
Improving the Performance of the Chaotic
Nonlinear System of the Fractional-Order Brushless
Direct Current Electric Motor by Using Fractional-
Order Sliding Mode Control
Amin Kaveh 

Islamic Azad University
Mohammad Vahedi  (  Mo.Vahedi@iau.ac.ir )

Islamic Azad University
Majid Gandomkar 

Islamic Azad University

Research Article

Keywords: Brushless direct current electric motor, order-de�cit, parameter changes, chaos, sliding-order-
de�cit mode control, Lyapunov stability

Posted Date: July 18th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3166378/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-3166378/v1
mailto:Mo.Vahedi@iau.ac.ir
https://doi.org/10.21203/rs.3.rs-3166378/v1
https://creativecommons.org/licenses/by/4.0/


 1 

Improving the Performance of the Chaotic Nonlinear System of the Fractional-Order 

Brushless Direct Current Electric Motor by Using Fractional-Order Sliding Mode Control 

 

Amin Kaveh1, Mohammad Vahedi 2,* and Majid Gandomkar 
1
 

1 Department of Electrical Engineering, College of Technical, Islamic Azad University, Iran 
2 Department of Mechanical Engineering, College of Technical, Islamic Azad University, Iran (corresponding author) 

 

Abstract 

Chaos is a dynamic phenomenon that occurs over time in discrete and continuous nonlinear systems for some 

parameters, and chaotic systems are very sensitive to initial conditions. Controlling a chaotic system means 

eliminating its chaotic behavior and bringing the system to its origin equilibrium point or another desirable point. 

Moreover, as most natural systems have fractional dynamics, there is a clear need to study fractional systems. 

Nowadays, Brushless Direct Current (BLDC) electric motors are widely used as actuator components in many 

industries. Controlling these nonlinear and multivariable systems is of great importance. Additionally, these 

systems are often accompanied by parameter uncertainties and external disturbances, which may lead to 

undesirable and even unstable system behavior. In this research, a three-state-variable chaotic model is presented, 

and with the help of fractional-order sliding mode control strategy, the performance of the system is improved 

and controlled compared to conventional sliding mode control. It can be seen that the resistance of the fractional-

order BLDC system with fractional-order sliding mode control is significantly higher than that of the conventional 

BLDC system with conventional sliding mode control against parameter uncertainties and external disturbances. 

Finally, the controller's performance is evaluated using MATLAB software. 

 

Keywords: Brushless direct current electric motor, order-deficit, parameter changes, chaos, sliding-order-deficit 

mode control, Lyapunov stability. 

 

1. Introduction 

Nowadays, vehicles are increasingly being equipped with PM synchronous motors. One of the types of 

motors that is of interest is the brushless DC motor, which is considered a permanent option in large industries 

such as automotive due to its sensorless operation nature. These motors provide maximum torque at standstill, 

and this torque decreases linearly with increasing speed. However, due to the square wave shape of the current 

and the commutation action between the phases, they have a certain amount of ripple torque, which can affect 

their performance. This article examines various methods that have been developed to reduce torque ripple in 

these motors [1-4]. 

By examining the performance of various motors used today, it can be concluded that conventional DC 

motors have high efficiency despite their need for a commutator and brush, which requires special care. To address 

this issue, a special type of motor called the brushless DC (BLDC) motor has been proposed. The BLDC motor 

is a permanent magnet motor with a rotor made of permanent magnet and a stator winding similar to normal 

motors. Unlike conventional DC motors, a brush is not needed for commutation in BLDC motors, which is instead 

done by electronic devices. These motors can have one or two poles, and the inverter plays the role of commutator 

during operation [1-4].  

The BLDC motor has several technical advantages over conventional and induction DC motors. These 

advantages include simplicity of the control system and minimal need for sensors, long life and low maintenance, 

appropriate torque-speed characteristic, good dynamic response, high efficiency, noiseless operation, high speed 

range, and high ratio of produced torque to engine volume. Overall, these benefits make the BLDC motor a 

popular choice in many industries, particularly in applications where high efficiency, low noise, and precise 

control are required. Based on the features mentioned above, it is reasonable to use the BLDC motor in 

applications that require high power and torque and have space limitations. The motor's compact size, high 

efficiency, and appropriate torque-speed characteristic make it a suitable option for such applications. In a novel 

sensorless control scheme for the interior permanent magnet synchronous motor (IPMSM) drive system to achieve 

high-performance speed control. The proposed approach utilizes a terminal sliding mode observer to replace the 

real mechanical sensor and obtain the rotor position and speed information, ensuring observer stability[5].  
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Fractional calculus is being increasingly applied in various fields. This mathematical concept allows for 

a more accurate description and modeling of real systems, which are typically fractional in nature [6]. One of the 

most important areas of application for fractional calculus is in chaos theory. Chaotic systems are highly sensitive 

to initial conditions, and chaotic behavior occurs when phase plane trajectories of the system are globally bounded 

but locally unstable. It is currently known that chaos does not occur in non-linear continuous-time systems with 

an order less than three. The model of a chaotic system is typically represented by three separate differential 

equations that include order-fractional derivatives [7]. Shaoling Li  Et al present a solution to the problem of 

increased bridge current distortion and power loss in modular multilevel converters (MMC) due to circulating 

current. The proposed solution is a circulating current controller based on fractional order differential sign 

function sliding modecontrol (FO-SMC). The controller incorporates fractional order calculus into the sign 

function to improve the response speed of the system while reducing chattering.[8] 

The existence of chaos in motor systems was first discovered by Kuroe in 1989 [9,10]. A mathematical 

model for a permanent magnet synchronous motor was developed for the first time to analyze chaos and 

bifurcation [11]. In recent years, the use of BLDC motors has expanded greatly in the automotive, aerospace, 

household appliances, robotics, food and chemical industries, electric vehicles, medical devices, and computer 

peripherals [12,13]. Due to their high efficiency, long lifespan, low noise, and good speed-torque characteristics, 

BLDC motors have received significant attention [14]. The chaotic behavior of the BLDC motor system was 

found by Hemati in 1994 [15]. In most engineering applications, the occurrence of chaos in motors is highly 

undesirable for their performance [9]. Therefore, studies on chaos control in BLDC systems have been conducted 

[16,17].  Synchronization of chaotic BLDC systems has also been studied [18]. The presence of chaos in BLDC 

motors leads to system oscillations, acoustic noise, mechanical vibration, and increased electrical energy 

consumption, which reduces the motor's lifespan. Therefore, studying chaos in the system can help improve the 

motor's design and prevent its occurrence [19-21].  

