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Abstract

Osteoarthritis (OA) is increasing in prevalence and has a severe impact on patients’ lives. However, our
understanding of biomarkers driving OA risk remains limited. We developed a model predicting the five-
year risk of OA, integrating clinical, lifestyle and biomarker data from the UK Biobank (19,120 patients
with OA, ROC-AUC:0.72 95%ClI (0.71 - 0.73)). Higher age, BMI, and prescription of non-steroidal anti-
inflammatory drugs contributed most to increased OA risk prediction. 14 sub-groups of OA risk profiles
were identified, and validated in an independent set of patients evaluating the 11-year OA risk, with 88%
of patients uniquely assigned to one of the sub-groups. Individual OA risk profiles were characterised by
personalised biomarkers. Omics integration demonstrated the predictive importance of key OA genes and
pathways (e.g. GDF5 and TGF-B signalling) and identified OA-specific biomarkers (e.g. CRTAC1 and
COL9AT1). In summary, this work identified opportunities for personalised OA prevention and insights into
its underlying pathogenesis.

Introduction

Osteoarthritis (OA) is a chronic degenerative joint disease, that results in decreased quality of life and a
high economic health-care burden. Globally, 528 million people are living with OA'. The global prevalence
has increased by 48% from 1990 to 2019, with further increases expected due to ageing populations and
the increasing prevalence of obesity. OA has a high impact on health care expenditure and social care
cost®, with the economic impact ranging from 1 to 2.5% of gross national product (GNP) in some
countries. The average annual cost of OA for an individual is estimated to be between $700-$15,600
(2019)". Patients are often diagnosed with late-stage disease when irreversible joint damage has already
occurred®. There are currently no approved treatments that can prevent OA development and progression
or cure the disease*. The main treatments remain symptomatic, with some patients ultimately needing
joint replacement surgery®. Hence, there is a need to identify strategies that aid disease prevention and
early diagnosis, to facilitate the development of disease modifying therapies.

An improved understanding of OA pathogenesis is necessary to develop new approaches to early
diagnosis, prevention and treatment of OA>®. OA is a complex and heterogenous disease, spanning
multiple biological mechanisms. These range from cartilage degeneration to systemic and synovial
inflammation®®. It has been proposed that OA would benefit from the use of data-driven and machine

learning approaches for patient-specific prediction models to dissect the complex relationship between

susceptibility biomarkers*”~°.

Previous disease predictions of OA have been limited by a focus on knee OA, small sample sizes,

restricted sets of input features and more traditional statistical analysis methods*%°. Additionally,
multiple studies focus on disease classification or the prediction of disease progression rather than
prediction of disease incidence®.
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Known OA risk biomarkers include age, female sex, BMI/obesity'?, genetic predisposition, as well as joint-
specific risk biomarkers such as injuries’'. However, the complex interplay between risk biomarkers, and
to what extent combinations of risk biomarkers can predict individual OA risk, remains to be determined.

Despite efforts to predict individual risk of OA, the majority of these have lacked comprehensive
incorporation of genetics, clinical biomarkers and other environmental factors to guide preventative
strategies and precision medicine*812. Additionally, further work is required to study the impact of
changes in modifiable risk biomarkers on the individual risk of OA°. Machine learning methods have the
unique potential to integrate diverse patient data for the prediction of disease outcomes’2. In this study,
we developed a machine learning model to predict individual five-year risk of OA and identify risk
biomarkers. Through the integration of multi-modal patient data, we identified sub-groups of OA with
differing risk biomarker profiles. The model captured the broad patient landscape in a UK cohort of
~20,000 people diagnosed with OA, capturing electronic health records (EHR), clinical biomarkers, self-
reported questionnaire data, genomics, proteomics, and metabolomics on available subsets of
individuals. The model quantified the impact of risk biomarkers on the predicted OA risk at the population
and individual level, enabling detailed estimation of the contribution of these biomarkers for OA risk.

Results
OA study population and risk modelling

103,086 patients with OA were identified from primary and secondary EHR data'# (~21% of all UK
biobank study participants, Sup File 1). The UK biobank contains detailed phenotyping of individuals at
the recruitment assessment centre between 2006 — 2010. Primary care data enabled the capture of
longitudinal OA progression data but was only available for a subset of patients with OA (N = 67,772). An
equal number of control participants who never developed OA were identified (N = 67,772). Controls were
randomly selected and date-matched with the OA diagnosis dates for case patients. Cases and controls
were then filtered for those with an OA diagnosis/matched index date a maximum of five years after the
recruitment assessment centre. Controls were required to have observational data and no death
registered during the five years prior to the index date (study period: 06/2006 — 09/2015). This resulted in
a total of 19,120 patients with OA and 19,252 controls included in the analysis (Fig. 1A left, Sup Fig. 1).
The cases and controls were well-matched based on comparison of baseline distribution for known OA
risk biomarkers (Fig. 1B). For the patients with OA, the specific joints affected were mapped to the
following groups: foot (4%), spine (10%), arm (11%), hip (13%), and knee (28%) (Fig. 1C). In addition to
the OA study population, an independent hold-out validation cohort was generated following the same
procedure as above. However, for this validation cohort, the time between data collection at the
assessment centre and OA diagnosis was more than five years. (Fig. 1A left, 1B, study period: 09/2011 -
09/2017).

