MicroRNA 421 induces the formation of high-invasive cell subsets of ovarian cancer from low-invasive cell subsets mediated by exosomes by activating the PI3K/AKT pathway

Qianlong Meng
Department of Diagnostics of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing

Wei Zheng
Department of Diagnostics of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing

Ruili Jiao
Department of Obstetrics and Gynecology, Beijing Chaoyang District Maternal and Child Health Hospital, Beijing

Ran Cui
Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing

Yunhan Deng
Department of Obstetrics and Gynecology, Beijing Chao-yang Hospital, Capital Medical University, Beijing

Ruizhen Liu
Department of Obstetrics and Gynecology, Beijing Chao-yang Hospital, Capital Medical University, Beijing

Jing Wang
Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing

Huimin Bai (bhmdoctor@sina.com)
Department of Gynecology, Fuxing Hospital, Capital Medical University

Research Article

Keywords: Ovarian cancer, Tumor heterogeneity, Exosomes, PI3K/AKT pathway, miR-421

Posted Date: August 10th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3232961/v1
Abstract

Background

Intra-tumoral heterogeneity (ITH) has resulted in treatment failure of ovarian cancer (OC). Exosomes and microRNA play a crucial role in the progression of OC. Therefore, we aimed to explore the effect of exosomes and microRNA421 (miR-421), mediated by exosomes, on the ITH by activating the PI3K/AKT pathway and the diagnosis of OC.

Method

Exosomes derived from AHC/ALC cells (AHE/ALE) were extracted by differential centrifugation. CCK8, 5-ethyl-2'-deoxyridine (EdU), Transwell, Colony formation and Wound healing assays were performed to explore the proliferation, invasion, and migration abilities. Western blot (WB) assay was used to detect the changes in the epithelial-mesenchymal transition (EMT) and PI3K/AKT pathway. Immunofluorescence assay was used to detect changes in EMT. qRT-PCR was used to detect microRNA levels in serum exosomes from high grade serous ovarian cancer (HGSOC) and benign patients. We also measured the levels of CA125 in serum exosomes.

Result

AHE and miR-421, mediated by exosomes, significantly increased the malignancy of ALC cells by activating the PI3K/AKT pathway. The expression of miR-421 was significantly increased in the serum exosomes derived from HGSOC patients. Receiver operating characteristic (ROC) curve analysis showed that the combination of miR-421, and serum CA125 can significantly improve the specificity of serum CA125 in the diagnosis of HGSOC.

Conclusion

MiR-421, mediated by exosomes, could induce the transformation of high-invasive cell subpopulations from low-invasive cell subpopulations of OC cells by activating the PI3K/AKT pathway. MiR-421 could serve as a potentially effective therapeutic target and a novel tumor marker for early diagnosis of OC.

Introduction

OC is the third most common gynecologic malignancy worldwide and has the highest mortality rate among these cancers. Heterogeneity is a common phenomenon of parental tumor cell lines, and highly metastatic tumor cell variants preexist in parental tumor cell populations. ITH has resulted in treatment failure in many human malignancies. Our previously published studies demonstrated that OC is
also a kind of heterogeneous disease. Exosomes are extracellular vesicles with diameters of 50–140 nm that can carry small molecules, such as proteins, RNAs, and microRNA\(^\text{10}\). Exosomes are related to the formation of a tumor heterogeneous microenvironment\(^\text{11}\). One of our previous studies revealed that exosomes derived from OC cells contain specific proteins related to OC genesis and metastasis\(^\text{12}\).

The phosphoinositide 3-kinase (PI3K)/AKT pathway has been reported as a frequently altered signaling pathway in OC\(^\text{13,14}\). However, PI3K inhibitors alone do not significantly inhibit the proliferation of primary OC cells, and various inhibitors of the PI3K pathway have shown little success in clinical trials\(^\text{14–16}\). Recent studies revealed that exosomes could promote tumor progression by mediating the PI3K/AKT pathway\(^\text{17–19}\). Whether exosomes can mediate the PI3K/AKT pathway to promote the progression of OC has not been reported.

To explore the molecular mechanism of the development of OC heterogeneity, we established a relevant cell research model\(^\text{8,20}\). Single-cell subclones with the strongest and weakest invasion/migration ability (renamed AHC and ALC, respectively) were isolated and screened from the human OC cell line A2780 using a limited dilution method. The results of RNA sequencing and bioinformatics analysis suggested that aberrant activation of the PI3K/AKT pathway was associated with the formation of highly invasive cell subclones in OC.

In this study, we investigated the effect of AHE on the heterogeneity of ovarian cancer cell, and the candidate differentially expressed microRNAs (DEMs) with a potential regulatory effect on the PI3K/AKT pathway were identified by bioinformatics analysis. The association between the expression level of the candidate DEMs and the clinicopathological characteristics of OC patients was also explored. This study provides valuable preclinical evidence that could guide individualized molecular targeted therapy and diagnosis for OC.

Results

Reidentification of the distinct biological characteristics of AHC and ALC

The CCK-8 assay growth curves showed that the AHC cell growth rate increased significantly faster than the ALC cell growth rate (\(p < 0.001\), Fig. 1A). The EdU assay and colony formation assay demonstrated that the AHC cells had a significantly higher percentage of proliferating cells (80.06 ± 3.95% vs. 46.44 ± 3.85%, \(p < 0.0001\); Figure 1B) than ALC, and more number of colonies (55.93 ± 4.63% vs. 29.47 ± 1.88%, \(p < 0.005\); Figure 1C) than ALC. The wound healing rate AHC cell was significantly higher than that of ALC (44.47 ± 3.34% vs. 23.97 ± 3.61%, \(p < 0.001\); Figure 1D). AHC cell demonstrated a significantly stronger ability to invade (82.89 ± 5.86 vs. 32.4 ± 6.28, \(p < 0.0001\); Fig. 1E) and migrate (665.89 ± 24.19 vs. 158.67 ± 9.12, \(p < 0.0001\); Fig. 1E) than ALC cell. Immunofluorescence staining showed that the expression levels of N-cadherin (0.478 ± 0.097 vs. 0.165 ± 0.032, \(p = 0.024\); Fig. 1F) and vimentin (1.020 ± 0.126 vs. 0.353 ±
0.020, p < 0.005; Fig. 1F) were significantly higher in AHC than in ALC. The results of WB assays confirmed the immunofluorescence staining results (Fig. 1G), and the results also indicated that the PI3K/AKT pathway in AHC was significantly activated compared to that in ALC (Fig. 1H). In summary, the EMT capacity of AHC cell was significantly higher than that of ALC, and the PI3K/AKT pathway was activated in AHC.