Since the 1970s, the dynamic characteristics of various electric motors have been extensively studied for 

startup issues, speed control, and oscillations. Studying the dynamic characteristics of motors presents several 

challenges, such as their low-speed characteristics, which are notorious for low-frequency oscillations in 

controlled speed motors. These problems are closely related to studies on chaos in nonlinear systems. It is evident 

that the existing mathematical models for multi-variable BLDC motors are highly nonlinear and strongly coupled, 

which can exhibit complex behaviors. The BLDC electric motor is a highly efficient and powerful type of motor. 

With the development of permanent magnetic materials, its unique advantage has become increasingly apparent, 

and it is widely used in various motor-driven systems, servo systems, and household appliances [9]. 

The objective of this article is to design a fractional order sliding mode controller for controlling a chaotic 

behavior in a brushless direct current (BLDC) motor system. For this purpose, a desired control input sliding 

surface is designed by selecting an appropriate sliding level, which results in controlling the chaotic behavior and 

making the system's behavior smoother, reducing its vibration modes. Additionally, this design leads to better 

adaptation of the control system and increases its resistance to external disturbances and uncertainties. 

 

2. Fractional order chaotic BLDC electric motor  

In this section, the dynamic characteristics of a brushless direct current electric motor (BLDC) are studied. 

First, the mathematical model of the system is extracted, which is suitable for investigating bifurcation and chaos 

analysis. Then, the equilibrium points of the system and their types will be obtained. 

 

2.1.  Brushless DC electric motor system 

As depicted in Figure 1, a brushless DC electric motor (BLDC) is powered by a DC electric power 

source[22]. Unlike traditional DC motors, a BLDC motor uses a closed-loop electronic controller to convert the 

incoming DC current into motor coils that generate magnetic fields. This enables the motor to rotate automatically 

in space without the need for brushes. The electronic controller also ensures precise control over rotation speed 

and direction. The phase and amplitude controller adjusts the DC current pulses to control the motor's speed and 

torque. Many conventional electric motors use a mechanical commutator (brush), but brushless motors offer many 

advantages over brushed DC motors. These advantages include a high torque-to-weight ratio, increased efficiency, 

more torque output per watt, increased reliability, reduced noise, longer life by eliminating erosion of the brush 

and commutator, and the removal of ionizing sparks from the commutator, resulting in an overall reduction of 
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electromagnetic interference. In converting electricity to mechanical power, brushless motors are more efficient 

than brushed motors, mainly due to the absence of brushes, which reduces the loss of mechanical energy due to 

friction. This leads to higher efficiency in the no-load and low-load regions of the motor performance curve [23, 

24]. 

 

  
Fig 1. Schematic of a BLDC motor [21] 

 

2.2. Problem statement  

The dynamic equations of a BLDC electric motor are given in the following [23, 24]: 

{   
   𝑑𝑖𝑑  𝑑𝑡 =  1𝐿𝑑 [𝑣𝑑 − 𝑅 𝑖𝑑 + 𝜔𝐿𝑞𝑖𝑞]𝑑𝑖𝑞  𝑑𝑡 =  1𝐿𝑑 [𝑣𝑞 − 𝑅 𝑖𝑞 − 𝜔𝐿𝑑𝑖𝑑 − 𝜔 𝜓𝑟]𝑑𝜔 𝑑𝑡 =  1𝐽 [𝑛𝑝𝜓𝑟𝑖𝑞 + 𝑛𝑝(𝐿𝑑 − 𝐿𝑞)𝑖𝑑  𝑖𝑞 − 𝑇𝐿 − 𝛽𝜔]

 

(1)  

Where (𝑣𝑑 , 𝑖𝑑) and (𝑣𝑞 , 𝑖𝑞)  are the d-q voltage and current of the electric motor, 𝐿𝑞 and 𝐿𝑑 are the stator 

inductances, and 𝑅 is the stator resistance. 𝜓𝑟 , 𝛽, and 𝐽 are the fixed magnetic flux, friction coefficient, and polar 

moment of inertia. The number of pair of poles is represented by 𝑛𝑝. 𝑇𝐿is the external load torque, and 𝜔 is the 

rotor angular velocity. Based on an agreement, system (1) is simplified using the following transformations [23]. 