Based on the identified cases and controls in the OA study population, an eXtreme Gradient Boosting
(XGBoost) machine learning model was trained to predict the five-year risk of developing OA using multi-
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model longitudinal data. Performance was evaluated in the test set in a 5*5 cross-validation (Fig. 1A
right). The XGBoost model integrated clinical, sociodemographic, diet, physical activity and lifestyle data
from the recruitment assessment centre, with clinical data from the five-year longitudinal EHR data
(Fig.1A left). The EHR data captured diagnosis of previous post-traumatic OA diagnosis, longitudinal
blood and urine biomarkers, clinical measurements, as well as medication data for obesity, OA, and type 2
diabetes. Longitudinal data was captured in the five years prior to OA diagnosis/index date using yearly
data bins (Sup Fig. 2). Missingness estimation for each feature included in the machine learning models
is presented in Sup File2.

Prediction of OA from five-year multi-modal clinical data

Longitudinal clinical data were integrated in a XGBoost model predicting the five-year risk of OA (Clin
model), achieving a cross-validated ROC-AUC performance of 0.72 (95% Cl: 0.71 - 0.73, Fig. 2A, 2B and
2C). The Clin model was able to predict 7 in 10 patients who developed OA, and out of all the OA case
predictions made by the model, 66% of these were true-positive OA cases (Fig. 2C). Conversely, we were
able to predict 6 in 10 patients who did not develop OA, with 67% of the predicted controls being true-
negative controls (Fig. 2C). Clin model’s predictive performance was robust across random model
initialisations and performed significantly better than models trained on permuted OA status labels (Sup
Table 1). We assessed if the Clin model had a stronger predictive performance when predicting specific
subgroups of OA across different affected joints, specified for some of the OA diagnoses, including arm,
foot, hip, knee, or spine. Performance ranged with ROC-AUC: 0.67 — 0.73 (Fig. 2A) and was highest for
weight-bearing joints (ROC-AUC: 0.73 for knee OA prediction, and 0.72 for hip OA prediction).

Population risk biomarkers predictive of OA risk

To interpret which risk biomarkers were most important for OA prediction, Shapley additive explanations
(SHAP) values were calculated. SHAP values estimate the marginal conditional impact of a feature on
the model’s prediction in relation to all other features included in the model. The top three predictors of
increased OA risk included higher age, prescription of non-steroidal anti-inflammatory drugs (NSAIDs)
during the year prior to OA diagnosis, and higher BMI compared to individuals that did not develop OA
(Fig. 2D). Following these three risk biomarkers, predictive contributions were made by a variety of
features across individuals. Participants who rated their own health as excellent and had a faster walking
pace, had a lower risk of OA. Higher levels of vitamin D were predictive of increased OA risk, and
individuals that reported taking vitamin D supplements typically had a higher age and higher levels of
vitamin D (Sup Fig. 3). Additionally, a higher hand grip strength, and a lower ratio of fat mass to fat free
mass were also predictive of lower OA risk. Individuals that had a higher socioeconomic status, as
indicated by having a college or university degree and higher income, had a lower risk of OA. In contrast,
people working heavy manual or physical jobs, or doing shift work, had increased risk of OA.
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Precision sub-groups of OA

The Clin model confirmed that the biological and environmental risk factors underlying OA are
heterogenous across individuals. We attempted to capture this heterogeneity and categorise patients into
sub-groups with differing risk biomarker profiles. Hence, we clustered the SHAP values, as estimated by
the Clin model, for all risk biomarkers across all individuals. The clustering resolution was optimised
based on silhouette scores and prediction metrics (Sup Fig. 4) identifying 14 clusters of individuals (Fig.
3A). The clustering allowed us to uncover sub-groups of individuals predicted to have high risk of OA (cf.
prediction probabilities shown in Fig. 3B). Furthermore, by using SHAP values, rather than the original
input values, we were able to account for the relative importance of features for OA prediction (Fig. 3C).
Finally, all identified clusters were described using the average values of the top 6 features in our model,
using the original input values to characterise the differences between clusters. This generated an
overview of the most defining characteristics of each OA sub-group, capturing predicted archetypes of OA
risk with distinct biomarker profiles (Fig. 3D).

To identify clusters with high predicted OA risk and understand sub-group characteristics, we defined the
prediction performance of the XGBoost model within each cluster (F1/PPV/Sensitivity) the cluster
case/control ratios and average prediction probability (Fig. 4). The top 3 clusters (12, 11 and 0),
representing 23% of all individuals, were the clusters for which individuals were best predicted as OA
cases, with F1 > 0.83. Another group of 6 clusters (10, 5,9, 1, 13 and 8; ~35% of all individuals) had more
modest values, but were still predictive for OA (0.73 >F1 >0.61). The last 5 clusters (6, 7, 3, 4 and 2; ~
41% of all individuals) were the least predictive for OA (F1 < 0.35).

We used a decision tree-based algorithm (SkopeRules'®) to define sets of rules, per cluster, based on the
input values of the XGBoost model. These rules allowed us to “scope” each predicted OA archetype by
identifying the most distinctive variables and values that determined an individual’s cluster allocation
with high PPV (Fig. 4, Sup Fig. 5). The rules that defined the top 3 high-risk patient groups included: age,
prescription of NSAIDs within the last year, hand grip strength, self-reported walking pace and health
rating, Townsend deprivation index and IGF-1 levels (Fig. 4). To validate the potential clinical value of
these rules, we applied them to an independent hold-out population (with similar case/control definitions,
and with cases being diagnosed more than five years after the assessment center visit; 7,341 cases and
5,999 controls). While 4% of individuals could not be accurately mapped to any sub-group based on these
sets of rules, we were able to uniquely assign 88.2% of individuals to a cluster, and 7.8% to two possible
clusters. In the latter case, we selected the cluster with the highest case/control ratio in the OA study
population in order to minimise the risk of false negatives (Fig. 4 shows cluster attribution). We observed
a high correlation of case/control ratios between clusters of the OA study and hold-out populations (R? =
0.90), as well as a strong correlation in the proportion of individuals in each cluster (R? = 0.68) (Sup Fig.
6).

