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Figure S1 | Spatial patterns of annual means of wildfire outbreak (FT) and burned

area (BA) after peak photosynthesis timing (PPT) derived from terrestrial fire

perimeters (FP) and MODIS observations in northern ecosystems for 2001-2018. a-b,

FTep and BAgp after LT _SlFc derived PPTg; c-d, FTep and BAgp after PPTypvi; e-f, FTep

and BAgp after GOSIF derived PPTg; g-h, FTmopis and BAwopis after LT_SIFc derived

PPTg; i-j, FTvopis and BAwvobis after PPTnovi; k-l, FTvobis and BAwvobis after GOSIF

derived PPTg.
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Figure S2 | Spatial patterns of annual means and trends of the maximum

photosynthesis and its timing (PPT) derived from LT_SIFc (a-d), NDVI (e-h), and

GOSIF (i-I) products in northern ecosystems for 2001-2018. Black dots indicate the

regions with significant trends (p-value<0.1). P and N indicate the percentage of increased

and decreased trends, respectively. The long-term trend was calculated by the

Mann-Kendall test and Theil-Sen slope estimator (MK-TS). We calculated the trend of

centered grid cell after averaging values within a 9%x9 spatial moving window

(2.25°x2.25°).
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Figure S3 | Schematic path diagram showing the effect of peak photosynthesis

timing on wildfire outbreak and burned area through changing atmospheric aridity

(VPD), plant water stress (CWD), and leaf senescence (DFS). This path diagram

contains three hypothetical pathways: PPT-VPD-wildfire, PPT-CWD-wildfire, and

PPT-DFS-wildfire. The model also considers the effect of temperature, precipitation,

maximum photosynthesis, and soil moisture. The + and — in circle indicate positive (red)

and negative (blue) bivariate correlation, respectively. PPT. peak photosynthesis timing;

VPD: vapor pressure deficit; CWD: climatic water deficit; DFS: date of autumn foliar

senescence; FT: fire timing after PPT; BA: burned area after PPT.
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Figure S4 | The Spearman correlation between DFS and ASIF/ANDVI for LT_SIFc (a),
NDVI (b), and GOSIF (c). We used ASIF/ANDVI to represent the accumulated dead fuels
induced by leaf senescence. ASIF/ANDVI was calculated as the monthly difference of
SIF/NDVI from July to October (representing the entire senescence period?). It showed
that DFS was negatively correlated with ASIF/ANDVI, which suggested that the earlier
DFS leads to the enhancement of dead litters over the senescence period. Black dots

indicate the regions with significant correlations (p-value<0.1).
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Figure S5 | Annual fractions (blue lines) of burned area and wildfire CO, emission

after peak photosynthesis timing (red bars) in relative to the annual total (green

bars) in northern ecosystems (>30°N) for LT_SIFc (a-b), NDVI (c-d), and GOSIF (e-f).

The blue label indicates the annual mean * standard deviation of the fraction. The gray

dotted line indicates the 50% fraction. The CO, emission was derived from the global fire

CO, emission dataset®.
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Figure S6 | Comparisons between the months of peak photosynthesis timing and
maximal fire activity. Spatial patterns of the months of PPT derived from LT_SIFc (a),
NDVI (b), and GOSIF (c), and maximal burned area (BAmax, d). The color labels in the
bottom left indicate the fractions of months in spring (green), summer (blue), and autumn

(orange). e, the fractions of pixels experiencing BAnax before and after PPT derived from

LT_SIFc, NDVI, and GOSIF.
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Figure S7 | Controls of peak vegetation growth derived from GOSIF on wildfire
outbreak and burned area in northern ecosystems (>30°N). Partial correlations (p)
between PPTge/SIFL.x and FT/BA for terrestrial fire perimeters (a-d) and MODIS (e-h)
observations. Black dots indicate the regions with significant correlations (p-value<0.1). In
summary, our results were robust that PPT positively correlated with wildfire timing but

had a negative relationship with burned area.
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Figure S8 | Potential mechanisms underlying the linkage between MODIS derived
wildfire activity and GOSIF derived peak photosynthesis timing. a-i, Spatial patterns
of partial correlations for PPTge-VPD-wildfire (a-c), PPTs-CWD-wildfire (d-f), and
PPTs-DFSse-wildfire (g-i). Black dots indicate the regions with significant partial
correlations (p-value<0.1). j-k, Path diagram (j) and path effect (k) for PPTs-wildfireyopis.