Assuming 𝑇 = [𝑏𝑘 0 00 𝑘 00 0 𝑅 𝐿𝑞⁄ ], where  𝑏 = 𝐿𝑞 𝐿𝑑⁄   , 𝑘 = 𝛽𝑅𝐿𝑞𝑛𝑞𝜓𝑟. And 𝛾 = 𝜓𝑟𝑘𝐿𝑞,  𝜎 = 𝛽 𝐿𝑞𝑅 𝐽 , 𝑢𝑑 = 𝑣𝑑𝑅 𝑘 , 𝑢𝑞 = 𝑣𝑞𝑅 𝑘, 

𝑣 = 𝑛𝑝𝑏 𝐿𝑞2𝑘2((𝐿𝑑−𝐿𝑞))𝐽 𝑅2 , 𝑇𝐿̃ = 𝐿𝑞2  𝑇𝐿𝐽 𝑅2 , and 𝑡′ = (𝑅 𝑡)/𝐿𝑞 and  state variables are obtained as (  .  ̃) = 𝑇−1(. ). Using 

these transformations, system (1) is obtained as the following set of dimensionless equations [23]: 

 

{  
  𝑑𝑖̃𝑑 𝑑𝑡′ = 𝑢𝑑 − 𝜇 𝑖̃𝑑 + 𝜔̃𝑖𝑞̃𝑑𝑖̃𝑞 𝑑𝑡′ = 𝑢𝑞 − 𝑖𝑞̃ − 𝜔̃𝑖𝑑̃ + 𝛾𝜔̃𝑑𝜔̃ 𝑑𝑡 =  𝜎[𝑖𝑞̃(𝑖̃𝑞 − 𝜔̃) + 𝑖𝑑̃ +  𝑣 𝑖𝑑̃𝑖𝑞̃ −  𝑇 ̃𝐿]

 

(2)  

 

Such that 𝜎, 𝛾, 𝜇  and  𝑣 are the structural parameters of the dynamic system of the motor after transformations. 

And are the d-q reference voltage and current of the electric motor,  𝑇 ̃𝐿is the load torque after transformation, and 𝜔̃ is the rotor angular velocity after transformation. Assuming 𝑖 ̃𝑞 = 𝑥1,  𝑖 ̃𝑑 = 𝑥2, 𝜔̃ =  𝑥3 similar to the Lorentz 

system, the dynamic equations of the BLDC system are converted to the state space form:  { 𝑥̇1 = −𝜇𝑥1 + 𝑥2𝑥3 + 𝑢𝑑𝑥̇2 = −𝑥2 − 𝑥1𝑥3 + 𝛾𝑥3 + 𝑢𝑞𝑥̇3 = − 𝜎(𝑥3 − 𝑥2) −   𝑇 ̃𝐿 + 𝑣 𝑥1𝑥2 

(3)  

The fractional order form of such a system is as follows [25, 26]:  

{ 𝐷𝑡𝑞1𝑥1 = −𝜇𝑥1 + 𝑥2𝑥3 + 𝑢𝑑0𝐷𝑡𝑞2𝑥2 = −𝑥2 − 𝑥1𝑥3 + 𝜇𝑥3 + 𝑢𝑞0𝐷𝑡𝑞3𝑥3 = − 𝜎(𝑥3 − 𝑥2) −   𝑇 ̃𝐿 + 𝑣 𝑥1𝑥20  

(4)  
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It should be noted that considering fractional-order dynamics in many systems can improve stability or increase 

accuracy in system behavior. The numerical solution of the fractional-order BLDC system is given by the 

following equations [6,25]: 

{  
   
  
   
  𝑥1(𝑡𝑘) = −𝜇𝑥1(𝑡𝑘−1) + 𝑥2(𝑡𝑘−1)𝑥3(𝑡𝑘−1) +𝑢𝑑(𝑡𝑘−1)ℎ𝑞1 −∑𝑐𝑗(𝑞1)𝑥1(𝑡𝑘−𝑗)𝑘

𝑗=𝑣𝑥2(𝑡𝑘) =  −𝑥2(𝑡𝑘−1) − 𝑥1(𝑡𝑘)𝑥3(𝑡𝑘−1) +𝛾 𝑥3(𝑡𝑘−1) + 𝑢𝑞(𝑡𝑘−1)ℎ𝑞2 −∑𝑐𝑗(𝑞2)𝑥2(𝑡𝑘−𝑗)𝑘
𝑗=𝑣𝑥3(𝑡𝑘) = 𝜎 𝑥2(𝑡𝑘) − 𝑥3(𝑡𝑘−1) −  𝑇 ̃𝐿(𝑡𝑘−1) +𝑣 𝑥1(𝑡𝑘) 𝑥2(𝑡𝑘)ℎ𝑞3 −∑𝑐𝑗(𝑞3)𝑥3(𝑡𝑘−𝑗)𝑘

𝑗=𝑣

 (5)  

Where 𝑇𝑠𝑖𝑚 is the simulation time, 𝑁 = [𝑇𝑠𝑖𝑚 ℎ⁄ ]      𝑘 = 1, 2, … , 𝑁 and (𝑥1(0), 𝑥2(0), 𝑥3(0), ) are the initial 

conditions. Binomial coefficients, 𝑐𝑗(𝑞), are obtained considering the recursive equation.  

 

2.3.  Equilibrium points of BLDC system  

Since we are interested in the chaotic dynamics of the system, we need to focus on the equilibrium points 

and parameter ranges where we observe chaos. 

 In order to obtain the fixed points of  the system (3), we  examine it for  𝜇 = 1  and 𝑣 = 0 under no-load conditions ( 𝑢𝑑 = 𝑢𝑞 =  𝑇 ̃𝐿 = 0 ) [3, 9]: { 𝑥̇1 = −𝑥1 + 𝑥2𝑥3𝑥̇2 = −𝑥2 − 𝑥1𝑥3 + 𝛾𝑥3𝑥̇3 = − 𝜎(𝑥3 − 𝑥2)  

(6)  

Therefore, we have: 𝑥̇1 = 0, { 𝑥1 = 0𝑥1 = 𝑥2𝑥3 
(7)  

𝑥̇2 = 0, { 𝑥2 = 0𝑥2 = 𝑥3(𝛾 − 𝑥1) (8)  

𝑥̇3 = 0, { 𝑥3 = 0𝑥2 = 𝑥3 
(9)  

By solving equations (7) to (9), three fixed points are obtained. We derive these equilibrium points and discuss 

their local behavior.  