Personalised risk biomarkers of OA
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Interpretation using SHAP values from the XGBoost models enabled us to quantify the impact an
individual's patient data had on their predicted risk of OA. We extracted and visualised individual OA risk
profiles using waterfall plots, demonstrating the predicted positive and negative impact of personal OA
risk biomarkers (Fig. 5). For example, a patient who developed OA from Cluster 1 had a predicted risk of
64% for OA. This predicted risk was predominantly driven by a BMI in the obesity range and age of 65
years (Fig. 5A). However, this patient had not taken NSAIDs 1 year prior to OA diagnosis, and this
decreased the predicted risk for OA. Other risk biomarkers had more minor contributions to increasing the
predicted OA risk, including a lower muscle strength (indicated by hand grip strength), and lower
socioeconomic status (indicated by lower average income and level of education). For this patient, if the
BMI was not considered, the predicted OA risk would have decreased to 57%. Our results are suggestive
of potential intervention opportunities on high impact modifiable risk biomarkers that may be driving OA
risk.

Additional individual OA risk profiles were examined, including an individual from cluster 2 with very low
predicted OA risk (Fig. 5B), patient with OA from cluster 12 with multiple signs of poor metabolic health
(Fig. 5C), and an individual profile impacted by lifestyle factors such as heavy manual/physical work and
shift work from cluster 9 (Fig. 5D).

Multi-omics OA risk biomarkers

To explore molecular risk biomarkers of OA in the context of the clinical prediction model (Clin model), we
integrated various types of omics data with the clinical features including OA genetics (ClinSNP, ClinGRS
and ClinPath models), metabolomics (ClinMet model) and proteomics data (ClinPro model) for subsets
of individuals where this data were available (Fig. 6A). The predictive performance remained unchanged
compared to the Clin model (ROC-AUC: 0.70 - 0.72, Fig. 6A, sensitivity analysis of the Clin model on these
specific subsets in Sup Table 2). However, the inclusion of OA omics signatures influenced the rankings
of OA risk biomarkers in the model (Fig. 6A and 6B).

Firstly, when including a whole-genome polygenic risk score (WGPRS) for OA in our models (ClinWGPRS),
it was the sixth most predictive risk feature for OA risk (data not shown). At the population level, the OA
WGPRS did not affect the overall performance of the model (ROC-AUC: 0.72) compared to Clin model.
However, the predictive performance for the model (F1 and sensitivity) were higher for a population with
higher OA WGPRS (Sup Fig. 7). Therefore, although the OA WGPRS provided minimal additional benefit
when predicting OA at the population level, it did provide additional value for sub-groups with more
extreme genetic risk.

At the gene locus level, the highest ranked gene-level genetic risk scores (gene-GRS) by the OA prediction

model were TGFB1, GDF5, PTCHT and FAM53A. The relevance of TGFBT to OA was further supported by

the TGF beta signalling pathway being the top ranked pathway-level polygenic risk score (pathway-PRS).

Other pathways identified as being predictive of OA, in the context of clinical features, included

glycosphingolipid biosynthesis, adipocytokine signalling and cytokine-cytokine receptor interactions. No
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strong predictive signal was identified for previously reported OA-associated single nucleotide variants.
Blood plasma metabolites that were identified as being important for the prediction of OA included
acetate, valine, 3-hydroxybutyrate, citrate and the percentage of saturated fatty acids to total fatty acids.
Strong predictive proteomics signatures were identified where CRTAC1, COL9A1, ACTA2, EDA2R and
TACSTD2 were the most predictive of OA risk together with higher age, prescription of NSAIDs during the
year prior to OA diagnosis, and higher BMI as seen in the Clin model (Sup Fig. 8). There were significant
differences in the normalised expression levels of all five proteins between OA cases and controls. Higher
levels of CRTAC1, COL9A1, ACTA2, EDA2R were observed in patients with OA, whereas lower levels of
TACSTD2 were observed in patients with OA (Fig. 6B). Interaction dependencies in the XGBoost model
between these top five proteins and the most predictive clinical features of OA risk (age, NSAIDs
prescriptions one year before diagnosis and BMI) were tested. Significant interactions were identified
between age and CRTAC1, COL9A1, EDA2R and TACSTD2 (Sup Fig. 9). Protein levels of COL9A1 were
more important for OA prediction in people with an age above 55. EDA2R was generally seen in lower
protein levels for individuals under 60 years old, while increased importance of EDA2R as an OA risk
biomarker was seen in older individuals.

Discussion

We present a large-scale study of OA, in a UK cohort of ~20,000 patients with OA and ~20,000 controls,
encompassing a broad set of OA risk biomarkers. Using interpretable machine learning, we developed a
model predictive of an individual’s five-year risk of progression to OA. We mapped the complex landscape
of risk biomarkers using both multi-modal clinical data and molecular signatures of OA. We identified
sub-groups of OA, characterised by distinct profiles of risk biomarkers. Furthermore, our clustering
approach enabled us to derive simple clinical association rules for these sub-groups. Finally, we
demonstrated how individual patient journeys can be dissected to identify risk biomarkers for OA, which
might allow the development of personalised preventative strategies.

