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Supplementary Figure 1: Sentinel-1 data frames across the ATF, including 6 tracks
in ascending (red polygons) and 6 tracks in descending (blue polygons).
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Supplementary Figure 2: Mosaicked InSAR LOS velocity fields in ascending (a) and
descending (b) after removing the average offsets in overlapping areas. Positive values
indicate the motion towards the satellite, whereas negative values show the motion
away from the satellite. (¢) and (d) are the estimated standard deviation of velocities
accordingly using the percentile bootstrap method.
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Supplementary Figure 3: Fault-parallel velocity profiles of the ATF derived from
the east-west velocity field. The black and yellow points indicate the fault location of
each profile on the high-resolution fault trace of the ATF (blue lines). The yellow points
indicate locations for which the profiles show additional strain localisation south of the
ATF. In the profile panels, the grey points are the mean fault-parallel velocities of points
projected from within a 50 km perpendicular distance onto each profile; the black bold
line represents the mean velocities binned by every 5 km along the profile; the red dashed
lines show the mapped fault locations of main ATF; the blue points are the resolved
fault-parallel GPS velocities projected onto the profile with +20 errorbars.
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Supplementary Figure 4: The MAP solution for each fault-perpendicular profile (red
curves). Red dashed lines represent the estimated locations of the buried dislocations
along the ATF. Black dashed lines show the estimated locations of the buried dislocation
of the additional strain on these profiles.




Supplementary Figure 5: Marginal probability distributions of each profile.
Abbreviations of labels include ’S rate (Slip rate)’, 'L depth (Locking depth)’, "H shifts
(Horizontal shifts)’, 'S offset (Static offset)’, 'R ratio (Rigidity ratio)’, ’C L depth
(Creeping depth)’, ’C rate (Creep rate)’, 'R rate (Rotation rate)’, ’A L depth (Additional
locking depth)’,’A S rate (Additional slip rate)’ and ’A H shifts (Additional horizontal
shifts)’.
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(d) At 83 °E.
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(e) At 83.5 °E.
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(f) At 84 °E.
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(g) At 84.5 °E.
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(h) At 85 °E.
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(j) At 86 °E.
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(k) At 86.5 °E.
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Supplementary Figure 6: Temporal evolution of LOS displacement between two sites
on either side of the south-western segment of the ATF. (a) and (b) show the InSAR
LOS velocity fields of the ascending track 158 and the descending track 165, respectively.
Black points in (a) and (b) represent the locations of two sites. The focal mechanism
indicates the 2014 M,, 6.9 Yutian earthquake. Black-gray scatters in (c) and (d) show the
time series of the relative LOS displacement between the two sites for the ascending and
descending track, respectively. Blue and orange lines represent the best fit logarithmic
and linear model to the time series, respectively.
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Supplementary Figure 7: A work flow diagram illustrating the main steps of InSAR processing from Sentinel-1 Simple Look
Complex (SLC) products to time-series.



Supplementary Figure 8: Small baseline subset networks of the individual tracks.
The red circles represent the epochs of SAR acquisitions and the black lines indicate the
generated small temporal baseline interferograms.
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Supplementary Figure 9: RMS comparisons of interferograms for individual tracks
before and after tropospheric corrections. All tracks show a reduction in the RMS after

the correction is applied.
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Supplementary Figure 10: GPS velocity map. Black vectors show horizontal velocities
of the 28 GPS sites used to define the Tarim Basin reference frame. Red vectors and blue
vectors represent horizontal velocities of the 84 available GPS sites and vertical velocities
of the 23 available GPS observations used to determine the linear planes for each track,
respectively. All velocities are plotted in the defined Tarim Basin reference frame at 68 %
confidence level.
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Supplementary Figure 11: The fit of the model to the data points in the inversion
for long wavelength trends. Panels in the first and the second rows show the fit of the
model to the InSAR points selected from the overlapping region between adjacent tracks;
Panels in the third to the fifth rows indicate the fit of the model to the GPS data; Panels
in the last two rows show the fit of the model to the InNSAR points covered by the GPS
sites in ascending and descending, respectively.
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Supplementary Figure 12: Mosaicked InSAR LOS velocity fields of ascending (a) and
descending (b) in the Tarim reference after removing the inverted linear planes from each
track. Positive values indicate motion towards the satellite.
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Supplementary Figure 13: Comparison of the LOS velocity differences in the
overlapping region between adjacent tracks before and after velocity mosaicking. Blue
histograms show the original differences along with the Gaussian distribution fit (blue
curves), whereas the yellow-orange colour features the differences after removing inverted
linear planes. The blue and orange lines indicate the mean value of the corresponding
Gaussian distribution. STD; and STD, show the standard deviation of each estimated
Gaussian distribution before and after velocity mosaicking, respectively. The mean of
each is expected to be non-zero due to the different incidence angles.
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