Thus, AHC displayed significantly higher invasive and migratory capacities and greater anchorage-independent growth viability than ALC. AHC/ALC still the ideal cell models for research on the tumor heterogeneity of OC and could be used for further analysis.

Isolation and identification of exosomes derived from ALC and AHC

Exosomes were isolated from the supernatant of AHC cell (AHE) and ALC (ALE) by gradient centrifugation (Fig. 2A). TEM showed that exosomes had the typical cup-shaped morphology between 50 nm and 140 nm (Fig. 2B). The NTA results showed that the average diameters of isolated exosomes from AHC and ALC were 102.7 nm and 121.8 nm, respectively. The average number of nanoparticles/ml was 7.0×10^7 and 4.3×10^7, respectively (Fig. 2C). The expression of CD9, CD63, and Alix was positive, and calnexin was absent in the exosomes (Fig. 2D). Exosomes labeling and uptake assays revealed that AHE labeled with PKH67 could be dispersed in the cytoplasm of ALC cells (Fig. 2E).

The effect of AHE on the biological functions of ALC

CCK-8 and EdU assays consistently showed that the proliferative activity of ALC was significantly enhanced after AHE coculturing (P < 0.001; Figure 2F,H). Wound-healing assays (P < 0.005; Figure 2G) and Matrigel migration/invasion assays (P < 0.001; Figure 2I) revealed that AHE could significantly promote the migration and invasion of ALC. The WB assay showed slightly elevated expression of E-cadherin. The expression of N-cadherin and vimentin after incubation with AHE was significantly increased, indicating that AHE could induce ALC to undergo EMT (P < 0.001; Fig. 2J). In addition, the extent of elevation of N-cadherin and vimentin expression in ALC was dependent on the concentration of AHE, and these values were positively correlated.

The effect of AHE on the activity of the PI3K/AKT pathway in ALC cells

The expression of p-PI3K and p-AKT was significantly elevated in ALC cells after incubation with AHE (Fig. 2J; p < 0.005). The levels of p-PI3K and p-AKT increased with the concentration of AHE (Fig. 2K; p < 0.005). The WB assay revealed that the optimal inhibitory concentration of LY294002 was 15 µM (Fig. 2L), and LY294002 attenuated the increase in p-PI3K and p-AKT levels after treatment with AHE (Fig. 2M; p < 0.001).

Screening and analysis of DEMs between ALE and AHE
The results of quantitative miRNA sequencing showed that a total of 3236 miRNAs were detected in the total RNA of ALE/AHE, including 1617 known and 1619 novel miRNAs. According to thresholds of FDR ≤ 0.001 and fold change > 2, a total of 1667 DEMs (939 upregulated and 728 downregulated miRNAs) were identified in the AHE compared to the ALE (Fig. 3A).

The Venn diagram of targeted gene prediction using three online miRNA target analysis websites (TargetScan, miRanda, and RNAhybrid) showed that 1094299 genes were the target genes of the DEMs (Fig. 3B). KEGG analysis showed that a total of 33 DEMs had a potential regulatory effect on the PI3K/AKT pathway (Fig. 3C, Table 1). Ten DEMs had a potential role in tumorigenesis and progression based on reports in the literature (Fig. 3D, Table 2). The qRT–PCR results confirmed that eight of the DEMs (miR-378b, miR-1910-3p, miR-21-3p, miR-421, miR-221-3p, miR-324-3p, miR-3065-3p, and miR-222-3p) were significantly elevated in AHE compared with ALE, consistent with the results of miRNA sequencing (Fig. 3E,F). These eight DEMs were identified as candidate DEMs for further analysis.

The relationship between the expression levels of the candidate DEMs and the clinicopathological characteristics of OC patients

Serum samples of 58 patients with HGSOC (46 cases) and benign tumors (12 cases) were collected. The average age of patients with HGSOC was 55 years. Patients with stage I + II and stage III + IV disease accounted for 26.1% (12 cases) and 73.9% (34 cases) of the cohort, respectively. Twenty-seven patients developed recurrence (58.7%). The patients’ clinical pathological information is shown in Table 3.

The expression levels of miR-1910-3p (p = 0.0017), miR-21-3p (p = 0.0037), miR-378b (p = 0.0310) and miR-421 (p = 0.0086) were significantly higher in serum exosomes derived from HGSOC patients than in those derived from benign ovarian tumor patients (Fig. 4A, sTable1). The levels of miR-1910-3p, miR-421, and miR-378b were significantly higher in the serum exosomes of patients with advanced-stage disease than in those with early-stage disease (p = 0.0332, p = 0.0106 and p = 0.0355, respectively; Fig. 4B, sTable1). The levels of miR-421 were significantly higher in the metastatic lymph node lesions than in the primary lesions (P = 0.0399). In addition, the expression of miR-421 was significantly elevated in the recurrent lesions (p = 0.0351; Fig. 4C, sTable1). Unfortunately, due to the short postoperative follow-up time of patients, postoperative follow-up information could not be collected. Therefore, the relationship between the candidate DEMs and patient survival and prognosis needs further study. In summary, the data indicated a significant correlation between miR-421 and the severity and recurrence risk of HGSOC.