OA has significant health consequences with links to frailty and multimorbidity, highlighting the need for
OA prevention strategies?. However, to develop appropriate preventative strategies, there is a need for
reliable predictive models with robust performance. Previous OA risk studies have either focussed on a
specific joint (such as knee 0A)??/, included relatively small sample sizes, used only questionnaire-based
data, incorporated a small set of risk biomarkers, or did not dissect clusters of patients with varying OA
risk profiles*®1216.17 Tg realise the full potential of machine learning to advance our understanding of
OA risk, there is a need for more diverse studies of OA, encompassing multiple OA subtypes and diverse
patient cohorts®. The OA risk models described in this paper were built using a large sample size of
approximately 20,000 patients with OA, utilising a large set of longitudinal clinical, biochemical, and
omics-based risk biomarkers, and identified patient clusters which varied in OA risk profiles. We
demonstrated the strong and robust predictive performance of our model, with the model able to correctly
predict 7 in 10 patients who developed OA, with 66% of these being true-positive OA cases. The model
identified and estimated the predictive impact for a range of risk biomarkers. Some of these were
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recognised as OA risk biomarkers (e.g. age and BMI)'", while others were not traditionally considered OA
risk biomarkers (e.g. personal health rating, hand grip strength, body composition, and walking pace).
This highlights the heterogeneity in OA pathogenesis and the novelty of the OA risk models in our study.
Preventative interventions may need to target multiple risk biomarkers to reduce OA incidence. Most of
the predictors included in the model are easy to obtain in clinical practice, although some may require
specific testing, such as hand grip strength. Risk biomarkers that are easy to obtain clinically may enable
preventative strategies that prioritise interventions to those with the highest risk.

Age and BMI were the top and 3™ predictor of OA in the model respectively, both of which are established
risk biomarkers for OA'0. The impact of BMI on the risk of OA was present even in those who did not have
BMI = 30 kg/m?, with lower BMI levels reducing OA risk. This is unsurprising since increases in BMI
levels, regardless of the BMI category in which the increase occurs, can increase the risk of obesity-related
complications (as seen in type 2 diabetes'®). NSAID prescription one year prior to OA diagnosis was the
second most important predictor. This likely reflects the delay or clinical inertia in the diagnosis of OA,
reflecting several barriers to OA management in primary care that have been described previously'%20.
Higher vitamin D levels were also identified as a predictor of increased OA risk in this model. It was
observed that individuals taking vitamin D supplements typically had higher vitamin D levels and a higher
age. Therefore, vitamin D levels in the Clin model may be capturing an older population who take vitamin
supplements. Vitamin D may affect progression and pain associated with 0A21~23 but the levels of
vitamin D and use of supplements may vary across different global societies?*. Additionally, it was seen
that a lower socioeconomic status, as indicated by a lower income and level of education, was predictive
of an increased OA risk. This agrees with previous work, that demonstrated that social deprivation,
including lower education, was associated with increased OA risk?>2%. Additionally, lower social
deprivation and increased OA risk were previously linked to obesity2°.

There have been efforts to identify sub-groups of OA to enable targeted treatment and management of
patients. Sub-groups of OA have been proposed based on a shortlist of blood and urine biomarkers;
however, these did not incorporate additional types of patient data®. Sub-groups based on comorbid
symptoms have also been identified, but this was restricted to older individuals with knee or hip 0A?Z’.
Both studies are limited by identifying sub-groups of established disease, which does not contribute to
the understanding of the impact of risk biomarkers on developing OA. By modelling OA risk biomarkers
ahead of diagnosis, we were able to identify opportunities for early intervention and prevention of disease
progression.

Our data-driven approach allowed identification of distinct sub-groups of OA risk profiles. These results
suggest that simple sets of rules may be used to assign most individuals to specific sub-groups, which
differ in their predicted OA risk and risk biomarkers. This approach may help inform both clinicians and
patients to simply assess the potential for belonging to high-risk groups for OA risk, and the need for an
OA diagnostic assessment. The interpretable machine learning approach also provided an understanding
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of the contributing factors to the predicted OA risk for specific individuals. This explainability generates
trust in the predictions and enables identification of high-risk individuals to target for prevention of
disease progression. OA Risk C (calculator.oarisk.org) is an online tool that estimates the risk of an
individual developing knee OA28. However, it is limited by its restricted set of risk biomarkers. We present
a more complex OA risk model, encompassing a wider range of OA risk biomarkers. Our study could
contribute to the prioritisation of relevant input data for future, more comprehensive OA risk tools. In
addition, our incorporation of modifiable risk biomarkers may inform potential interventions targeting the
risk biomarkers. Based on machine learning predictions of OA risk, it cannot be fully assessed whether
intervention on risk biomarkers would decrease OA risk, and the extent of this decrease. However, it has
previously been shown that reduction in modifiable risk biomarkers corresponded with a reduced
individual probability of developing knee OA'2.

Although the integration of omics in our models did not improve the overall performance, it did change
the ranking of the risk biomarkers. Some omics biomarkers replaced clinical risk biomarkers, with some
being more predictive of OA risk than BMI (CRTAC1 and COL9A1). CRTAC1 was the most predictive
protein and has previously been proposed as an OA risk biomarker 2°=31. CRTAC1 is associated with OA
diagnosis across multiple joints, and with the severity of OA, including progression to total joint
replacement?°~31. These findings are across multiple cohorts (including the UK Biobank), proteomics
technologies, and methods. It has been suggested that CRTACT is upregulated in joints in OA by pro-
inflammatory cytokines, and there may be a sex specific role for CRTAC1 in OA progression32. COL9A1 is
both genetically and epigenetically linked to OA with its hypermethylation linked to decreased anabolism
in 0A33-37_ Additionally, mutations in COL9AT1 are associated with multiple epiphyseal dysplasia, a
hereditary condition characterised by early onset OA3®.