 

2.4.  Bifurcation and chaos in BLDC system  

Hopf bifurcation occurs when the  corresponding Jacobian matrix has a pair of pure imaginary poles, and 

other eigenvalues of the real part are non-zero. Here, for the BLDC system, the Hopf bifurcation and its chaotic 

behavior under no-load condition ( 𝑢𝑑 = 𝑢𝑞 =  𝑇 ̃𝐿 = 0 ) are investigated. By examining Eq. (7) to Eq. (9), it is 

clear that 𝐸1 = (0, 0, 0) is the first equilibrium point. And with 𝛾 > 1, two other nontrivial equilibria are 𝐸2 =(𝛾 − 1,√𝛾 − 1, √𝛾 − 1) and 𝐸3 = (𝛾 − 1,−√𝛾 − 1,−√𝛾 − 1). 
A simple analysis shows that if 0 < 𝛾 < 1, the original equilibrium point is stable, and it loses its stability for 𝛾 = 1and creates two unreal equilibrium points that are initially stable. By linearizing the system, we obtain the 

Jacobian matrix to discuss the local behavior of its equilibrium points. The Jacobian matrix of the system is as 

follows [23]: 𝐽 = [ −1 𝑥3 𝑥2−𝑥3 −1 −𝑥1 + 𝛾0 𝜎 −𝜎 ] (10)  

which has eigenvalues obtained by the roots of the following equation:  𝐷(𝜆) = 𝜆3 + (2 + 𝜎)𝜆2 + (𝜎 + 𝛾)𝜆 + 2𝜎(𝛾 − 1) = 0 (11)  
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When checked at non-origin equilibrium points (nontrivial equilibria). Note that since the two nontrivial equilibria 

are symmetric, their stability must be the same. For the bifurcation of two nontrivial equilibria, that is, the 

parameter values for which 𝜆 = 0  or  𝜆 = 𝑗𝜔, is the solution of Eq. (11). With 𝜆 = 0, we have 𝛾 = 1, which 

results in  bifurcation that was discussed. With 𝜆 = 𝑗𝜔 and setting the real and imaginary parts equal to each other, 

we have: { −𝜔3 + (𝜎 + 𝛾)𝜔 = 0−(2 + 𝜎)𝜔2 + 2𝜎(𝛾 − 1) = 0 
(12)  

Where 𝜔2 = 2𝜎(𝛾−1)2+𝜎 =  𝜎 + 𝛾 By sorting, the value of 𝛾 at which Hopf bifurcation occurs is obtained.  

For 𝜔2 > 0 , at this value of 𝛾, that is: 𝛾ℎ = 𝜎(𝜎 + 4)𝜎 − 2  
(13)  

Which holds always for 𝜎 > 2. Therefore, the eigenvalues would be:  𝜔2 = 2𝜎(𝜎 + 1)𝜎 − 2 > 0 
(14)  

Therefore, the eigenvalues will be as follows: 

𝜆1 = −(𝜎 + 2),    𝜆2,3 = ±𝑗√2𝜎(𝜎 + 1)(𝜎 − 2)  (15)  

Therefore, 𝛾 =  𝛾ℎ  corresponds to an Hopf bifurcation point of the system, and for values close to 𝛾 ≠  𝛾ℎ, the 

equilibria are surrounded by the limit cycle, and for 𝛾 >  𝛾ℎ, all three equilibria would be unstable.  System (6) 

does not change under (𝑥, 𝑦, 𝑧) ⇔ (𝑥,−𝑦,−𝑧); thus, it can be said that it is symmetric regarding y and z axes and 

if ∇𝑉 = 𝜕𝜕𝑥 (𝑑𝑥𝑑𝑡) + 𝜕𝜕𝑦 (𝑑𝑥𝑑𝑡) + 𝜕𝜕𝑧 (𝑑𝑥𝑑𝑡) = −(𝜎 + 2) < 0, this system is convergent. 

As mentioned before, if 𝛾 ≤ 1, 𝐸1 = (0,0,0) is the only equilibrium point. When the system parameters change, 

we might expect BLDC to demonstrate stable, limit cycle, and chaotic behaviors.  

 

3. The design of a control input for the fractional-order BLDC system. 

3.1. The fractional-order BLDC system without control input 

Firstly, we analyze the fractional-order BLDC system under the no-load condition ( 𝑢𝑑 = 𝑢𝑞 =  𝑇 ̃𝐿 =0 ) and 𝑣 = 0 in the form of equations (4). We represent the parameter vector as  (𝜇, 𝛾, 𝜎) = (1, 20, 5.46) and 

consider the system in homogeneous orders as 𝑞1 = 𝑞2 = 𝑞3 = 0.995 . To perform differentiation at the fractional 

order of  0.995, we can either first take the integral of the desired variable to the order of 0.005 and then take the 

first derivative of the result (Riemann-Liouville definition), or first take the first derivative of the function and 

then perform fractional-order integration of 0.005 (Caputo definition). If we do not apply any control input to the 

system 𝑢(𝑡) = 0, it will exhibit chaotic behavior.  For 𝑇𝑠𝑖𝑚 = 50 𝑠𝑒𝑐, a constant time step of ℎ = 0.005 , and 

initial conditions (𝑥1(0), 𝑥2(0), 𝑥3(0)) = (0, 0,0) the system will behave chaotically. With the above conditions, 

the state variables of the fractional-order BLDC system without a control signal are shown in Fig 2. 

 

   
Fig 2.  State variables 𝑥1(𝑡), 𝑥2(𝑡) and 𝑥3(𝑡) of the fractional-order BLDC system without a control 

signal. 