Diagnostic performance of the combination of miR-1910-3p, miR-378b and miR-421 with the tumor biomarker CA125

The expression level of CA125 was significantly upregulated in serum exosomes of HGSOC patients vs benign ovarian tumor patients (p < 0.005; Figure 5A), but the expression level was not significantly related to the patient's pathological stage (Fig. 5B). The AUC value of serum CA125 was 0.803, and the sensitivity of serum CA125 in HGSOC diagnosis was 91.3%, yet the specificity was only 58.3%. The AUC
values of miR-1910-3p, miR-378b, and miR-421 were 0.781, 0.703, and 0.851, respectively (Fig. 5C, D). The sensitivities of the exosomal levels of miR-1910-3p, miR-378b, and miR-421 in HGSOC diagnosis were 60.9%, 67.4%, and 67.4%, respectively. The specificities were 91.7%, 75.0% and 91.7%, respectively. Serum CA125 levels were positively correlated with the serum levels of exosomal miR-1910-3p (r = 0.454, p = 0.0003) and miR-421 (r = 0.5139, p < 0.0001) and negatively correlated with the serum levels of exosomal miR-378b (r = 0.3497, p = 0.0062; sTable 1).

The AUC values of serum CA125 levels combined with miR-421 and miR-1910-3p were 0.877 and 0.824, respectively. The sensitivities of serum CA125 levels in combination with miR-421 and miR-1910-3p in HGSOC diagnosis were 84.8% and 82.6%, respectively. The specificities were 83.3% and 75.0%, respectively (Fig. 5E, F). The diagnostic performance of a combination of serum CA125 and miR-421/miR-1910-3p was significantly higher than that of serum CA125 alone (P < 0.001). Moreover, the diagnostic sensitivity (84.8% vs. 82.6%) and specificity (83.3% vs. 75.0%) values of serum CA125 combined with miR-421 were higher than those of serum CA125 combined with miR-1910-3p (P < 0.001). These data suggested that the combination of miR-421 and serum CA125 is a potential ideal biomarker for the early diagnosis of HGSOC.

The effect of miR-421 on the biological functions and activity of the PI3K/AKT pathway in ALC

qRT–PCR showed that the expression level of miR-421 in AHE in the transfection group was significantly higher than that in AHE in the control group (p < 0.0001; Fig. 5G). EdU assays showed that the miR-421 mimic-treated AHE (miR-421 mimic) group of ALC cells had higher proliferative activity than the mimic NC group (63.57 ± 3.95 vs. 35.21 ± 5.45, p < 0.0001; Fig. 5H). The wound healing assay showed that the ALC wound healing rate was significantly higher than that in the control group (63.63 ± 5.15% vs. 27.52 ± 4.71%, p < 0.0001; Fig. 5I). The results suggested that the miR-421 mimic group had significantly enhanced migration (585.1 ± 36.27 vs. 203.0 ± 30.96 p < 0.0001; Fig. 5J) and invasion (270.80 ± 33.20 vs. 74.56 ± 10.59 p < 0.0001; Fig. 5J) abilities compared to the mimic NC group. WB assays showed that the protein expression levels of p-PI3K and p-AKT was significantly increased in the miR-421 mimic group(Fig. 5K). These findings indicated that miR-421 by exosomes could enhance the malignancy of ALC by activating the PI3K/AKT pathway.

Discussion

Exploring the potential mechanism or driving factors of ITH in OC heterogeneity is urgent. Considering the potential effect of repeated cell passaging, the distinct biological characteristics of the previously established heterogeneous cell models of OC —AHC and ALC were reconfirmed. AHC cells showed more malignant behaviors than ALC cells. The results indicated that AHC/ALC cells are still ideal research models for the tumor heterogeneity of OC. In addition, the WB results confirmed our previous research findings that activation of the PI3K/AKT pathway promoted the formation of tumor heterogeneity in OC and the transformation of less invasive cell subsets into highly invasive cell subsets.
Exosomes are critical players in intercellular communication and the regulation of the tumor microenvironment (TME). The migratory and metastatic capacities of less malignant cells could be enhanced by extracellular vesicles derived from more malignant tumor cells \(^{21-23}\). Recently, the role of exosomes in OC development and progression has been widely investigated \(^{24,25}\). The present results indicated that exosomes derived from AHC could be taken up by ALC and subsequently promote malignant behaviors of the recipient cells. In addition, the results suggested the AHE could induce EMT in ALC cells. The expression levels of p-PI3K and p-AKT in ALC cells were significantly increased after treatment with AHE. The degree of increase was positively correlated with the concentration of ALE. Nevertheless, the elevated expression of p-PI3K and p-AKT were significantly attenuated when the PI3K inhibitor LY294002 was used. These data suggested that the PI3K/Akt pathway, which induces the transformation of less aggressive cell subsets to highly aggressive cell subsets, is mediated by exosomes.

MiRNAs are small noncoding RNAs of 20–24 nucleotides in length that bind within the 3′-UTR of mRNAs, decreasing the translation of the corresponding protein \(^{26}\). Emerging evidence indicates that some exosomal miRNAs can be transferred to recipient cells to decrease the expression of target genes involved in cancer metastasis \(^{23,27-29}\). MiR-421 is upregulated in many cancer cells, including gastric cancer, prostate cancer, pancreatic cancer, and non-small cell lung cancer, and predicts poor survival \(^{30-33}\). Overexpression of miR-421 promoted lipid metabolism by targeting PTEN by activating the PI3K/AKT/mTOR pathway in non-small cell lung cancer cells \(^{34}\). In a study of osteosarcoma, miR-421 reduced overall survival in patients and promoted disease progression by targeting the expression of monocyte chemoattractant protein-1-induced protein-1 (MCPIP1) \(^{35}\). A recent study demonstrated that overexpression of miR-421 can significantly enhance the proliferation and invasion ability of OC cells, suggesting that miR-421 plays a role as an oncogene in OC cells \(^{36}\). No research has been found on whether miR-421, mediated by exosomes, plays a role in the progression of OC.