The integration of multiple omics biomarkers highlighted relevant biological pathways important for OA
disease prediction. An improved understanding of predictive OA molecular risk biomarkers may help
guide more OA-specific prevention strategies. In contrast, other clinical risk biomarkers, such as BMI, may
reflect a more general risk of obesity-related complications’?.

Proteomics biomarkers were highly important in the prediction of OA risk and other identified proteins
included ACTA2 and EDA2R. The smooth muscle cell protein ACTA2 has previously been associated with
sub-groups of OA38, and is associated with clusters of smooth muscle cells in the OA synovium?3°. Lastly,
EDAZ2R has previously been associated with TNF mediated inflammation, in the context of rheumatoid
arthritis®0.

It has been demonstrated that multiple genetic risk variants are associated with OA®. Although the OA
WGPRS had limited predictive value across the general population, we found it may be informative for
those with more extreme genetic risk. It has previously been seen that only a small proportion of variance
in OA can be explained by genetics®, and that genetics had a limited ability to predict OA®*1. This
highlights the importance of including additional clinical and biological data in prediction models, to
provide contextual disease information.
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Our GRS approach enabled us to estimate the contribution to predicted OA risk from genes previously
associated with OA. The GRS for the TGFBT locus was the top ranked GRS in the ClinGRS model. TGF-3
signalling affects chondrocytes, mesenchymal stem cells and synovial lining cells in OA development
and progression*2. Multiple components of the TGF-B pathway have been genetically associated with OA,
including SMADS3, a regulator of TGFB7 expression that impacts chondrogenic differentiation*243. In
phase 3 clinical trials, TGFB1 cell and gene therapy improved function and pain in knee OA**. The GDF5
GRS was predictive for OA and GDF5 has a role in chondrogenesis, a critical process for cartilage and
bone development*°. Higher levels of GDF5 were seen in OA with advanced cartilage damage*®, and
GDF5 is currently a target in clinical development for cartilage regeneration indications*3. Lastly, the
PTCH1 GRS was predictive of OA, and PTCH1 encodes a transmembrane receptor for Hedgehog ligands.
Hedgehog signalling is associated with chondrocyte proliferation, osteogenesis, cartilage degeneration
and disease severity in 0A%>*748 Loss of PTCH7 induces OA-like phenotypes*®4° and PTCHT is
genetically associated with total hip, knee and joint replacements®. Therefore, PTCH1 may be particularly
relevant for OA disease progression, and targeting the Hedgehog pathway may be a therapeutic

opportunity for OA*’.

Multiple metabolites were relevant for predicting OA and have previous associations with the complex
metabolism underlying OA. Acetate was the most predictive metabolite for OA. ACOT12 breaks down
acetyl-CoA into acetate and CoA, and is a novel regulator of de novo lipogenesis (DNL) associated

cartilage degradation in OA®C. Valine was also predictive for OA and is an essential branched chain
amino acid (BCAA). Valine has previously been associated with the severity of inflammation in synovial

tissue®'. BCAAs may play a role in increased inflammation, reduced autophagy, and increased insulin
resistance in OA 2. The ketone body 3-hydroxybutarate (BHB, B-hydroxybutarate) may have anti-
senescence effects which delay OA progression®3. Finally, citrate levels in synovial fluid have conflicting
associations with knee 0A>* and may be linked to altered energy metabolism®°.

There is a complex relationship between fatty acids and OA, that may be impacted by sex, obesity, OA
joint and whether measured in the fasted or postprandial state®®®’. Different fatty acids have distinct
effects on OA%8. Previous work has shown that longer chain saturated fatty acids induced metabolic
syndrome and OA-like cartilage degradation®®®9, and induced systemic inflammation, independent of
weight-gain in obesity related OA®".

Currently, omics data may not be easily available in routine clinical practice, although this may changein
the future as the utility of omics biomarkers matures. However, even without the inclusion of omics data,
our Clin model provided a significant advance in predicting the risk of OA across subgroups and at the
individual level, encompassing a broad set of clinical risk biomarkers. The availability of some of the
clinical risk biomarkers, such as hand grip strength and regional body composition, might be challenging
depending on the health care system and the setting (for example primary vs secondary care).
Nonetheless, the top 6 predictors in the Clin model were all easily obtainable. Our study incorporated a
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diversity of risk biomarkers, including genetics, proteomics, and metabolomics. Future work would benefit
from the incorporation of joint imaging data, WOMAC pain scores, and transcriptomic data, which may
contribute to the prediction of OA and a better understanding of biological pathways associated with
(progression of) 0A%2764 |t should also be noted that the timing of biological sampling, whether in the UK
Biobank or clinical practice, may have an impact on risk biomarker levels and estimated OA risk.

In summary, we present large-scale predictive models for incident OA risk, incorporating a broad range of
risk biomarkers. The use of interpretable machine learning for individual patients enabled the
identification of personalised modifiable risk biomarkers, opening up the opportunity for tailored OA
preventative strategies. Our integration of omics features identified OA-specific risk biomarkers and
highlighted the predictive importance of underlying OA disease biology. Taken together, these findings
may advance early screening, prevention and treatment of OA, reducing both disease incidence and
progression.

Online Methods

UK biobank

The UK Biobank is a human cohort comprising ~ 500,000 individuals, aged between 40 and 69 years at
recruitment, from 2006 to 2010'4. At a recruitment assessment centre, participants contributed to in-
depth data collection and banking of biological samples. Biological samples were subsequently used for
the generation of various omics data and biomarker measurements. Clinical outcomes for participants
can be followed-up through linkage to secondary care data and for ~ 45% of participants primary care
data (available data until 31/12 2020). The machine learning models integrated both clinical,
metabolomics, proteomics and genetic data from the recruitment assessment centre as well as
longitudinal information captured from the EHR data.

