
 

Extended Data  

for  

Tumor cell p38 inhibition to overcome immunotherapy resistance 

 

Jason J. Luke1,2,#, Rebekah E. Dadey1,2, Ryan Augustin1,2, Sarah Newman2, Krishna B. Singh1,2, 

Rose Doerfler1,2, Sarah Behr1, Patrice Lee3, Brian Isett1,4, Christopher Deitrick1,4, Aofei Li5, 

Marion Joy6, Carly Reeder1,7,8, Katelyn Smith1, Julie Urban1, Lorenzo Sellitto1, Mark Jelinek9,10,  

Susan M. Christner11, Jan H. Beumer11,12,13, Liza C. Villaruz1,2, Aditi Kulkarni1,7,8, Diwakar 

Davar1,2, Andrew S. Poklepovic14,15, Yana Najjar1,2, Dan P. Zandberg1, Adam C. Soloff16, Tullia 

C. Bruno1,7, Lazar Vujanović1,8, Heath D. Skinner1,17, Robert L. Ferris1,7,8, Riyue Bao1,2,#  

 

1 Hillman Cancer Center, UPMC, Pittsburgh, PA, USA  

2 Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA 

3 Pfizer, Inc. Boulder, CO, USA 

4 Cancer Bioinformatics Core, UPMC, Pittsburgh, PA, USA  

5 Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA 

6 Translational Pathology Imaging Laboratory, UPMC, Pittsburgh, PA, USA  

7 Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA 

8 Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA 

9 Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA 

10 Biostatistics Core, UPMC, Pittsburgh, PA, USA 

11 Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA 

12 Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of 

Pittsburgh, Pittsburgh, PA, USA 

13 Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh, PA, USA  

14 Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, 

Virginia, USA. 

15 Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, 

USA. 

16 Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA 

17 Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA 

# To whom correspondence should be addressed: J.J.L. (lukejj@upmc.edu) and R.B. 

(baor@upmc.edu). 



 

Supplementary Figures  
 

 

Fig. S1. p38 pathway expression scores in malignant epithelial cells and fibroblasts from 

HPV-negative HNSCC scRNAseq cohort A (Puram, et al.). P-value was computed by linear 

mixed-effects models (LMM) with a nested design (patient id as the blocking factor), followed by 

likelihood ratio test (LRT). 

 

  



 

 

Fig. S2. non-T cell-inflamed phenotype-associated pathways are activated in malignant 

cells from HPV-negative HNSCC of low T cell infiltration from scRNAseq cohort B (Kurten 

et al.). (a) Distribution of tumor, stroma, and immune cell subsets on UMAP (n=41435 cells from 

nine tumors). (b) Expression of 59 pathways from Fig. 1d across cell populations. Pathway 

scores were computed as the average expression of all genes involved in a pathway. (c) 55 out 

of 59 pathways showed higher expression in 689 malignant epithelial cells of low-T cell-

infiltrated relative to 2834 malignant epithelial cells of high-T cell-infiltrated tumors. Bold font 

represents pathways at FDR 0.10. (d) Expression of CTNNB1 pathway and p38 pathway from 

low- vs high-T cell-infiltrated tumors. Four out of nine tumors with at least 40 malignant epithelial 

cells per sample were included in analysis. (e) 15 pathways that passed prioritization score 

(combined relative rank) < 0.6 and maximum relative rank difference < 0.3. Six out of 15 

pathways overlap with the top pathways from the Puram cohort in Fig. 2e. For each of the 59 

pathways from Fig. 1d, its combined relative rank was computed as the geometric mean of 

three values: the relative rank in TCGA pathway activation (z-score higher to lower), the relative 

rank in ICGC anti-correlation with T cell-inflamed expression (coefficient highly to lowly 

negative), and the relative rank in scRNAseq pathway expression comparing malignant 

epithelial cells from low-T cell-infiltrated versus high-T cell-infiltrated tumors (p-values smaller to 



 

larger). (f) Expression of the 15 pathways from e Linear mixed-effects model via maximum 

likelihood was used in c, d and f, with tumor group as the fixed effect and patient id as the 

random effect. Likelihood ratio test (LRT) was used with the fitted model for computing p-values, 

followed by BH-FDR correction for multiple comparisons. Denotation: ** FDR-adjusted P<0.01, * 

FDR-adjusted P<0.05, otherwise the numbers are shown. 