 

Furthermore, in Figs 3 and 4,  the chaotic state trajectories of the fractional-order BLDC system without a control 

signal are also shown. 
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Fig 3.  The chaotic state trajectories of the fractional-order BLDC system without a control signal are 

represented by 𝑖𝑑, 𝑖𝑞  and  𝜔 

 

   
Fig 4.    The chaotic state trajectories of the fractional-order BLDC system without a control signal are 

represented by 𝑖𝑞 − 𝑖𝑑, 𝑂𝑚𝑒𝑔𝑎 − 𝑖𝑑 and 𝑂𝑚𝑒𝑔𝑎 − 𝑖𝑞  

 

3.2. The fractional-order BLDC system with control input 

3.2.1 Fractional-order sliding mode control 

We know that the fractional-order equation is represented by the following relationship: 

 

{ 𝐷𝑡𝑞1𝑥1 = −𝑥1 + 𝑥2𝑥30𝐷𝑡𝑞2𝑥2 = −𝑥2 − 𝑥1𝑥3 + 𝜇𝑥30 𝐷𝑡𝑞3𝑥3 = − 𝜎(𝑥3 − 𝑥2)0  

(16)  

According to the no-load conditions and the characteristics of section (3-1), using the trial and error method or 

drawing the bifurcation diagram, it can be seen that the system is unstable for 0 < 𝑞1 = 𝑞2 = 𝑞3 = 𝑞 < 0.6 ∨𝑞 > 1.1 conditions and when 0.6 < 𝑞 <  0.98  converges to one of the two equilibrium points of 𝐸2 ∨ 𝐸3 , and 

for  0.99 < 𝑞 <  1.1, chaotic behavior is generated. Therefore, to control this section, we consider the variable 𝑞 = 0.995. 

Considering that the controlled system is an order-fractional system, the desired sliding surface must also have an 

order-fractional form. We define the slip surface in such a way that 𝑆 → 0 equals to   𝑥2 → 0, therefore according 

to the order-fraction system of equations (16), we define the slip surface in the form of equation (17) [26]: 𝑆 = 𝐷𝑡𝑞2−1𝑥2(𝑡) (17)  

According to equation (17), if  𝑥2 → 0 equals 𝑥1 → 0 and 𝑥3 → 0, then the problem becomes a regulation problem. 

 

3.2.2. Control input design 

Next, the control input u is defined as follows [27-29]: 𝑢 =  𝑢𝑒𝑞 + 𝑢𝑁 (18)  

As 𝑢𝑒𝑞  is the equivalent control component and keeps the states on the sliding surface, and 𝑢𝑁 is the switching 

component and directs the states to the sliding surface, 𝑢𝑁 is actually responsible for stabilizing the system and 

uses the Lyapunov stability criterion. 

 𝑆̇(𝑥) =  [𝜕𝑆𝜕𝑋] 𝑋̇(𝑡) = [𝜕𝑆𝜕𝑋 (𝑓(𝑡, 𝑥) + 𝐵(𝑡, 𝑥). (𝑢𝑒𝑞 + 𝑢𝑁)] = 

(19)  
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[𝜕𝑆𝜕𝑋 (𝑓(𝑡, 𝑥) + 𝐵(𝑡, 𝑥). (𝑢𝑒𝑞 + 𝑢𝑁)] = [𝜕𝑆𝜕𝑋 (𝑓(𝑡, 𝑥) + 𝐵(𝑡, 𝑥). 𝑢𝑒𝑞)] + 𝜕𝑆𝜕𝑋 𝐵(𝑡, 𝑥)𝑢𝑁 = 𝜕𝑆𝜕𝑋 𝐵(𝑡, 𝑥)𝑢𝑁 

 

If we assume that  
𝜕𝑆𝜕𝑋𝐵(𝑡, 𝑥) = 𝐼 , where 𝐼 is the identity matrix, then we have 𝑆̇(𝑥) =  𝑢𝑁, which satisfies this 

condition sufficiently.  

The condition for the existence of sliding mode ( condition  𝑆𝑖𝑆𝑖̇ < 0 ) is given by 𝑆 ≠ 0 . In the following, we 

will describe two important and commonly used cases in this article for the discontinuous control section: 

a) Relay with constant gain: 𝑢𝑖𝑁 = {−𝛼𝑖𝑆𝑖𝑔𝑛(𝑆𝑖(𝑥))            𝑆𝑖(𝑥) ≠ 0  𝛼𝑖 > 0    0                      𝑆𝑖(𝑥) = 0  
 (20) 

Where the 𝑠𝑖𝑔𝑛 function is meant. If it is observed that by choosing this option for the discontinuous part of the 

control system, the above sufficient condition for sliding mode is satisfied, because: 𝑆𝑖𝑆̇𝑖 = −𝛼𝑖 𝑆𝑖(𝑥) 𝑆𝑖𝑔𝑛(𝑆𝑖(𝑥)) < 0            𝑆𝑖(𝑥) ≠ 0  (21) 

b) Linear continuous feedback: 

By choosing 𝑢𝑖𝑁(𝑥) = −𝛽𝑖  𝑆𝑖(𝑥)  where (𝛽𝑖 > 0) as the discontinuous function, the sufficient condition for 

sliding mode according to the following equation is satisfied. In more general cases, the discontinuous part of the 

control system can be considered as a combination of the first and second cases. 𝑆𝑖𝑆̇𝑖 = −𝛽𝑖  𝑆𝑖2(𝑥) < 0  (22) 

c) Combination of Relay with Constant Gain and Linear Continuous Feedback 

In general, the discontinuous control component can be considered as a combination of the first and second modes: 𝑢𝑖𝑁 = {−𝛼𝑖𝑆𝑖𝑔𝑛(𝑆𝑖(𝑥)) − 𝛽𝑖  𝑆𝑖(𝑥)       𝑆𝑖(𝑥) ≠ 0  𝛼𝑖 < 0  𝛽𝑖 > 0   0                      𝑆𝑖(𝑥) = 0  
 (23) 

  

With this choice, the sufficient condition for the discontinuous part of the control is satisfied, because: 𝑆𝑖𝑆̇𝑖 = −𝛼𝑖𝑆𝑖(𝑥)𝑆𝑖𝑔𝑛(𝑆𝑖(𝑥)) − 𝛽𝑖  𝑆𝑖2(𝑥) < 0      𝑆𝑖(𝑥) ≠ 0 

 (24) 

Now we denote the location of the control input in the fractional-order chaotic system: 

{ 𝐷𝑡𝑞1𝑥1 = −𝑥1 + 𝑥2𝑥30𝐷𝑡𝑞2𝑥2 = −𝑥2 − 𝑥1𝑥3 + 𝛾𝑥3 + 𝑢(𝑡)0 𝐷𝑡𝑞3𝑥3 = − 𝜎(𝑥3 − 𝑥2)0  

(25)  

which  𝑢(𝑡) is the same as the combined control input. 