Pre-processing of assessment centre data
Clinical assessment centre data

Diverse participant data from the recruitment assessment centre was processed for input into machine
learning models to integrate multi-modal signals in the models (Sup File 3). This included data on socio-
demographics (including Townsend deprivation index), lifestyle, diet, and physical activity. Additionally, a
panel of blood and urine biomarkers were measured at recruitment (Sup File 3) and included as input
features. Biomarker data from recruitment was processed to assign outliers outside the 1st and 99th
percentiles to the value of the 1st and 99th percentile. Body impedance data reflecting body composition
was taken from the first assessment instance and included derived measurement of the fat mass (Kg) to
fat-free mass (Kg) ratio across whole body, and specific body areas including trunk area, leg and arms
(legs and arms indicated by differences in right and left side of an individual’s body composition).

Genetic data
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The imputed genetics data was generated and provided by the UK BioBank and processed using PLINK
(v2.00a3LM)®°%%_Single nucleotide polymorphisms (SNPs) were subsequently removed if they had a
minor allele frequency (MAF) < 1%, a missingness > 1%, an imputation score (INFO) < 0.8 or with a Hardy-
Weinberg Equilibrium exact p-value<0.00001. This resulted in a set of around 9.4M high quality imputed
common genetic variants that were used to generate genetic risk scores (GRS).

Genetic information was integrated into the machine learning models through several representations of
the genetic information by i) individual SNPs, ii) whole genome polygenic risk score of OA (WGPRS) as
well as genetic risk scores for either iii) specific gene-level genetic risk scores (gene-GRS) or iv) pathway-
level polygenic risk scores (pathway-PRS).

Genetic risk scores were generated using the software PRSice (v.2.3.3)%” and the weights of variants

associated with OA from a recent meta-analysis® (summary statistics of a sub-analysis excluding the UK
Biobank samples).

For gene-GRS, SNPs within 5kb upstream and 1.5kb downstream of a gene were used for scoring after
clumping. Furthermore, analyses were run with and without a linkage disequilibrium proxy (LD proxy):
including SNPs in LD with the clumped region, with R*2 >0.8. The gene regions were defined using
GENCODE annotations (V43lift37); only protein-coding genes were considered for analyses.

For pathway-PRS, SNPs within genes (as described above) belonging to specific gene-sets were
aggregated together into a score (with and without LD proxy). The gene-sets used for the pathway-PRS
were generated using KEGG pathways obtained via the Molecular Signature Database (MsigDB; v2022.1).

The default PRSice clumping parameters were used. For WGPRS and gene-GRS/pathway-PRS, no p-value
based thresholding was applied to maximise the number of SNPs included in the analyses; however
multiple thresholds were tested for WGPRS, with no significant impact on the results (data not shown).

SNPs and genes to be included in the models were guided by using previously identified variants and loci

associated with OA risk genes from two recent large GWAS-based studies®®8. Indels were removed from
individual genetic variants, resulting in a set of 85 SNPs. Specific gene-GRS features to include were
prioritised based on the genes annotated to the GWAS significant loci. This included 77 high effector OA

genes identified by Boer et aP and 134 OA genes annotated to genome-wide significant SNPs by

McDonald et al8. In total, 204 unique genes associated to OA risk were identified, where 193 genes were
protein-encoding and prioritised for the list of gene-GRS used. All pathways from KEGG were tested for
pathway-GRS (n = 186).

Metabolomics data

Circulating metabolite biomarkers from blood EDTA plasma samples were quantified from a subset of UK
biobank participants (N=118,021) using Nightingal€e's high-throughput proton NMR metabolomics

platform®2~71_ A total of 249 metabolites were quantified (168 metabolites given in absolute molar
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concentration units (differs per biomarker, see details: https://research.nightingalehealth.com) and 81
ratios of these) spanning amino acids, (apo-)lipoproteins (incl subclasses), cholesterol, cholesteryl esters,
fatty acids, biomarkers of fluid balance, glycolysis related metabolites, inflammation biomarkers, ketone
bodies, phosphor- and/or other lipids. Metabolites that were measured by absolute concentrations were
normalised by square root. Metabolites given as ratio or percentages were not processed further before
including in the machine learning models.

Proteomics data

A subset of UK biobank participants (as previously described’?) had biomarkers measured from plasma
blood samples by Olink Proximity Extension assays across 58,634 samples for 54,308 individuals. The
data was filtered to only include individuals with samples obtained from the first assessment centre,
samples were processed and no withdrawn consent as per reported by UK Biobank (48,040 samples and
46,673 individuals). In total, 1,472 proteomics markers were measured across four Olink panels
(cardiometabolic panel: 369, inflammation: 368, neurology: 367, oncology: 368). The quality of the assay
and sample quality was checked by Olink’s built-in quality control. Sample with < 85% of assays not
completely passing Olink’s built-in quality control were excluded for analysis. The protein expression was
normalised into Normalized Protein eXpression (NPX), which is Olink’s arbitrary unit (Log2 scale). NPX
values were compared across individuals and extreme outliers were removed if the mean NPX for an
individual was < 0.2% or >99.8% percentile of the overall cohort mean NPX values. Proteins that were
identified by non-normal / bimodal residuals from age, sex, BMI were removed from the analysis. CXCLS,
IL6, and TNF were measured across all four Olink assays and an average NPX value was calculated.
Furthermore, some samples were assayed twice for replication and for machine learning analyses, an
average NPX value was calculated.

