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Fig. S1. p38 pathway expression scores in malignant epithelial cells and fibroblasts from
HPV-negative HNSCC scRNAseq cohort A (Puram, et al.). P-value was computed by linear
mixed-effects models (LMM) with a nested design (patient id as the blocking factor), followed by
likelihood ratio test (LRT).
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Fig. S2. non-T cell-inflamed phenotype-associated pathways are activated in malignant

cells from HPV-negative HNSCC of low T cell infiltration from scRNAseq cohort B (Kurten

et al.). (a) Distribution of tumor, stroma, and immune cell subsets on UMAP (n=41435 cells from

nine tumors). (b) Expression of 59 pathways from Fig. 1d across cell populations. Pathway

scores were computed as the average expression of all genes involved in a pathway. (¢) 55 out

of 59 pathways showed higher expression in 689 malignant epithelial cells of low-T cell-

infiltrated relative to 2834 malignant epithelial cells of high-T cell-infiltrated tumors. Bold font

represents pathways at FDR 0.10. (d) Expression of CTNNB1 pathway and p38 pathway from

low- vs high-T cell-infiltrated tumors. Four out of nine tumors with at least 40 malignant epithelial

cells per sample were included in analysis. (e) 15 pathways that passed prioritization score

(combined relative rank) < 0.6 and maximum relative rank difference < 0.3. Six out of 15

pathways overlap with the top pathways from the Puram cohort in Fig. 2e. For each of the 59

pathways from Fig. 1d, its combined relative rank was computed as the geometric mean of

three values: the relative rank in TCGA pathway activation (z-score higher to lower), the relative

rank in ICGC anti-correlation with T cell-inflamed expression (coefficient highly to lowly

negative), and the relative rank in scRNAseq pathway expression comparing malignant

epithelial cells from low-T cell-infiltrated versus high-T cell-infilirated tumors (p-values smaller to



larger). (f) Expression of the 15 pathways from e Linear mixed-effects model via maximum
likelihood was used in ¢, d and f, with tumor group as the fixed effect and patient id as the
random effect. Likelihood ratio test (LRT) was used with the fitted model for computing p-values,
followed by BH-FDR correction for multiple comparisons. Denotation: ** FDR-adjusted P<0.01, *

FDR-adjusted P<0.05, otherwise the numbers are shown.
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Fig. S3. single-cell analysis of p38/MAPK activation in non-small cell lung cancer and
renal cancer. (a) lung squamous carcinoma (LUSC). (b) lung adenocarcinoma (LUAD). (c)

renal clear-cell carcinoma (RCC). Two-sided Welch Two Sample t-test was used.
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Fig. S4. single-cell analysis of p38/MAPK activation in cutaneous skin melanoma (SKCM).

Two-sided Welch Two Sample t-test was used.
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Fig. S5. p38shRNA (MAPK14) knockdown mediates T cell attraction in cellular
microenvironments. (a) Western blot analysis for p38 using lysates from empty vector
transfected control cells and p38 shRNA knockdown cells. The numbers above bands represent
the change in protein expression levels of p38 relative to EV control. (b) Bar plot showing number
of migrated T cells in T cell migration assay. Conditioned media from the EV control and
corresponding p38 shRNA knockdown cells were used as chemoattractant at the lower chamber
of 96-well transwell plate. Serum free media was used as negative control. Each experiment was
repeated at least twice in triplicate, and representative data from one such experiment is shown
as mean = SD (n=3 per group). Denotation: * P < 0.05 compared with corresponding EV control,

and p38 shRNA knockdown cells by two-sided unpaired Student t-test.
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Fig. S6. Pexmetinib (ARRY-614, p38 inhibitor) plus ICl combination therapy shows higher

efficacy than monotherapy alone in nonclinical murine models. (a) Experimental schema for

murine pexmetinib plus anti-PD1/CTLA-4 experiments. (b-e) BALB/c females were injected with
5.0 x 10° EMT6 cells (n=12 mice/group, 1 experiment) (b-c) or 1.0 x 10° CT26 cells (n=12

mice/group, 1 experiment) (d-e) subcutaneously. Tumors were treated 4 days post tumor cell

inoculation with anti-PD1((200 pg)/vehicle on Day 1 and 15 post initial tumor growth phase, or

anti-CTLA4 (200 ug)/vehicle on Day 1, 5, 8, and 11 post initial tumor growth phase. Mice receiving

pexmetinib were treated orally, once daily for 21 days post initial tumor growth phase. Tumor

inhibition growth curves of mice injected with EMT6 (b) or CT26 (d), Kaplan Meier survival plots
of mice injected with EMT6 (c) or CT26 (e). Statistical analysis was determined by 2-way ANOVA

adjusted for multiple comparisons (tumor growth) and log rank (Mantel-Cox) test (survival).
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Fig. S7. Pharmacokinetic profiles on day 1 of pexmetinib (grey circles, geometric mean
solid circles and line) and metabolite AR00451575 (open triangles, geometric mean solid
triangles and dashed line) subset by dose level. (a-c) Dose =400, 600, and 800. n=15 subjects
shown.
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Fig. S8. Pharmacokinetics of pexmetinib as a function of dose. (a-¢c) AUCq.inf, Cmax, and Tmax.
P=0.189. (d-f) dose-normalized Cnax (d, P=0.697), increasing half-life (e, P=0.043), but unaffected
clearance (f, P=0.697) suggesting saturable absorption rate but not total absorption. n=15

subjects shown.
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Fig. S9. Metabolic ratio (AR00451575 / pexmetinib) and pharmacokinetics of pexmetinib as
a function of dose. (a) AUC (P=0.238 by Jonckheere-Terpstra). (b) Cmax (P=0.043). (c-d)
Exposure-toxicity relationship with higher exposure trending with DLT (¢, Cmax P=0.355; d, AUC
P=0.058). n=15 subjects shown.
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Fig. $10. Kaplan-Meier estimate of progression-free survival (PFS) and overall survival

(OS) of subjects treated with pexmetinib plus nivolumab. n=14 radiographically evaluable

subjects shown.