To explore the upstream regulatory genes involved in the exosomes-mediated PI3K/AKT pathway in the formation of a heterogeneous microenvironment in OC, eight DEMs significantly enriched in AHE with potential regulatory effects on the PI3K/AKT pathway by bioinformatics were further identified as candidate DEMs for further analysis. Among the 8 candidate DEMs, the expression of miR-421 was significantly increased in serum exosomes derived from HGSOC patients. MiR-421 was significantly upregulated in the serum exosomes of patients with advanced and recurrent disease. In addition, AHE overexpressing miR-421 improved the malignancy of ALC cells and activated the PI3K/AKT pathway in vitro experiments.

In addition, the level of miR-421 in serum exosomes may be a useful marker for the early diagnosis of tumors. In colorectal cancer, miR-421 was confirmed to be upregulated in fecal samples from patients with advanced neoplasms, and the combination of miR-421 and hemoglobin showed a higher AUC (0.93) than hemoglobin concentration alone (0.67) \(^{37}\). In this study, the AUC for serum CA125 in OC diagnosis was 0.803. The sensitivity was 91.3%, yet the specificity was only 58.3%. The AUC for miR-421 in HGSOC
diagnosis was 0.851. The sensitivity for miR-421 in the diagnosis of HGSOC was only 67.4%, yet the specificity was as high as 91.7%. miR-421 in combination with serum CA125 showed a significantly higher AUC of 0.877, significantly improved the specificity in the diagnosis of HGSOC for serum CA125 alone (83.3%), and maintained a high sensitivity of 84.8%. Therefore, miR-421 in combination with serum CA125 might serve as a novel tumor marker for the early diagnosis of OC.

Conclusion

In conclusion, specific miRNAs derived from OC cells and patient serum exosomes induce the formation of a heterogeneous TME in OC. MiR-421, mediated by exosomes could induce the transformation of less invasive cell subpopulations of OC cells into highly invasive cell subpopulations by activating the PI3K/AKT pathway. MiR-421 could serve as a potentially effective therapeutic target for OC. In combination with serum CA125, miR-421 might serve as a novel tumor marker for the early diagnosis of OC.

Methods

Cell culture and transfection

The subclones of A2780 (CVCL_0134) cells obtained from the Basic Research Institute of Peking Union Medical College Hospital with the highest or lowest invasive/migratory capacity (AHC and ALC, respectively) were isolated and established through a limiting dilution methodology, as we described previously. AHC/ALC cells were cultured in RPMI-1640 medium (Corning) containing 10% fetal bovine serum and antibiotics of 1% penicillin-streptomycin solution at 37°C in a humidified atmosphere incubator with 5% CO₂. The candidate DEM mimic and negative controls were transfected into AHC cells using the RiboFECT CP Transfection Kit (Ruibo Biology Co., Ltd). All experiments were performed with mycoplasma-free cells in this paper.

Cell line authentication process

All cell lines have been authenticated in the past three years. Take an appropriate amount of A2780 cells and use TIAAmp Genomic DNA Kit to extract DNA. 20 STR loci and gender identification loci were amplified using the MicroreaderTM21 ID system, and the PCR products were detected using the GenReader 7010 gene analyzer. The detection results were analyzed using GeneMapper Software6 software (Applied Biosystems) and compared with the ExPASy database. The STR typing results of the cell line DNA showed that no human cell cross contamination was found in the A2780 cell line.

CCK-8 proliferation assay
Cells were seeded into 96-well plates at a density of 2×10^3 cells and cultured with medium containing 10% FBS (Corning). Cell proliferation was by CCK8 solution reagent (KeyGEN BioTECH) and assessed according to the optical density (OD) detected by a 96-well plate reader (BIO-RAD Microplate Reader). All experiments were repeated three times with six replicate wells.

EdU assay

An EdU kit (RiboBio) was used according to the instructions. The results were observed and imaged with a fluorescence microscope (Leica DM2500). The experiment was performed three times.

Colony formation assay

Cells were plated into six-well plates (Corning) (500 cells per well) and cultured for 14 days until visible cell colonies appeared. The colonies were fixed with 4% PFA and stained with 0.1% crystal violet. The number of colonies was counted and compared.

Wound healing assay

ALC and AHC cells were cultured in 6-well plates until the cell density reached 90%. The cell monolayers were wounded with a 200 µl pipette tip to scratch a gap on the plates. The plates were gently washed with PBS three times to remove the floating cells, and the culture medium was replaced with serum-free medium. The wound closure area at the first scratch (0 h) and after 24 h were observed and photographed by microscopy with Leica software. The healing area was measured using ImageJ software.

Matrigel migration/invasion assay

For the migration assay, ALC and AHC cells were harvested and resuspended in serum-free medium. Then, the cells (3×10^6 cells/ml) were seeded into the upper chamber. RPMI-1640 medium with 20% FBS was added to the lower chamber. After incubation for 24 h, the invaded cells were fixed with 4% PFA, washed with PBS, and stained with 0.5% crystal violet. For the invasion assay, the chambers were coated with diluted Matrigel. Then, cells were suspended in RPMI-1640-only medium and loaded in the upper chambers. The following steps were consistent with those of the migration assay. The migratory or invaded cells were photographed and counted under a microscope.

Cell immunofluorescence assay
Cells were cultured on poly-L-lysine-coated coverslips (8×10^4 cells per well) in 24-well plates. After being cultured for 24 h, cells were fixed with 4% PFA at room temperature for 15 min and then permeabilized with 0.1% Triton X-100 for 10 min. BSA (1%) in PBS was used to block nonspecific binding for 1 h. Then, the cells were treated with anti-E cadherin (CST), anti-N cadherin (CST), and anti-Vimentin antibodies (CST) at 4°C overnight. The cells were stained with goat anti-rabbit secondary antibody (Invitrogen) at room temperature for 2 h in a dark box and then stained with DAPI for 10 min. The fluorescence of the cells was visualized by fluorescence microscopy.