Since the sliding surface equation is defined based on the state variables according to equation (17), the system 

converges to the desired state on the sliding surface. 

The following equations hold on the sliding surface: {𝑆 = 0  𝑆̇ = 0   (26) 

To obtain the equivalent control law, it suffices to substitute 𝑆̇ = 0: 𝑆̇ = 𝐷𝑡𝑞2𝑥2 = −𝑥2 − 𝑥1𝑥3 + 𝛾𝑥3 + 𝑢𝑒𝑞(𝑡) = 00   (27) 

The equivalent control law  𝑢𝑒𝑞(𝑡) is obtained as follows: 𝑢𝑒𝑞(𝑡) =  −(−𝑥2 − 𝑥1𝑥3 + 𝛾𝑥3)  (28) 

Now, considering the Lyapunov candidate function as a positive definite function, we have: 𝑉 =  12 𝑆2 > 0 
 (29) 

For asymptotic stability, the derivative of this function must be negative definite: 𝑉̇ =  𝑆 𝑆̇ < 0  (30) 

This is a proposed candidate for the switching control law to satisfy equation (30), and based on equation (21), it 

is given by: 𝑢𝑁 = −𝛽 𝑆𝑖𝑔𝑛(𝑆(𝑥)) − 𝛼 𝑆(𝑥)      (31) 
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where  𝛼 and 𝛽 are positive real values. By combining equations (28) and (30) and substituting into equation (18), 

the general sliding mode control law for regulating the state variables of a typical BLDC system is obtained: 𝑢(𝑡) =  −(−𝑥2 − 𝑥1𝑥3 + 𝛾𝑥3) − 𝛽 𝑆𝑖𝑔𝑛(𝑆(𝑥)) − 𝛼 𝑆(𝑥)      (32) 

 

4. MATLAB software simulation 

4.1. Fractional-order sliding mode control strategy  

4.1.1. Phase and parametric diagrams in two states of uncontrolled and controlled. 

Considering the parameter vector in the form of homogeneous orders  (𝜇, 𝛾, 𝜎) = (1, 20, 5.46), we 

model the system as 𝑞1 = 𝑞2 = 𝑞3 = 0.995 and 𝑇𝑠𝑖𝑚 = 50 𝑠𝑒𝑐. We set the time constant  ℎ = 0.005 and initial 

conditions as (𝑥1(0), 𝑥2(0), 𝑥3(0)) = (5, 5,5). With the switching gain 𝑘 = 5 and based on the sliding mode 

control input, we design relation (32) and implement it in MATLAB software. By plotting the phase trajectories 

(𝑥̇ − 𝑥) for the reference currents (𝑑 − 𝑞) of the electric motor and the rotor angular speed (𝜔) in both uncontrolled 

and controlled states, we illustrate the system behavior in a single diagram. Similarly, we plot the previously 

separately plotted parametric diagrams for both uncontrolled and controlled states together [30]. 

 

   
Fig 5.   Phase plane diagram of state   𝑥1, 𝑥2 and 𝑥3 

 

 

 

Fig 6.   Parametric diagrams between state variables 𝑥1 , 𝑥2 and 𝑥3 in uncontrolled and FO-SMC control 

 

In all Figs 5 and 6, it is evident that the state variables and their rates of change have converged well to 

the zero set point. This indicates that the fractional-order sliding mode control has effectively regulated the state 

variables of the BLDC system to the desired zero set point. 

 

4.1.2. Comparison of the designed fractional-order sliding mode control strategy with conventional sliding mode 

control: 

Similar to before, we consider the system in the form of homogeneous orders with respect to the 

parameter vector (𝜇, 𝛾, 𝜎) = (1, 20, 5.46), we model the system as 𝑞1 = 𝑞2 = 𝑞3 = 0.995 and 𝑇𝑠𝑖𝑚 = 6 𝑠𝑒𝑐. The 

time constant is ℎ = 0.005 and the initial conditions are defined as (𝑥1(0), 𝑥2(0), 𝑥3(0)) = (5, 5,5).  With the 

switching gain 𝑘 = 5, we design relation (32) based on the sliding mode control input using the signum function 

and implement it in MATLAB software to plot the state trajectories, rates of change of the states, control input, 

and sliding surface of the proposed method. We then compare the proposed method with conventional sliding 

mode control, which is applied to the system with the standard derivative, to determine the advantages of the 

proposed method. 
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Fig 7.   State trajectories regulation of 𝑖𝑑 , 𝑖𝑞 and Omega variables in fractional-order BLDC system using fractional-order 

sliding mode control signal. 

 

Based on Fig 7, it can be observed that in the conventional sliding mode control strategy, the current 𝑖𝑑 

experiences a large overshoot at the beginning of the time, which may lead the system to saturation. On the other 

hand, based on Fig 7, it can be seen that the current 𝑖𝑞  exhibits frequency oscillations over time in the conventional 

sliding mode control strategy, which lowers the system performance, while the proposed method is completely 

smooth.  

As shown In Fig 8, the superiority of the proposed method is somewhat evident. 