Pre-processing of longitudinal primary and secondary care data (biomarker & medication) during the 5
years pre-index date

Longitudinal data was captured 5-years prior to OA diagnosis/matched index date from the primary and
secondary health care data (Fig. 1 and Sup Fig. 1-2).

Primary care data was used as a source of longitudinal biomarkers, clinical measurements, and
prescription data. Biomarkers and clinical measurements included haematological measurements, liver
biomarkers, anthropometric measurements, cardiovascular biomarkers, renal biomarkers, bone & joint
biomarkers, lifestyle measurements, hormonal measurements, and diabetes biomarkers (Sup File 4).
Where appropriate, data was processed to align units and outliers. Medication for type 2 diabetes, obesity
and OA was extracted from prescription data (Sup File 5).

Longitudinal data was captured in yearly snapshots 5 years prior to OA diagnosis. For continuous data,
this was represented as the median value across an 11-month period in the year. For medication data,
prescriptions were grouped into medication classes and a binary value indicated whether the patient had
a prescription for the medication class during the year.
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Finally, primary and secondary health care data was used to indicate if OA patients had a diagnosis of
posttraumatic OA before onset of their OA diagnosis, as this has been shown to increase individual OA
risk’3. Diagnoses of post-traumatic OA were identified and annotated if any codes were given ahead of
the OA date / control proxy day.

OA study and validation populations

OA diagnoses were identified from primary and secondary health care data linked to individual
participants (> 18 years old) using read2, read3, ICD-9 and ICD-10 clinical codes (Sup File 1). Further
inclusion criteria for the study included filtering of patients with available primary care data in the UK
Biobank. An equal number of control participants, who never developed OA and had observational data
during the entire study period (e.g., due to death), were identified. Controls were date-matched with the OA
diagnosis dates for case patients to enable retrospective capture of longitudinal data five year before OA
diagnosis or OA proxy date. Cases and controls were then filtered for those with an OA
diagnosis/matched index date after the date of the recruitment assessment centre, and maximum five
years between the OA diagnosis and assessment centre, allowing the use of this recruitment data in
predictive models to estimate the five-year risk (Fig. 1A).

Machine learning models

Extreme Gradient Boosting (XGBoost) models with decision-tree based learners were implemented by R
version 4.2.0 using the publicly available R libraries; xgboost (v 1.6.0.7), pROC (v 1.18) and caret (v6.0-
93). XGboost models were trained using a nested two-level five-fold case-control stratified cross-
validation. Missing values were handled by imputation within each cross-validation fold based on the
median value available across cases and controls in the training dataset. Features with >50% missing
data were excluded from analysis. Additionally, near zero variance features were excluded using
‘nearOvar’ from the caret library. Hyperparameters for the cross-validated models were optimised via a
cross-validation grid search, where optimal parameters were selected based on highest cross-validated
ROC-AUC in the inner cross-validation fold. The grid optimised for the following parameters eta: (0.05,
0.10,0.15, 0.20, 0.25,0.30) and nrounds: (50, 100, 200, 300, 500, 700, 1000) with the following other
parameters fixed in the XGBoost model; booster: gbtree, max depth: 10, eval_metric: logloss, objective:
binary:logistic, subsample = 0.8, sample:method = uniform and min_child_weight = 50. For models where
omics data (genomics, metabolomics or proteomics) were integrated the XGBoost model also had
colsample_bytree = 0.8. The short depth of each decision tree was set to help guide feature selection and
reduce risk of overfitting. The selected hyperparameters were selected for re-training of one model in the
outer cross-validation level. The model performance was validated on the outer test set that has been
held out from any model training. Model performance was estimated by evaluating classification of true
positive (TP), false positive (FP), true negative (TN) and false negative (FN) classifications done by the
machine learning model. To account for variance between the five cross-validation sets, both the average
and 95% confidence interval (Cl) across the five validation datasets were reported. The classification
performance is reported by the area under the receiver operating characteristic curve (ROC-AUC),
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TN
TN+FP )

). ROC and precision-recall curves were generated using the R

sensitivity (recall, (Tpﬁ%)), positive predictive value (PPV, precision, (%)), specificity (
TN
TN+FP

library yardstick (v 1.1.0). The robustness and stability of the machine learning models was evaluated
across 100 random model initialisation and against 100 random model initialisations with a permuted

and negative predictive value (NPV,

prediction outcome of OA cases and controls that both accessed impact on predictive performance.
Transparent reporting of a multivariate prediction model for individual prognosis or diagnosis (TRIPOD)
checklist for prediction model development were followed to ensure clarity and reproducibility of the
multivariate prediction model of individual OA risk (Sup File 6).

Model interpretation

To explore how each individual features contribute to the risk prediction of OA, Shapley Additive
explanation (SHAP) values were calculated from the XGBoost models using Tree SHAP’4. The SHAP
values were given as the log-odds of the individual contributions and were visualised using the R libraries
SHAPforxgboost (v 0.1.1) and shapviz (v 0.4.1). For global estimation of feature importance across the
five outer test datasets, the mean absolute SHAP values were calculated, which quantifies, on average,
the magnitude of a feature’s ability to predict individual risk of osteoarthritis.