Western Blot (WB) assay

The cells were lysed in ice-cold radioimmunoprecipitation assay (RIPA) lysis buffer with a 1% protease inhibitor. The BCA assay kit (Thermo) was used to determine the total protein concentration. Equal amounts of protein were separated using SDS–PAGE gel and transferred onto a nitrocellulose (NC) membrane. Then, the membrane was blocked with 5% bovine serum albumin (BSA) dissolved in Tris-buffered saline with Tween-20 (TBST) for 1.5 h at room temperature and incubated with primary antibodies specific to protein at 4°C overnight. The following antibodies against proteins were used: E-cadherin (CST, #3195C), N-cadherin (CST, #13116), vimentin (CST, #5741), p-PI3K (CST, #17366S), PI3K (CST, #4255), p-AKT (CST, #4060), AKT (CST, #4685S) and GAPDH (Abcam, ab8245). After being washed in TBST buffer three times, the membrane was incubated with horseradish peroxidase-conjugated goat anti-rabbit antibody (Beyotime Biotechnology; 1:5000) or anti-mouse antibody (Beyotime Biotechnology; 1:5000) secondary antibodies for 1.5 h and then washed with TBST buffer three times again. Finally, the protein bands were scanned with an enhanced chemiluminescence kit on an Chemiluminescence Imaging System (Minichemi) with Image Lab software.

Exosomes isolation

Cells were cultured at approximately 60–70% density and washed twice with PBS to eliminate the interference of exosomes in serum. Then, the medium from each culture plate was replaced by 10% exosomes-depleted FBS, which was centrifuged at 110 000 × g and 4°C overnight (>12 h). Extraction of exosomes by differential centrifugation. The Pierce TM BCA Protein Assay Kit was used to quantify the protein concentration.

Transmission electron microscopy (TEM)

The morphology and size of exosomes were observed by TEM using negative staining with copper mesh, as described previously. Exosomes precipitates were resuspended using 50–100 µL 2% PFA, loaded onto a formvar-carbon-coated grid, and incubated for 20 min. After being washed twice with PBS, the grid was refixed with 1% glutaraldehyde for 5 min. The grid was washed 8 times using double-distilled water. The grid was first contrasted in a solution of uranyl oxalate, pH 7.0, then determined and embedded in a
mixture of 4% uranyl acetate and 2% methylcellulose in 100 µl/900 µl. The grid was dried in air for 5–10 min. The grid was observed under an electron microscope at 80 kV.

Nanoparticle tracking analysis (NTA)

NTA measured the concentration and size distribution of exosomes released from AHC and ALC cell. The samples were loaded into the NanoSight NS300 instrument (Malvern, UK) to analyze the size and concentration of exosomes.

Exosomes labeling and uptake assay

The PKH67 Green Fluorescent Cell Linker Mini Kit (Sigma) was used to label AHE. The procedure was conducted according to the instructions. Phallotoxins (Beyotime Biotechnology) were used to label F-actin to show cell morphology.

Quantitative miRNA analysis and identification of candidate DEMs

Total RNA was extracted from ALE and AHE and quantitatively determined by BGI company using BGISEQ-500 sequencing. DEMs were defined by default as those with false discovery rates (FDR) ≤ 0.001 and a fold change of more than 2. Multiple databases, including TargetScan, miRanda, and RNAhybrid, were used to predict the target genes of the DEMs. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database were used to predict the biological function of the target genes. The candidate DEMs with a potential regulatory effect on the PI3K/AKT pathway were selected for further evaluation.

Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted using TRIzol reagent (Invitrogen). The RNA was reverse-transcribed to cDNA using the Mir-X miRNA First-Strand Synthesis Kit (Takara, 638315). U6, a small nuclear RNA (snRNA), was used as an internal control to normalize the cell miRNA results. Cel-miR-39-3p (miRB0000010, RiboBio), the standard RNA, was spiked as an exogenous control to normalize exosomes and serum sample miRNA results. miRNA expression was detected by qRT-PCR using the Mir-X miRNA qRT–PCR TB Green® Kit (Takara, 638314) on a 7500 Real-time PCR System (Applied Biosystems). The $2^{-\Delta\Delta Ct}$ method was used to analyze the differences in relative expression levels between groups.

Patient samples

Serum samples from patients with HGSOC and benign ovarian tumors were collected in sterile tubes. Patient clinicopathological characteristics, such as age, menopause state, International Federation of Obstetrics and Gynecology (FIGO) stage, tumor node metastasis (TNM) stage, histologic grade, tumor size, differentiation degree, lymph node metastasis, and pretreatment serum CA125 levels, were collected. Patient serum was centrifuged at 12 000 × g for 30 min at 4°C to remove cellular fractions. The separated
serum was aliquoted and stored at -80°C until further processing. Repeated defrosting was avoided when possible. The expression of the candidate DEMs in serum exosomes was determined by qRT-PCR.

Exosomes labeling and uptake assay

The PKH67 Green Fluorescent Cell Linker Mini Kit (Sigma) was used to label AHE. The procedure was conducted according to the instructions. Phallotoxins (Beyotime Biotechnology) were used to label F-actin to show cell morphology.

Quantitative miRNA analysis and identification of candidate DEMs

Total RNA was extracted from ALE and AHE and quantitatively determined by BGI company using BGISEQ-500 sequencing. DEMs were defined by default as those with false discovery rates (FDR) ≤ 0.001 and a fold change of more than 2. Multiple databases, including TargetScan, miRanda, and RNAhybrid, were used to predict the target genes of the DEMs. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database were used to predict the biological function of the target genes. The candidate DEMs with a potential regulatory effect on the PI3K/AKT pathway were selected for further evaluation.

Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted using TRIzol reagent (Invitrogen). The RNA was reverse-transcribed to cDNA using the Mir-X miRNA First-Strand Synthesis Kit (Takara, 638315). U6, a small nuclear RNA (snRNA), was used as an internal control to normalize the cell miRNA results. Cel-miR-39-3p (miRB0000010, RiboBio), the standard RNA, was spiked as an exogenous control to normalize exosomes and serum sample miRNA results. miRNA expression was detected by qRT-PCR using the Mir-X miRNA qRT-PCR TB Green® Kit (Takara, 638314) on a 7500 Real-time PCR System (Applied Biosystems). The $2^{-\Delta\Delta Ct}$ method was used to analyze the differences in relative expression levels between groups.

