Algorithm 1: Risk stratification algorithm

Input:

X: A matrix of size nyumples X Nfearures cONtaining the binary representation of the samples in the given training data set.

y: A vector of size ngumpies containing the binary labels of the training samples.
7i: A vector holding the number of input features to each first-layer module.
Output:

funcF: A set of vectors each holding the I/O function of a first-layer module.

Risk: A vector holding a probability between 0 to 1 for each input configuration to the Output module.

funcO: A vector holding the I/O function of the Output module.

1 Ngrates < {2»‘1[1]72ﬁ[2]’2ﬁ[3]} >In the simple case, there are 3 first-layer modules.
2 To, T, < L(X,¥);

3 for o € {0,1,2} do

4 (I,J,K) + 04(1,2,3);

5 weight A [07 "'70]”xmmsmx["rmw:[l]*”/z;

6 for j € {1,...,nuqtes[J]} do

7 for k € {1,...,ngq4.5[K]} do

8 idx <1 >In the following loops, inputs to two of the first-layer modules are

fixed and the weights for the other module are determined.

9 forie {1,...,ngaqes|l] — 1} do

10 fori' € {i+1,...,nuael]} do

1 weight[idx] < weight[idx] + To[0a (i, j, k)] * Ta[0a (i, j, k)] + Toloa (i, j,k)] * T1[0a (i, j,k)];

2 edgeslidx] < (i,i');

13 idx < idx+1

14 end

15 end

16 end

17 end

18 SfuncF[oo+ 1] < solveMaxCut(edges, weight, ngqzes [0 + 1]) >The function of each first-layer module is

identified by solving a max—-cut problem.

19 end
20 counter0 + [0, ...,0]s >Counts "O" labels for each input of the Output module.
21 counterl + [0, ...,0]g >Counts "1" labels for each input of the Output module.
2 foric {1,...,n4q4es[1]} do

23 for j € {1,...,nsares[2] } do

24 for k € {1,..., n5rares[3] } do

25 if To(i, j,k) # 0 or T, (i, j,k) # O then

26 idxOB « 1 + funcF[1][i] ¥ 20 + funcF[2][] * 2" + funcF[3][k] ¥ 22;

27 counter0[idxOB] <— counterO[idxOB| + Ty (i, j, k);

28 counterl[idxOB) < counterl[idxOB] + T, (i, j,k);

29 end

30 end

31 end
32 end

33 Risk < [0,...,0]s;
34 foric{l,..,8} do
35 Riskl[i] +

counterl][i] >Risk estimation.

36 if counterO[i] > counterl|i] then
3 | funcOli] + 0;

38 else

39 | funcO[i] + 1

40 end

41 end

42 return funcF, Risk,funcO;

>Majority voting scheme for the Output module function

identification.

77



