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Supplementary Methods

1. The calculation process of 11 12 11 21( , )D D D DCov f f f f  , 11 12 11 21( , )d d d dCov f f f f  and

ˆ( )DE 

From the nature of covariance, mathematical expectation definition and the nature

of covariance, we can get
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From Equation a, Equation b, Equation c, Equation d and Equation e in the

supplementary methods, we can get
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In the same way, 11d 12 11 21( , )d d dCov f f f f  can be calculated as
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From Equation 5, Equation 6, Equation 7 in the main body and the nature of the

mathematical expectation, ˆ( )DE  can be calculated as
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2. The calculation process of 11Df , 12Df , 22Df , 21Df , 11df , 12df , 22df and 21df

As X1, X2, M1 and M2 have two possible values: 0 and 1 respectively, 11Df can

be calculated using Equation 7 in the main body and Multiplicative Theorem of

Conditional Probability as follows
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Because X1 and M2 are unlinked and X2 and M1 are unlinked, we can conclude

that
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According to Bayesian conditional probability formula and Equation 6 in the main

body, eight conditional probabilities can be calculated as
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Thus, 1 2 1 2( 1, 1| 1, 1)PM M X X    , 1 2 1 2( 1, 1| 0, 1)P M M X X    ,
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calculated according to Equation m in the supplementary methods.
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1 2 1 1 2

1 2 2 1 2

1 2 1 2 1 2 1 2

( 1, 0| ) ( 1| ) ( 1, 1| )
( 0, 1| ) ( 1| ) ( 1, 1| )
( 0, 0| ) 1 ( 1, 1| ) ( 1, 0| ) ( 0, 1| )

P X X D P X D P X X D
P X X D P X D P X X D
P X X D P X X D P X X D P X X D

      
      
           

. (n)



6

From Bayesian conditional probability formula, Equation 6 and Equation 10 in the

main body we can conclude that
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According to Equation n, Equation p and Equation q, 1 2( 1, 1| )P X X D  ,

1 2( 1, 0| )P X X D  , 1 2( 0, 1| )P X X D  and 1 2( 0, 0| )P X X D  can be

calculated using known parameters as follows
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Thus, 11Df can be calculated from Equation k, Equation m and Equation r.

12Df , 22Df , 21Df , 11df , 12df , 22df and 21df can be calculated in the same way.
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