Patient samples

Serum samples from patients with HGSOC and benign ovarian tumors were collected in sterile tubes. Patient clinicopathological characteristics, such as age, menopause state, International Federation of Obstetrics and Gynecology (FIGO) stage, tumor node metastasis (TNM) stage, histologic grade, tumor size, differentiation degree, lymph node metastasis, and pretreatment serum CA125 levels, were collected. Patient serum was centrifuged at 12 000 × g for 30 min at 4°C to remove cellular fractions. The separated serum was aliquoted and stored at -80°C until further processing. Repeated defrosting was avoided when possible. The expression of the candidate DEMs in serum exosomes was determined by qRT-PCR.
Statistical analysis

All statistical analyses were performed using the statistical software SPSS version 22.0 and GraphPad Prism software (8.0). The statistical significance of the results was determined using Student's t test and Mann-Whitney U test. The correlations of serum levels of exosomal miRNAs and clinical pathological characteristics of patients were evaluated by the Spearman rho test. ROC curve is an effective tool for the comprehensive and accurate evaluation of diagnostic experiments. The diagnostic power of the exosomal miRNAs was analyzed by ROC curves with corresponding statistics. The cutoff values for the relative expression levels of miRNAs and the clinical markers alone and in combination were determined by the Youden index from the ROC curves. Differences were considered significant when p < 0.05.

Abbreviations

ITH, Intratumoral heterogeneity; OC, ovarian cancer; AHE/ALE, Exosomes derived from AHC/ALC cells; miR-421, microRNA 421; HGSOC, high-grade serous ovarian cancer; DEMs, differentially expressed microRNAs; WB, Western Blot; TEM, Transmission electron microscopy; OD, optical density; NTA, Nanoparticle tracking analysis; FDR, false discovery rates; KEGG, Kyoto Encyclopedia of Genes and Genomes; qRT-PCR, Quantitative real-time PCR; FIGO, Federation of Obstetrics and Gynecology; TNM, tumor node metastasis; TME, tumor microenvironment;

Declarations

Ethics approval and consent to participate

The study was conducted with the understanding and written informed consent of each patient or their relatives. The experimental protocol was established according to the ethical standards and the Declaration of Helsinki. The study was approved by the Human Ethics Committee of Beijing Chaoyang Hospital affiliated with Capital Medical University.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests

Funding
This work is supported by the Natural Science Foundation of China (No. 81972424).

Authors' contributions

J W, and HM B: designed the entire experiment and ensured its integrity, and revised the manuscript. QL M and W Z: completed the experiment, and wrote the manuscript. RL J, R C, YH D, RZ L: provided study materials, analyzed and interpreted the data.

Acknowledgements

Not applicable

References

Tables
<table>
<thead>
<tr>
<th>miRNA id</th>
<th>Count (AHE)</th>
<th>Count (ALE)</th>
<th>log2 Ratio(AHE/ALE)</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-378b</td>
<td>576</td>
<td>0</td>
<td>15.52</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-30c-1-3p</td>
<td>24</td>
<td>0</td>
<td>10.94</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-1910-3p</td>
<td>20</td>
<td>0</td>
<td>10.67</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-3653-3p</td>
<td>20</td>
<td>0</td>
<td>10.67</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-21-3p</td>
<td>16</td>
<td>0</td>
<td>10.36</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-3121-3p</td>
<td>9</td>
<td>0</td>
<td>9.51</td>
<td>0.0010</td>
</tr>
<tr>
<td>miR-421</td>
<td>8</td>
<td>0</td>
<td>9.34</td>
<td>0.0019</td>
</tr>
<tr>
<td>miR-3684</td>
<td>5</td>
<td>0</td>
<td>8.68</td>
<td>0.0195</td>
</tr>
<tr>
<td>miR-135a-3p</td>
<td>4</td>
<td>0</td>
<td>8.37</td>
<td>0.0423</td>
</tr>
<tr>
<td>miR-221-5p</td>
<td>17</td>
<td>1</td>
<td>4.31</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-141-5p</td>
<td>25</td>
<td>6</td>
<td>2.35</td>
<td>0.0001</td>
</tr>
<tr>
<td>miR-1254</td>
<td>405</td>
<td>99</td>
<td>2.31</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-324-3p</td>
<td>1368</td>
<td>531</td>
<td>1.65</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-103a-2-5p</td>
<td>116</td>
<td>48</td>
<td>1.55</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-21-5p</td>
<td>12</td>
<td>5</td>
<td>1.53</td>
<td>0.0423</td>
</tr>
<tr>
<td>miR-3065-3p</td>
<td>29</td>
<td>13</td>
<td>1.45</td>
<td>0.0023</td>
</tr>
<tr>
<td>miR-222-3p</td>
<td>21236</td>
<td>10780</td>
<td>1.26</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-345-5p</td>
<td>6861</td>
<td>3503</td>
<td>1.25</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-363-3p</td>
<td>3447</td>
<td>1775</td>
<td>1.24</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-193b-3p</td>
<td>9565</td>
<td>4975</td>
<td>1.23</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-3124-5</td>
<td>31</td>
<td>17</td>
<td>1.15</td>
<td>0.0082</td>
</tr>
<tr>
<td>miR-219a-1-3p</td>
<td>91</td>
<td>57</td>
<td>0.96</td>
<td>0.0001</td>
</tr>
<tr>
<td>hsa-let-7c-5p</td>
<td>47754</td>
<td>31007</td>
<td>0.91</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-16-2-3p</td>
<td>75</td>
<td>49</td>
<td>0.90</td>
<td>0.0008</td>
</tr>
<tr>
<td>miR-23b-5p</td>
<td>853</td>
<td>583</td>
<td>0.83</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-200c-3p</td>
<td>1394</td>
<td>1073</td>
<td>0.66</td>
<td>0.0000</td>
</tr>
<tr>
<td>miRNA</td>
<td>fold change (FC)</td>
<td>p-value</td>
<td>FDR</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>----------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>miR-33b-3p</td>
<td>107 95</td>
<td>0.45</td>
<td>0.0286</td>
<td></td>
</tr>
<tr>
<td>hsa-let-7f-5p</td>
<td>250961 223958</td>
<td>0.45</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>miR-218-5p</td>
<td>29711 26626</td>
<td>0.44</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>miR-378a-5p</td>
<td>286 260</td>
<td>0.42</td>
<td>0.0009</td>
<td></td>
</tr>
<tr>
<td>miR-183-5p</td>
<td>30478 30256</td>
<td>0.29</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>miR-1179</td>
<td>1790 1951</td>
<td>0.16</td>
<td>0.0011</td>
<td></td>
</tr>
<tr>
<td>miR-361-3p</td>
<td>243371 275353</td>
<td>0.11</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