 

  



 

Fig. S3. single-cell analysis of p38/MAPK activation in non-small cell lung cancer and 

renal cancer. (a) lung squamous carcinoma (LUSC). (b) lung adenocarcinoma (LUAD). (c) 

renal clear-cell carcinoma (RCC). Two-sided Welch Two Sample t-test was used.  

 

  



 

Fig. S4. single-cell analysis of p38/MAPK activation in cutaneous skin melanoma (SKCM). 

Two-sided Welch Two Sample t-test was used.  

 

  



 

Fig. S5. p38shRNA (MAPK14) knockdown mediates T cell attraction in cellular 

microenvironments. (a) Western blot analysis for p38 using lysates from empty vector 

transfected control cells and p38 shRNA knockdown cells. The numbers above bands represent 

the change in protein expression levels of p38 relative to EV control. (b) Bar plot showing number 

of migrated T cells in T cell migration assay. Conditioned media from the EV control and 

corresponding p38 shRNA knockdown cells were used as chemoattractant at the lower chamber 

of 96-well transwell plate. Serum free media was used as negative control. Each experiment was 

repeated at least twice in triplicate, and representative data from one such experiment is shown 

as mean ± SD (n=3 per group). Denotation: * P < 0.05 compared with corresponding EV control, 

and p38 shRNA knockdown cells by two-sided unpaired Student t-test.  

 

  



 

 

Fig. S6. Pexmetinib (ARRY-614, p38 inhibitor) plus ICI combination therapy shows higher 

efficacy than monotherapy alone in nonclinical murine models. (a) Experimental schema for 

murine pexmetinib plus anti-PD1/CTLA-4 experiments. (b-e) BALB/c females were injected with 

5.0 x 105 EMT6 cells (n=12 mice/group, 1 experiment) (b-c) or 1.0 x 105 CT26 cells (n=12 

mice/group, 1 experiment) (d-e) subcutaneously. Tumors were treated 4 days post tumor cell 

inoculation with anti-PD1((200 g)/vehicle on Day 1 and 15 post initial tumor growth phase, or 

anti-CTLA4 (200 g)/vehicle on Day 1, 5, 8, and 11 post initial tumor growth phase. Mice receiving 

pexmetinib were treated orally, once daily for 21 days post initial tumor growth phase. Tumor 

inhibition growth curves of mice injected with EMT6 (b) or CT26 (d), Kaplan Meier survival plots 

of mice injected with EMT6 (c) or CT26 (e). Statistical analysis was determined by 2-way ANOVA 

adjusted for multiple comparisons (tumor growth) and log rank (Mantel-Cox) test (survival). 

 

  



 

 

Fig. S7. Pharmacokinetic profiles on day 1 of pexmetinib (grey circles, geometric mean 

solid circles and line) and metabolite AR00451575 (open triangles, geometric mean solid 

triangles and dashed line) subset by dose level. (a-c) Dose = 400, 600, and 800. n=15 subjects 

shown. 

 

 

 

  



 

  

Fig. S8. Pharmacokinetics of pexmetinib as a function of dose. (a-c) AUC0-inf, Cmax, and Tmax. 

P=0.189. (d-f) dose-normalized Cmax (d, P=0.697), increasing half-life (e, P=0.043), but unaffected 

clearance (f, P=0.697) suggesting saturable absorption rate but not total absorption. n=15 

subjects shown. 

 

 
 
 

 

  



 

 
Fig. S9. Metabolic ratio (AR00451575 / pexmetinib) and pharmacokinetics of pexmetinib as 

a function of dose. (a) AUC (P=0.238 by Jonckheere-Terpstra). (b) Cmax (P=0.043). (c-d) 

Exposure-toxicity relationship with higher exposure trending with DLT (c, Cmax P=0.355; d, AUC 

P=0.058). n=15 subjects shown. 

 
 
 
 



 

Fig. S10. Kaplan-Meier estimate of progression-free survival (PFS) and overall survival 

(OS) of subjects treated with pexmetinib plus nivolumab. n=14 radiographically evaluable 

subjects shown. 

 