The numbers in the path diagram represent the mean and standard deviation of
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standardized path coefficients across the northern ecosystems (>30°N), asterisks indicate

the path coefficients are significant (p-value<0.1) and the colors (red and blue arrows

represent positive and negative effects, respectively) and widths of the arrows represent

the signs and magnitudes of the path coefficients, respectively. Red and blue bars

represent path effects for PPT-FT and PPT-BA, respectively. In summary, our results were

robust that PPT amplified wildfire activities through increasing VPD and CWD, and

advancing DFS.
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Figure S9 | Potential mechanisms underlying the linkage between FP derived
wildfire activity and GOSIF derived peak photosynthesis timing. a-i, Spatial patterns
of partial correlations for PPTge-VPD-wildfire (a-c), PPTs-CWD-wildfire (d-f), and
PPTs-DFSse-wildfire (g-i). Black dots indicate the regions with significant partial
correlations (p-value<0.1). j-k, Path diagram (j) and path effect (k) for PPTge-wildfiregp.

The numbers in the path diagram represent the mean and standard deviation of
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standardized path coefficients across the northern ecosystems (>30°N), asterisks indicate

the path coefficients are significant (p-value<0.1) and the colors (red and blue arrows

represent positive and negative effects, respectively) and widths of the arrows represent

the signs and magnitudes of the path coefficients, respectively. Red and blue bars

represent path effects for PPT-FT and PPT-BA, respectively. In summary, our results were

robust that PPT amplified wildfire activities through increasing VPD and CWD, and

advancing DFS.
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Figure S10 | Schematic of the processing of terrestrial fire perimeters (a-c) and the
calculations of fire timing (FT) and burned area (BA) from finer resolution to 0.25°
grid cell (d-f). a-c suggested that a 0.00025° (approximately 30 m) resolution can match
fire perimeters well. d-f showed that FT and BA were identified as the date (DOY) of the
first wildfire outbreak (the lightest color) and total areas burned (showed as the
percentage of burned pixels) after PPT, respectively. The size of pixel in d is 30x30 m for
terrestrial fire perimeters and 500500 m for MODIS product. A 0.25°x0.25° grid cell
contains 1000x1000 30 m pixels or 60x60 500 m pixels. n=1000 for fire perimeters and

n=60 for MODIS. The size of grid in e and f is 0.25°.
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Figure S11 | Goodness of fit of the model using path analysis for LT_SIFc (a-b),
NDVI (c-d), and GOSIF (e-f). We selected five metrics to evaluate the goodness of fitted
model, i.e., GFI, CFl, RMSEA, NNFI, and SRMR. 0-5 indicate the number of criteria

satisfied, and the model was considered reliable when three out of five criteria are met

(green).
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188  Figure S12 | Standard path coefficient of each path for LT_SIFc product. a-f indicate
189 the VPD, CWD, and DFSgr pathways for terrestrial fire perimeters and MODIS products,