FDR: false discovery rates. The criteria for screening is FDR ≤ 0.001 and a fold change of more than 2.
<table>
<thead>
<tr>
<th>miRNA</th>
<th>Count (AHE)</th>
<th>Count (ALE)</th>
<th>log$_2$ Ratio (AHE/ALE)</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>miR-378b</td>
<td>576</td>
<td>0</td>
<td>15.52</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-30c-1-3p</td>
<td>24</td>
<td>0</td>
<td>10.94</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-1910-3p</td>
<td>20</td>
<td>0</td>
<td>10.67</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-3653-3p</td>
<td>20</td>
<td>0</td>
<td>10.67</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-21-3p</td>
<td>16</td>
<td>0</td>
<td>10.36</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-3121-3p</td>
<td>9</td>
<td>0</td>
<td>9.51</td>
<td>0.0010</td>
</tr>
<tr>
<td>miR-421</td>
<td>8</td>
<td>0</td>
<td>9.34</td>
<td>0.0019</td>
</tr>
<tr>
<td>miR-3684</td>
<td>5</td>
<td>0</td>
<td>8.68</td>
<td>0.0195</td>
</tr>
<tr>
<td>miR-135a-3p</td>
<td>4</td>
<td>0</td>
<td>8.37</td>
<td>0.0423</td>
</tr>
<tr>
<td>miR-221-5p</td>
<td>17</td>
<td>1</td>
<td>4.31</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-141-5p</td>
<td>25</td>
<td>6</td>
<td>2.35</td>
<td>0.0001</td>
</tr>
<tr>
<td>miR-1254</td>
<td>405</td>
<td>99</td>
<td>2.31</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-324-3p</td>
<td>1368</td>
<td>531</td>
<td>1.65</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-1179</td>
<td>116</td>
<td>48</td>
<td>1.55</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-21-5p</td>
<td>12</td>
<td>5</td>
<td>1.53</td>
<td>0.0423</td>
</tr>
<tr>
<td>miR-3065-3p</td>
<td>29</td>
<td>13</td>
<td>1.45</td>
<td>0.0023</td>
</tr>
<tr>
<td>miR-222-3p</td>
<td>21236</td>
<td>10780</td>
<td>1.26</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-345-5p</td>
<td>6861</td>
<td>3503</td>
<td>1.25</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-363-3p</td>
<td>3447</td>
<td>1775</td>
<td>1.24</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-193b-3p</td>
<td>9565</td>
<td>4975</td>
<td>1.23</td>
<td>0.0000</td>
</tr>
<tr>
<td>miR-3124-5p</td>
<td>31</td>
<td>17</td>
<td>1.15</td>
<td>0.0082</td>
</tr>
</tbody>
</table>

FDR: false discovery rates. The criteria for screening is FDR ≤ 0.001 and a fold change of more than 2.
Table 3. HGSOC patients and benign patients characteristics.

<table>
<thead>
<tr>
<th>Clinical parameters</th>
<th>Ovarian benign patients (n=12)</th>
<th>HGSOC patients (n=46)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>59 ± 9</td>
<td>55 ± 13</td>
</tr>
</tbody>
</table>

Ovarian cancer patients characteristics

<table>
<thead>
<tr>
<th>Recurrence (%)</th>
<th>Yes</th>
<th>27 (58.7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>19 (41.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Histology (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Serous carcinoma</td>
<td>31 (67.4)</td>
</tr>
<tr>
<td>Clear cell carcinoma</td>
<td>6 (13.1)</td>
</tr>
<tr>
<td>Mucinous carcinoma</td>
<td>3 (6.5)</td>
</tr>
<tr>
<td>Dom-etrioid carcinoma</td>
<td>3 (6.5)</td>
</tr>
<tr>
<td>Unknown</td>
<td>3 (6.5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FIGO stage (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>12 (26.1)</td>
</tr>
<tr>
<td>+</td>
<td>34 (73.9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lymph node (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N0</td>
<td>15 (32.6)</td>
</tr>
<tr>
<td>N1</td>
<td>18 (39.1)</td>
</tr>
<tr>
<td>Unknown</td>
<td>13 (28.3)</td>
</tr>
</tbody>
</table>

HGSOC: high-grade serous ovarian cancer

Figures
Figure 1

Reidentification of the distinct biological characteristics of AHC and ALC. (A) CCK-8 assay detected that the proliferation ability of AHC is significantly higher than that of ALC. (B) EDU assay detected that AHC has a higher proliferation percentage than ALC (80.06 ± 3.95% vs. 46.44 ± 3.85%, p < 0.0001). (C) Colony formation assay detected the efficiency of clone formation between AHC and ALC after cultured for 14 days. (D) Wound healing assay showed that AHC had significantly higher migration area percentages
than ALC (44.47 ± 3.34% vs. 23.97 ± 3.61%, p < 0.001) after 24 hours of cultivation. (E) AHC had higher ability of migration (665.89 ± 24.19 vs 158.67 ± 9.12, p < 0.0001) and invasion (82.89 ± 5.86 vs. 32.4 ± 6.28, p < 0.0001) than ALC by Transwell Matrigel invasion/migration assay. (F) Immunofluorescence staining revealed that the experiment revealed that the expression levels of N-cadherin (0.478 ± 0.097 vs. 0.165 ± 0.032; p = 0.024) and Vimentin (1.020 ± 0.126 vs. 0.353 ± 0.020; p < 0.005) in AHC were significantly higher than those in ALC. The expression level of E-cadherin (0.973 ± 0.187 vs. 1.063 ± 0.103, p = 0.584) is slightly higher in AHC than in ALC. (G) The WB results of E-cadherin, N-cadherin, and Vimentin confirmed the immunofluorescence staining. (H) WB assay showed that the expression level of p-PI3K/PI3K (0.382±0.053 vs 0.234±0.023, p<0.05) and p-AKT/AKT (1.037±0.095 vs 0.463±0.103, p<0.005) in AHC were significantly higher than that in ALC. The data were presented as the mean ± SD. *p < 0.05, **p < 0.005, ***p < 0.001, ****p<0.0001. The scale bar equals 50 or 100 μm as indicated in the graph.
Figure 2

