the Catalysis Centre of Nankai University (Tianjin, China), while two other molecular sieves, USY and ZSM-5 were purchased from Real & Lead Chemical Co., Ltd. (Tianjin, China). The chemicals used in this study, including furfuryl alcohol (FA), furfural, furan, 2,5-dihydroxymethylfuran (DHMF), γ-valerolactone, methylisobutylketone and acetone were purchased from Shanghai Aladdin Reagent (Shanghai, China). The different furan platform including furan, 2-methylfuran, 5-hydroxymethyl-2-methylfuran, 2-furoic acid, 5-(hydroxymethyl) furan-2-carboxylic acid were purchased from Shanghai Macklin Reagent (Shanghai, China). The solvents 1,4-dioxane was obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Formalin was purchased from Shanghai Rowan Reagent Co., Ltd. (Shanghai, China). Unless otherwise stated, all the chemicals and materials used in the study were commercially sourced and used without further purification.
Catalyst reusability test
The potential reusability of the Hβ-29 molecular sieve catalyst in the hydroxymethylation of FA to DHMF was evaluated. After each reaction cycle, the catalyst was separated, cleaned and dried, and the reaction was repeated. However, the activity of the reused catalyst decreased significantly after several cycles due to catalyst deactivation and carbon deposition on the surface. XRD analysis (Supplementary Fig. 4a) showed that the crystalline form of the spent catalyst was largely retained, but the response values were reduced in some crystalline planes (101, 004 and 201). FTIR analysis (Supplementary Fig. 4b) revealed a new characteristic peak (871 cm-1) in the spent catalyst corresponding to the C–H characteristic peak of the product DHMF. SEM analysis (Supplementary Fig. 5) showed impurities on the surface of the spent catalyst. NH3-TPD and Py-FTIR analysis (Supplementary Fig. 4c, d) showed a significant decrease in the acid content of the spent catalyst, which is a fatal weakness.
To restore the activity of the spent catalyst, it was calcined in a muffle furnace at 550 °C for 6 h prior to each recovery run. The resulting carbon deposits of the regenerated catalyst were successfully removed (Supplementary Fig. 5c) and its physical properties were restored. XRD, FTIR and Py-FTIR analyses showed that the crystal structure and acidic sites of the regenerated catalyst recovered their basic properties. NH3-TPD analysis showed that the percentage of highly acidic sites increased in the used catalyst. The factor contributing to the increase in the strong acidity of the post-used molecular sieve was the high temperature decomposition of the humic substances attached to the molecular sieve during the NH3-TPD analysis, which affected the strong acidic sites of the TPD curve. As expected, the reused catalyst was used for the subsequent FA hydroxymethylation reaction under the same conditions as the initial reaction. In five consecutive runs the product yields were measured and compared with the initial reaction (Supplementary Fig. 2). The results showed that the regenerated catalyst was only slightly less active than the fresh catalyst, indicating that the Hβ molecular sieve catalyst can be effectively recovered and reused in the FA hydroxymethylation reaction after muffle reaction and activation.
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[bookmark: _Hlk127280097]Supplementary Fig. 1. GC-MS spectrum of product at 60 °C for 60 min.



[bookmark: _Hlk136595148]Supplementary Fig. 2. Conversion of FA to DHMF over various catalyst in formaldehyde. Reaction conditions: 0.05 g FA, 0.1 g catalyst, 5 mL formaldehyde, 60 °C, 60 min; Regenerated Hβ-29: the deposited carbonaceous materials on the surface of the spent Hβ-29 zeolite were removed by calcining it in a muffle furnace at 550 °C for 6 h before recycling run.










	


	



Supplementary Fig. 3. NH3-TPD (a) and Py-FTIR (b) results of the Hβ-26, Hβ-29, Hβ-38, USY-5.2, and ZSM-5-25.






	

	


	

	



Supplementary Fig. 4. Reusability test of Hβ-29 catalyst in the conversion of FA to DHMF. XRD (a), FT-IR (b), NH3-TPD (c), Py-FTIR (d).
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[bookmark: _Hlk140918952]Supplementary Fig. 5. SEM images (a–c) of fresh, spent, and regenerated Hβ-29 catalysts. Regenerated Hβ-29: the deposited carbonaceous materials on the surface of the spent Hβ-29 zeolite were successfully removed by calcining it in a muffle furnace at 550 °C for 6 h before recycling run.







	

	


	

	



[bookmark: _Hlk140918991]Supplementary Fig. 6. FT-IR spectra of FA, FA absorbed on Hβ-29 (a), FA absorbed on USY-5.2 (b), FA absorbed on ZSM-5-25 (c), after adsorption of FA in various zeolites (d).
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Supplementary Fig. 7. Structures and adsorption energies (ΔE) of two FA molecules on molecular sieve catalysts.