Cluster analyses

To explore differences in feature importance in the prediction model between subgroups of individuals,
clustering was performed on the SHAP values. For this, the Seurat’® (v.4.3.0) implementation of the
Louvain clustering algorithm’® was used after reducing the data to 10 dimensions by principal
component analysis (PCA). A three-steps approach was used to determine the number of clusters. First,
the package chooseR’’ was used to perform a subsampling-based approach to generate silhouette

scores (as a measure of cluster robustness) for various resolutions (number of clusters). Secondly, the
2

sensitivity 1 +PPV !
) values of each cluster were calculated, based on the prediction results of the XGBoost model. Finally,
these two steps were integrated by looking at the cluster resolutions leading to the best combination of

PPV, sensitivity and F1 (a balanced metric evaluating accuracy of case classification,

weightedmean(silhouettescores)

these metrics with the formula: clusterscore = weightedmedian(predictionoalucs)
After manually selecting the optimal resolution parameter to maximise cluster robustness, number of
clusters and per-cluster F1 values (resolution = 0.5, n = 14 clusters), each cluster was first characterised by
averaging the values of the top 6 predictive features to plot as a heatmap using the ComplexHeatmap’®R
package(v.2.13.1). Secondly, the SkopeRules Python package (v. 1.0.1)'° was employed to generate
interpretable rules to define each cluster using the original input values used in the XGBoost model
(n_estimators: int = 10, recall_min: float = 0.2, max_depth: int = 5, max_depth_duplication: int = 7). When
multiple set of rules were given for a cluster, the rules appearing in the highest numbers of decision trees
were chosen, and the rules with highest out-of-bag PPV and sensitivity in case of equality.
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Figure 1

Study design and population characteristics. 1A) Overview of study design including example of date
matching cases and controls (longitudinal patient data). For cases with OA, the OA diagnosis date was
identified and a data capture period of 5 years prior to diagnosis created. For controls without OA, a
matched index date, equivalent to the OA diagnosis date for the case used for matching, was identified.
For controls, a data capture period of 5 years prior to the index date was created. For both cases and
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controls, longitudinal EHR data and data from the UK biobank assessment centre were captured in the 5-
year data capture period. Data integration shows the different models and data integrated for prediction
of OArisk. Predictive machine learning shows the machine learning modelling setup for training and
model validation as well as interpretation for precision and personalised OA healthcare.1B) OA risk
factors summarised across OA cases and matched non-OA controls used for modelling in the study. P-
values generated by two-sided t.test for continuous features and chi-squared test of independence for
sex. 1C) Count of joints affected that could be extracted from the OA diagnosis codes. These groups were
used for stratification in the prediction models. When a patient with OA had multiple joints affected, both

diagnoses were included in this joint mapping. It was not possible to map all OA diagnoses to a specific
joint.
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Figure 2

Clinical prediction model of OA risk (Clin model). 2A) ROC curves of OA prediction models 2B) Precision-
recall curves of OA prediction models. ‘OA all’ incudes all cases of OA independent of specific joint
subsets (Arm, Foot, Hip, Knee, Spine). An OA case can have multiple OA joints affected and a case is
included per joint affected (meaning these can be repeated). 2C) Performance metrics of clinical model
on independent five-fold cross-validation test dataset. PPV = positive predictive value. NPV = Negative
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predictive value. 2D) Ranked feature importance of OA model by SHAP additive explanations. NSAIDs =
non-steroidal anti-inflammatory steoroid drugs. FM/FFM = Fat mass / Fat-free mass.
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Figure 3

OA patient clustering. 3A) Clusters obtained based on the SHAP values (Louvain clustering algorithm).
3B) Prediction probability per individuals. 3C) SHAP values used for clustering; the colour scheme allows
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visualisation of the importance of each feature in the prediction model as well as their impact on
clustering. For (3B) and (3C), points were binned to increase readability; the average values within each of
the bins are plotted. Clusters were obtained after dimensionality reduction of the SHAP data with a
principal component analysis (10 PCs) and visualised after further dimensionality reduction with UMAP.
3D) Average values of prediction probabilities and the top 6 most predictive features. Categorical values
encoding before averaging: NSAIDs (pre-1years): 1 and 0 represent patient taking or not taking the drug,
respectively; walking paces were rescaled from 0 to 1 corresponding to a range from fastest to slowest;
health ratings were rescaled from 0 to 1 corresponding to a range, from healthiest to least healthy.
Continuous values encoding before averaging values were transformed into Z-scores for visualisation
purposes.
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Figure 4

Cluster prediction metrics, defining rules and validation in an independent population. Left(heatmap):
each cluster is defined by prediction metrics, case/control ratio, cluster size (%). Middle (text): set of rules
best defining each cluster, based on the model input values and generated by a decision tree model.
Right(heatmap): Case/control ratio and cluster size (%) in an independent population in which individuals
were attributed to clusters according to their corresponding rules.
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individual level. Yellow bars (positive SHAP value) indicate features that increased predicted OA risk; red
bars (negative SHAP value) indicate features that decreased predicted OA risk. Numbers within bars
represent the SHAP value for the feature; numbers on the y-axis represent the value for this feature, both
are specific to the individual shown and represented the magnitude of the effect of the risk biomarker on
predicted OA risk.
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6A) Top ranked features from omics models in the context of multi-modal clinical features. The top 5
omics features that appeared important for prediction of OA based on the average marginal SHAP value
ranking amongst top 40 predictive features. For ClinSNP, ClinGRS and ClinPath, several sensitivity checks
were done for the genetic features including results marked with: (1): GRS obtained with proxy, (2): GRS
obtained without proxy and * Identified for models with genetic features corrected for population
stratification (Sup Table 3 for details). 6B) Sparse volcano plot of log2 fold changes of identified ‘omics
features between OA cases in relation to controls across the six molecular OA models. P-values generated
by two-sided t.test and FDR-adjusted (P_adj). The horisontal dotted purple line corresponds to
P_adj=0.05.
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