Isolation and identification of exosomes and the effect of AHE on ALC

(A) Experimental steps of Differential centrifugation method. (B-C) TEM and NTA were used to identify the morphology and size of exosomes. (D) WB assay was used to detected the extracellular surface markers CD9, CD63, and Alix. (E) Immunofluorescence assay to assess the ALC uptake of AHE. (F) CCK8 assay, (G) wound healing assay (H) EDU assay and (I) Transwell Matrigel invasion/migration assay showed that the ability of proliferation, migration, invasionof ALC treated with AHE was significantly higher than ALC treated with PBS. (J) The protein expression of E-cadherin, N-cadherin, and Vimentin in ALC treated with AHE were higher than in ALC treated with PBS. Similarly, the WB assay showed that the expression of p-PI3K/PI3K and p-AKT/AKT were significantly higher than in ALC treated with PBS. (K) The promoting effect of AHE on EMT and the activation of PI3K/AKT pathway were concentration dependent in ALC. (L) WB assay was used to determine the optimal action concentration of LY294002 in ALC by detecting the protein expression of PI3K/AKT signalling pathway. (M) The activation of the PI3K/AKT pathway in ALC by AHE can be inhibited by LY294002. GAPDH was used as a loading control. The data were presented as the mean ± SD. *p < 0.05, **p < 0.005, ***p < 0.001 ****p<0.0001. The scale bar equals 50 or 100 μm as indicated in the graph.
Figure 3

Screening and analyzing of DEMs between ALE and AHE. (A) Screening for differentially expressed miRNAs by comparing the expression levels between AHE and ALE. According to the FDR ≤ 0.001 and multiple differences of more than 2 times. (B) The Venn diagram of targeted genes prediction for the DEMs. (C) The Kyoto Encyclopedia of Genes and Genomes (KEGG) database were used to show that a total of 33 DEMs had a potential regulatory effect on the PI3K/AKT signaling pathway. And (D) predict
that ten DEMs had a potential role in tumorigenesis and progression based on the reports in the literature. (E-F) qRT-PCR was used to determine the differences in expression levels of ten candidate DEMs in AHE/ALE and AHC/ALC. The results showed that eight of the DEMs (miR-378b, miR-1910-3p, miR-21-3p, miR-421, miR-221-5p, miR-324-3p, miR-3065-3p, and miR-222-3p) were significantly elevated in AHE than in ALE. The data were presented as the mean ± SD. *p < 0.05, **p < 0.005, ***p < 0.001 ****p<0.0001.

Figure 4
The relationship between expression levels of the candidate DEMs and clinicopathological characteristics of OC patients. (A) qRT-PCR was used to determine the difference in expression levels of DEMs between HGSOC and benign patients. The expression levels of miR-1910-3p (p = 0.0017), miR-21-3p (p = 0.0037), miR-378b (p = 0.0310) and miR-421 (p = 0.0086) were significantly higher in serum exosomes derived from HGSOC patients than those derived from benign ovarian tumors patients. (B-C) qRT-PCR was used to determine the relationship between DEMs and clinical staging, as well as the relationship between DEMs and recurrence. The results showed that the levels of miR-1910-3p, miR-421, and miR-378b were significantly higher in serum exosomes of the patients with advanced-stage diseases than those with early-stage diseases (p = 0.0332, p = 0.0106 and p=0.0355, respectively). The levels of miR-421 were significantly higher in the metastatic lymph node lesions than the primary lesions (P=0.0399) and significantly elevated in the recurrent lesions lesions (p=0.0351). The data were presented as the mean ± SD. *p < 0.05, **p < 0.005, ***p < 0.001 ****p<0.0001.
Figure 5

Diagnostic performance and the effect of miR-421 from exosomes on ALC. (A) The expression level of CA125 was significantly upregulated in serum exosomes of HOSGC patients. (B) The expression level of CA125 is not significantly related to clinical staging. (C) ROC curve analysis of CA125, miR-1910-3p, miR-378b and miR-421 in the serum exosomes of HGSOC patients and benign patients. The table (D) summarizes sensitivities and specificities of serum exosomal CA125, miR-1910-3p, miR-378b and miR-421.
ROC curve analysis of miR-1910-3p, miR-378b and miR-421 and combination of the CA125 in the serum exosomes of HGSOC patients and benign patients. The table summarizes sensitivities and specificities of miR-1910-3p, miR-378b and miR-421 and combination of the CA125 in the serum exosomes. qRT-PCR results showed a significant upregulation of miR-421 expression in AHE after miR-421-mimic transfection. EDU assay (63.57 ± 3.95 vs 35.21±5.45, p <0.0001) wound healing assay (63.63 ±5.15% vs 27.52 ± 4.71%, p <0.0001) and Transwell Matrigel invasion/migration assay were showed that overexpression of miR-421 in AHE significantly promoted the proliferation, invasion, and migration ability of ALC compared to the control group. WB experiment showed that overexpression of miR-421 in AHE significantly activated the PI3K/AKT signaling pathway of ALC compared to the control group. The data were presented as the mean ± SD. *p < 0.05, **p < 0.005, ***p < 0.001 ****p<0.0001. The scale bar equals 100 μm as indicated in the graph.