190 respectively. 1-3 indicate the PPTg-factor, factor-FT, and factor-BA, respectively. “X-Y”
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significant (p-value<0.1). Red label indicates the regional mean + standard deviation of

path coefficient considering the goodness of fit of the model and the significance of path

coefficient.
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Figure S13 | Standard path coefficient of each path for NDVI product. a-f indicate the
VPD, CWD, and DFSy\py, pathways for terrestrial fire perimeters and MODIS products,

respectively. 1-3 indicate the PPTypy-factor, factor-FT, and factor-BA, respectively. “X-Y”
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significant (p-value<0.1). Red label indicates the regional mean + standard deviation of

path coefficient considering the goodness of fit of the model and the significance of path

coefficient.
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Figure S14 | Standard path coefficient of each path for GOSIF product. a-f indicate
the VPD, CWD, and DFSgr pathways for terrestrial fire perimeters and MODIS products,

respectively. 1-3 indicate the PPTg-factor, factor-FT, and factor-BA, respectively. “X-Y”
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Table S1 Summary of the data used in this study

Dataset Indicator Resolution Period Source
MOD13C1 0.05°, https://Ipdaac.usgs.gov/produ
NDVI 2001-2018
V6 16-day cts/mod13c1v006/
0.05°, https://doi.org/10.6084/m9.figs
LT_SlIFc 2001-2018
monthly hare.21546066.v1
SIF
http://data.globalecology.unh.
GOSIF 0.05°, 8-day 2001-2018
edu/data/GOSIF_v2/
https://cwfis.cfs.nrcan.gc.ca/d
NBAC shapefile 2001-2018
atamart
https://www.mtbs.gov/direct-d
MTBS shapefile 2001-2018
ownload
FT, BA
https://effis.jrc.ec.europa.eu/a
EFFIS shapefile 2001-2018
pplications/data-and-services
MCD64A1 500 m, https://Ipdaac.usgs.gov/produ
2001-2018
V6 monthly cts/mcd64alv006/
T, PRE, 0.1°, https://cds.climate.copernicus.
ERAS5-Land 2001-2018
SM, Td monthly eu/cdsapp#!/home
TerraClimat 1/24°, https://www.climatologylab.org
CwWD 2001-2018
e monthly lterraclimate.html
Vegetation
photosynth
https://doi.org/10.6084/m9.figs
etic DFS 0.05°, yearly 2001-2018
hare.17195009.v3
phenology
dataset
MCD12Q1 Landcover 500 m, https://Ipdaac.usgs.gov/produ
2001-2018
V6 type yearly cts/mcd12g1v006/
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265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

Global fire https://figshare.com/articles/d
GlobalFire 3.75°%1.9°,
CO, 2001-2018 ataset/Global fire_ CO2_emis
CO, monthly
emissions sions_2000-2021/21770624

NDVI: normalized difference vegetation index; SIF: solar-induced chlorophyll fluorescence;
FT: fire timing; BA: burned area; T: 2 m air temperature; PRE: total precipitation; SM: soil
moisture; Td: 2 m dewpoint temperature; CWD: climatic water deficit; DFS: date of
autumn foliar senescence. Notable, vapor pressure deficit (VPD) was calculated by T and

Td from ERA5-Land products®.



281  Table S2 Summary of the outputs of FireMIP fire-vegetation models*® used in this study

Model Resolution Period Output

CLM® 2.5°x1.875°, monthly 2001-2012  GPP, BF
JSBACH-SPITFIRE’ 1.875°x1.875°, monthly ~ 2001-2012  GPP, BF
LPJ-GUESS-SPITFIRE? 0.5°x0.5°, monthly 2001-2012  GPP, BF
ORCHIDEE-SPITFIRE? 0.5°x0.5°, monthly 2001-2012  GPP, BF
CTEM™ 2.8125°x2.8125°, monthly ~ 2001-2012  GPP, BF
JULES-INFERNO™ 1.875°x1.245°, monthly ~ 2001-2012  GPP, BF
LPJ-GUESS-SIMFIRE-BLAZE™ 0.5°x0.5°, monthly 2001-2012  GPP, BF

282  GPP: gross primary productivity; BF: burned fraction, the fraction of burned area within a
283  grid cell (%). Notably another two FireMIP models, LPJ-GUESS-GlobFIRM*® and MC2*,
284  were excluded in this study because they provide the yearly burned area datasets.
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