	

	


	

	


	

	


[bookmark: _Hlk140919071]Supplementary Fig. 8. The correlation between all experiments and predicted values of FA conversion and the yield of DHMF at 30 °C (a); 40 °C (b); 50 °C (c); 60 °C (d); and 70 °C (e). Reaction conditions: 0.05 g FA, 0.1 g Hβ-29, 5 mL formalin.
	

	


	

	


	

	


Supplementary Fig. 9. The correlation between all experiments and predicted values of FA conversion and the yield of DHMF at  30 °C (a); 40 °C (b); 50 °C (c); 60 °C (d); and 70 °C (e). Reaction conditions: 0.05 g FA, 0.1 g Hβ-29, 4 mL formalin +1 mL 1,4-dioxane.

	

	

	


	

	

	



[bookmark: _Hlk140919158]Supplementary Fig. 10. Arrhenius plot of the k1 (a, d); k2 (b, e); and k3 (c, f) for conveting FA to DHMF. Reaction conditions: 0.05 g FA, 0.1 g Hβ-29.











	

	



Supplementary Fig. 11. ESI-MS spectrum of FA after hydroxymethylation at 60 °C for 60 min, 5 mL formalin (a), 4 mL formalin + 1 mL 1,4-dioxane (b).
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Supplementary Fig. 12. Snapshots of formalin systems before and after molecular dynamics simulation. Simulation conditions: 1 furfuryl alcohol molecule corresponds to 98 formaldehyde hydrate molecules, 83 water molecules.
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[bookmark: _Hlk140919270]Supplementary Fig. 13. Snapshots of formalin/1,4-dioxane mixture systems before and after molecular dynamics simulation. Simulation conditions: 1 furfuryl alcohol molecule corresponds to 78 formaldehyde hydrate molecules, 67 water molecules, and 23 1,4-dioxane molecules.
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Supplementary Fig. 14. Coordination of FA with solvent molecules. Formalin systems (a), formalin/1,4-dioxane mixture systems (b).
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Supplementary Fig. 15. Spatial density functions (SDF) of water (red) (a) around formaldehyde hydrate in the formalin system. Spatial density functions (SDF) of water (red) (b) and 1,4-dioxane (purple) (c) around formaldehyde hydrate in co-solvent system. Formalin system: 1 furfuryl alcohol molecule corresponds to 98 formaldehyde hydrate molecules, 83 water molecules. Formalin/1,4-dioxane mixture system: 1 furfuryl alcohol molecule corresponds to 78 formaldehyde hydrate molecules, 67 water molecules, and 23 1,4-dioxane molecules.






	

	



Supplementary Fig. 16. FT-IR spectra of formaldehyde, formaldehyde absorbed on USY-5.2 (a), formaldehyde absorbed on ZSM-5-25 (b).














Supplemental Tables
Supplementary Table 1. Hydroxymethylation of different furan platform.
	Reactant-
furan platform
	Product-
C6 platform
	Temperature 
and time
	C5 platform conversion (%)
	C6 platform
yield (%)

	

Furfural
	

HMF
	90 °C, 360 min
	80.5
	18.7

	

2-Furoic acid
	

5-(Hydroxymethyl) furan-2-carboxylic acid
	90 °C, 360 min
	70.8
	34.7

	

FA
	

DHMF
	60 °C, 60 min
	67.5
	41.6

	

Furan
	

DHMF
	60 °C, 60 min
	-
	39.5

	

2-Methylfuran
	

5-Hydroxymethyl-2-methylfuran
	60 °C, 60 min
	94.5
	35.9


Reaction conditions: 0.10 g reactant, 0.10 g Hβ-29, 5 mL formalin.












Supplementary Table 2. The acidity of the samples.
	Samples
	200 °C
	350 °C

	
	B acid (μmol/g)
	L acid (μmol/g)
	B acid (μmol/g)
	L acid (μmol/g)

	Hβ-26
	227.3
	261.6
	198.3
	151.1

	Hβ-29
	203.3
	234.9
	151.2
	135.9

	Hβ-38
	142.6
	161.2
	111.0
	89.3

	Hβ-29a
	98.7
	113.8
	77.6
	98.3

	Hβ-29b
	202.7
	225.9
	150.6
	133.8

	USY-5.2
	334.2
	261.2
	274.2
	73.4

	ZSM-5-25
	426.1
	65.1
	242.7
	20.1


[bookmark: _Hlk102074923]Analyzed by in-situ FTIR spectra of surface species derived from pyridine-adsorption
aSpent Hβ-29 catalyst after the first run.
bRegenerated Hβ-29 catalyst after the first run by calcination.
