 

 
Fig 8.    Control effort for state regulation of chaotic fractional-order BLDC system. 

 

Based on Fig 8, it is evident that the proposed fractional-order sliding mode control strategy for fractional-order 

BLDC system requires much higher initial energy control, but this range limitation can be addressed by 

implementing a limiter if necessary. 

Figure 9 illustrates the sliding surface used for state regulation of a chaotic fractional-order BLDC 

system. In this paper, the sliding surface is used to regulate the state of the BLDC system, which is known to 

exhibit chaotic behaviorunder certain conditions. By carefully designing the sliding surface, it is possible to 

control the system's dynamics and suppress chaotic behavior, leading to more predictable and stable operation. 

This is particularly important for practical applications of BLDC systems, where precise control over motor 

behavior is essential. 
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Fig 9.    Sliding surface for state regulation of chaotic fractional-order BLDC system. 

 

 

   
Fig 10.   State rate trajectories regulation of variables 𝑖𝑑 , 𝑖𝑞 and Omega   in fractional-order BLDC system using 

fractional-order sliding mode control signal. 

 

In Fig. 10, which depicts the state rate trajectories of variable 𝑖𝑞 , high frequency oscillations can be 

observed in the rate of change of the second state variable when using the sliding mode control method. However, 

this deficiency is not observed in the proposed method. The state rate trajectories of variable 𝑖𝑞  are important 

indicators of the behavior of the BLDC system, and the presence of high frequency oscillations can negatively 

impact the system's performance and stability. The proposed method appears to provide a more effective means 

of regulating the state rates, resulting in smoother and more stable behavior of the BLDC system. 

To evaluate the performance of the controllers used in this paper, we use the following error metrics, which are 

the average sum of absolute errors: 

{  
  𝐸𝑥 = 1𝑇∫ (|𝑒𝑥1| + |𝑒𝑥2| + |𝑒𝑥3|)𝑑𝑡𝑇

𝑇0𝐸𝑥−𝑑𝑜𝑡 = 1𝑇∫ (|𝑒𝑥1−𝑑𝑜𝑡| + |𝑒𝑥2−𝑑𝑜𝑡| + |𝑒𝑥3−𝑑𝑜𝑡|)𝑑𝑡𝑇
𝑇0

 

 (33) 

Where  𝑒𝑥1 = 𝑥1𝑑 − 𝑥1, 𝑒𝑥1−𝑑𝑜𝑡 = 𝑥̇1𝑑 − 𝑥̇1, and 𝑇 = 𝑇𝑠. 𝑡𝑓. 

In Table (1), which is presented for quantitative comparison of these two control methods, it can be observed by 

calculating the average sum of absolute errors that the state regulation errors are somewhat close to each other, 

but there is a significant difference in the rate of change of state regulation errors, indicating the advantage and 

value of the proposed fractional-order sliding mode control method. 

 

Table 1. Average sum of absolute errors for state and rate of change of state regulation for 

fractional-order sliding mode control and conventional sliding mode control. 
 

Average sum of absolute 

errors. 

State regulation error (𝐸𝑥) Rate of change of state regulation 

error (𝐸𝑥−𝑑𝑜𝑡) 
SMC 3.5018 8.1595 

FO-SMC 3.3964 0.1524 

4.1.3. Comparison of fractional-order sliding mode control strategy with conventional sliding mode control after 

applying parameter uncertainties and external disturbances to the system. 

The fractional-order BLDC system with uncertainties and external disturbances is represented by equation (32): 
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{  
  𝐷𝑡𝑞1𝑥1 = −𝑥1 + 𝑥2𝑥30𝐷𝑡𝑞2𝑥2 = −𝑥2 − 𝑥1𝑥3 + 𝛾𝑥3 + 𝑢(𝑡)0                   +∆𝑔(𝑥1, 𝑥2, 𝑥3) + 𝑑(𝑡)𝐷𝑡𝑞3𝑥3 = − 𝜎(𝑥3 − 𝑥2)0

 

(34)  

Where ∆𝑔(𝑥1, 𝑥2, 𝑥3) refers to parameter uncertainties and 𝑑(𝑡) refers to external disturbances, and we aim to 

observe the behavior and resistance of the system in response to these changes by applying them as inputs to the 

system. Moreover, these sentences are considered as the following equations [31]: 

{∆𝑔(𝑥1, 𝑥2, 𝑥3) = 10.75 sin (10𝑥1(𝑡) cos (3𝑥2(𝑡)cos (𝜋𝑥3(𝑡))𝑑(𝑡) = 5.25 cos(2𝑥2(𝑡)) + 8.5 sin (3𝑡)  
(35)  

Now, similar to before, we consider the parameter vector as (𝜇, 𝛾, 𝜎) = (1, 20, 5.46), the homogeneous orders of 

the system as 𝑞1 = 𝑞2 = 𝑞3 = 0.995, and 𝑇𝑠𝑖𝑚 = 6 𝑠𝑒𝑐. The time constant as ℎ = 0.005, and the initial 

conditions as (𝑥1(0), 𝑥2(0), 𝑥3(0)) = (5, 5,5). A switching gain of 𝑘 = 5 is used, and based on the sliding mode 

control input, relation (32) is designed using the sign function. Its implementation in MATLAB software is used 

to plot the state paths, the state change rate, the control input, and the sliding surface of the proposed method. A 

comparison is made with normal sliding mode control, which is naturally applied to the normal derivative system, 

to determine the advantages of the proposed method. 

 

   
Fig 11.   State trajectories regulation of 𝑖𝑑 , 𝑖𝑞  and Omega variables in fractional-order BLDC system using 

fractional-order sliding mode control signal in the presence of parameter uncertainties and external 

disturbances. 

 

Observing Fig. 11, it becomes apparent that the conventional sliding mode strategy results in a significant 

overshoot in the current 𝑖𝑑 at the beginning of the time period, which may cause the system to become saturated. 

Additionally, it can be observed that the current 𝑖𝑞  in the conventional sliding mode strategy exhibits irregular, 

frequency-based oscillations over time, which reduces the system's overall performance quality. In contrast, the 

proposed method results in completely smooth behavior. Therefore, the performance of the proposed method is 

more desirable. Furthermore, the Omega plot indicates that the superiority of the proposed method is evident, as 

it exhibits better convergence speedand fewer oscillations. 

 

 
Fig 12.  Effort for state regulation of fractional-order chaotic BLDC system in the presence of parameter 

uncertainties and external disturbances. 

According to Fig 12, it is clear that the proposed fractional-order sliding mode control method for fractional-order 

BLDC system requires much higher initial energy for control, which, of course, imposes limitations on this 

method. However, if necessary, this limitation can be constrained by using a limiter on the energy. 
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Figure 13 shows the sliding surface used to regulate the state of a fractional-order chaotic BLDC system in the 

presence of parameter uncertainties and external disturbances. The sliding surface is a crucial component 

of control theory that helps stabilize system behavior under uncertain conditions. As can be seen in this Figure, 

the proposed method achieves negligible convergence time and convergence error, unlike the 

conventional sliding mode control method where the convergence of the sliding surface is undesirable. This 

highlights the superiority of the proposed method in providing more stable and predictable control of the BLDC 

system, even in the presence of parameter uncertainties and external disturbances. 

 
 

 
Fig 13.  Sliding surface for state regulation of fractional-order chaotic  

BLDC system in the presence of parameter uncertainties and external disturbances. 

 

Figure 14 illustrates the state rate trajectories of a BLDC system under the sliding mode control 

method and the proposed method. In the sliding mode control method, significant oscillations are observed in the 

rate of change of the first state variable (𝑖𝑑 − 𝑑𝑜𝑡), which can negatively affect the current regulation of the 

system. However, this issue is not present in the proposed method.  In addition, as shown in Figure 15, high-

frequency oscillations and significant changes in the amplitude of the rate of change of the second state 

variable (𝑖𝑞 − 𝑑𝑜𝑡) are generated under the sliding mode control method, which can be destructive for the current 

regulation of the system. However, these issues are not present in the proposed method. Furthermore, it can be 

observed that relatively high-amplitude oscillations with significant changes in the rate of change of the third state 

variable(Omega − dot) over time are generated under the sliding mode control method, which can be destructive 

for the frequency regulation of the system. However, these issues are not present in the proposed method. These 

observations highlight the superiority of the proposed method in regulating the state rates of the BLDC system 

with smoother and more stable behavior compared to the sliding mode control method. 

   
Fig 14.  State rate trajectory regulation of variables 𝑖𝑑 , 𝑖𝑞 and Omega  in fractional-order  

BLDC system using fractional-order sliding mode control signal in the presence of parameter uncertainties and external 

disturbances. 

 

In Table 2, which is provided for quantitative comparison of these two control methods in the presence 

of parameter uncertainties and external disturbances, it can be observed that the average of the sum of absolute 

error values indicates a significant increase in the state regulation error in the conventional sliding mode control 

method compared to Table 1, while this increase is only at 0.05 in the proposed method. In the section of rate of 

change state regulation error, the state regulation error value in the conventional sliding mode control method has 

increased by one unit compared to Table 1, while this increase is only at 0.007 in the proposed method. This 

demonstrates the high advantage and resistance of the proposed fractional-order sliding mode control method 

compared to the desirable and robust conventional sliding mode method, which itself is a desirable and robust 

method compared to, for example, the PID method. 

 

Table 2. Average sum of absolute errors for state and rate of change of state regulation for 
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fractional-order sliding mode control and conventional sliding mode control in the 

presence of parameter uncertainties and external disturbances 

 
Average sum of absolute 

errors. 

State regulation error (𝐸𝑥) Rate of change of state regulation 

error (𝐸𝑥−𝑑𝑜𝑡) 
SMC 7.2701 9.2106 

FO-SMC 3.4487 0.1598 

 

5. Conclusion   

In this paper, a fractional-order sliding mode controller was designed to control a chaotic fractional-order 

system (chaotic BLDC system). For this purpose, by choosing an appropriate sliding surface and desirable input 

to the system, the design was made to control the chaotic behavior and bring it to the origin equilibrium point. 

Sliding mode control is one of the most commonly used controllers for nonlinear systems and processes due 

to its relative simplicity and robustness against system uncertainties and external disturbances. The challenge in 

using this controller is the occurrence of chattering phenomenon on the sliding surface or chattering, especially in 

systems with fast dynamics. It was observed that with the help of sliding mode control, the system states converged 

to the required state in a limited time, but there were significant fluctuations in the system states, especially in the 𝑥1and 𝑥1−𝑑𝑜𝑡 states. To reduce this problem, fractional-order sliding mode control was used and applied to the 

fractional-order BLDC system, which made the behavior smoother and reduced the vibration of the system states. 

Moreover, it provided better adaptation of the control system and increased its resistance to uncertainties and 

external disturbances. 

The qualitative (graphical representation) and quantitative (Tables 1 and 2) superiority between these two 

control strategies is justified by the authors for two important reasons: 

• By converting the conventional system to a fractional-order system, as mentioned in previous sections, 

a fractional-order integration operation is first performed on the system, which reduces the existing error 

in the system. 

• By using fractional-order control, which has a special innovation in this paper and that is the use of a 

linear continuous part alongside the relay control according to equation (30) in the switching control 

section, the control behavior is much smoother. As the advantages of fractional-order are used in the 

controller, the adaptation of the control system and the resistance to parameter uncertainties and external 

disturbances have also increased significantly. 
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