Supplementary Table 3. Textural properties of various catalysts.
	Entry
	Catalyst
	BET surface area, m2 g–1
	Pore volume, cm3 g–1
	Pore diameter, nm

	1
	Hβ-26 
	556.31
	0.22
	2.21

	2
	Hβ-29 
	590.25
	0.30
	2.45

	3
	Hβ-38 
	619.26
	0.31
	2.51

	4
	Hβ-29a
	300.80
	0.24
	3.14

	5
	Hβ-29b
	557.59
	0.29
	2.56

	6
	USY-5.2
	382.08
	0.41
	3.41

	7
	ZSM-5-25
	210.23
	0.12
	2.19


aSpent Hβ-29 catalyst after the first run.
bRegenerated Hβ-29 catalyst after the first run by calcination.















Supplementary Table 4. FA adsorption on molecular sieve catalysts.
	Entry
	Catalyst
	FA adsorption, %

	
	
	20 °C
	60 °C

	1
	Hβ-26
	60.7
	87.9

	2
	Hβ-29
	71.8
	97.1

	3
	Hβ-38
	73.9
	98.7

	4
	USY-5.2
	0.3
	2.2

	5
	ZSM-5-25
	30.7
	46.2


Reaction conditions: 0.10 g FA, 1 g molecular sieve catalysts, 5 mL water, 60 min.

















Supplementary Table 5. Hydroxymethylation of different furan platform and in different solvent system.
	Reactant-
furan platform
	Product-
C6 platform
	Solvent system
	Temperature
and time
	C5 platform conversion (%)
	C6 platform
yield (%)

	

Furfural
	

HMF
	Formalin
	90 °C, 360 min
	80.5
	18.7

	

Furfural
	

HMF
	Formalin
/1,4-dioxane mixture
	90 °C, 360 min
	87.6
	28.9

	

2-Furoic acid
	

5-(Hydroxymethyl) furan-2-carboxylic acid
	Formalin
	90 °C, 360 min
	70.8
	34.7

	

2-Furoic acid
	

5-(Hydroxymethyl) furan-2-carboxylic acid
	Formalin/
1,4-dioxane mixture
	90 °C, 360 min
	66.5
	41.2

	

FA
	

DHMF
	Formalin
	60 °C, 60 min
	67.5
	41.6

	

FA
	

DHMF
	Formalin/
1,4-dioxane mixture
	60 °C, 60 min
	84.3
	76.4

	

Furan
	

DHMF
	Formalin
	60 °C, 60 min
	-
	39.5

	

Furan
	

DHMF
	Formalin/
1,4-dioxane mixture
	60 °C, 60 min
	-
	74.9

	

2-Methylfuran
	

5-Hydroxymethyl-2-methylfuran
	Formalin
	60 °C, 60 min
	94.5
	35.9

	

2-Methylfuran
	

5-Hydroxymethyl-2-methylfuran
	Formalin/
1,4-dioxane mixture
	60 °C, 60 min
	97.3
	57.8


Reaction conditions: 0.10 g reactant, 0.10 g Hβ-29. Formaldehyde: 5 mL formaldehyde; formalin/1,4-dioxane mixture: 4 mL formaldehyde+1 mL 1,4-dioxane.
Supplementary Table 6. Reaction rate constant of each step at different temperatures.
	Reaction temperature (°C)
	K1 (min-1)
	K2 (min-1)
	K3 (min-1)
	R2

	
	a
	b
	a
	b
	a
	b
	a
	b

	30
	0.0007331
	0.0014784
	0.0002504
	0.0000636
	0.0001528
	0.0000246
	0.9568
	0.9959

	40
	0.0027158
	0.0046465
	0.0007276
	0.0001162
	0.0004569
	0.0002763
	0.9605
	0.9944

	50
	0.0070307
	0.0112828
	0.0020289
	0.0004325
	0.0008598
	0.0006321
	0.9856
	0.9966

	60
	0.0159938
	0.0282999
	0.0047246
	0.0004676
	0.009828
	0.0045392
	0.9879
	0.9528

	70
	0.0300003
	0.0464254
	0.0066301
	0.0033449
	0.0173315
	0.0081929
	0.9776
	0.9725


Reaction conditions:
a0.05 g FA, 0.10 g Hβ-29, 5 mL formaldehyde.
b0.05 g FA, 0.10 g Hβ-29, 4 mL formaldehyde +1 mL 1,4-dioxane.
















[bookmark: _Hlk137905918]Supplementary Table 7. The stability of FA and DHMF in different solvents.
	Time
	Formaldehyde
	Formalin/1,4-dioxane mixture

	
	FA retention, %
	DHMF retention, %
	FA retention, %
	DHMF retention, %

	30 min
	91.3
	81.4
	95.1
	92.5

	60 min
	87.5
	74.9
	90.6
	91.4

	90 min
	85.1
	72.3
	87.4
	89.7

	120 min
	82.2
	68.5
	85.7
	88.9


Formaldehyde: 5 mL formaldehyde; formalin/1,4-dioxane mixture: 4 mL formaldehyde+1 mL 1,4-dioxane. Reaction conditions: 0.05 g FA or DHMF, 60 °C.
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