

Supplementary Methods

1. The calculation process of $\text{Cov}(f_{11D} + f_{12D}, f_{11D} + f_{21D})$, $\text{Cov}(f_{11d} + f_{12d}, f_{11d} + f_{21d})$ and

$E(\hat{\beta}_D)$

From the nature of covariance, mathematical expectation definition and the nature of covariance, we can get

$$\begin{aligned}
 & \text{Cov}(f_{11D} + f_{12D}, f_{11D} + f_{21D}) \\
 &= E\{[\hat{f}_{11D} + \hat{f}_{12D} - E(f_{11D} + f_{12D})][\hat{f}_{11D} + \hat{f}_{21D} - E(f_{11D} + f_{21D})]\} \\
 &= E\{[\hat{f}_{11D} + \hat{f}_{12D} - (f_{11D} + f_{12D})][\hat{f}_{11D} + \hat{f}_{21D} - (f_{11D} + f_{21D})]\} \\
 &= E[(\hat{f}_{11D} + \hat{f}_{12D})(\hat{f}_{11D} + \hat{f}_{21D})] - (f_{11D} + f_{12D}) \cdot (f_{11D} + f_{21D}) \\
 &= E[\hat{f}_{11D}^2 + \hat{f}_{12D} \cdot \hat{f}_{11D} + \hat{f}_{11D} \hat{f}_{21D} + \hat{f}_{12D} \hat{f}_{21D}] - (f_{11D} + f_{12D}) \cdot (f_{11D} + f_{21D}) , \quad (\text{a})
 \end{aligned}$$

$$E(\hat{f}_{11D}^2) = \text{Var}(\hat{f}_{11D}) + E^2(\hat{f}_{11D}) = \frac{f_{11D}(1-f_{11D})}{n_D} + f_{11D}^2 , \quad (\text{b})$$

$$\begin{aligned}
 E(\hat{f}_{12D} \cdot \hat{f}_{11D}) &= \text{Cov}(\hat{f}_{12D}, \hat{f}_{11D}) + E(\hat{f}_{12D})E(\hat{f}_{11D}) \\
 &= -\frac{f_{12D} \cdot f_{11D}}{n_D} + f_{12D} \cdot f_{11D} , \quad (\text{c})
 \end{aligned}$$

$$\begin{aligned}
 E(\hat{f}_{11D} \cdot \hat{f}_{21D}) &= \text{Cov}(\hat{f}_{11D}, \hat{f}_{21D}) + E(\hat{f}_{11D})E(\hat{f}_{21D}) \\
 &= -\frac{f_{11D} \cdot f_{21D}}{n_D} + f_{11D} \cdot f_{21D} , \quad (\text{d})
 \end{aligned}$$

$$\begin{aligned}
 E(\hat{f}_{12D} \cdot \hat{f}_{21D}) &= \text{Cov}(\hat{f}_{12D}, \hat{f}_{21D}) + E(\hat{f}_{12D})E(\hat{f}_{21D}) \\
 &= -\frac{f_{12D} \cdot f_{21D}}{n_D} + f_{12D} \cdot f_{21D} . \quad (\text{e})
 \end{aligned}$$

and

From Equation a, Equation b, Equation c, Equation d and Equation e in the supplementary methods, we can get

$$\begin{aligned}
& \text{Cov}(f_{11D} + f_{12D}, f_{11D} + f_{21D}) \\
&= E[\hat{f}_{11D}^2 + \hat{f}_{12D} \cdot \hat{f}_{11D} + \hat{f}_{11D} \cdot \hat{f}_{21D} + \hat{f}_{12D} \cdot \hat{f}_{21D}] - (f_{11D} + f_{12D}) \cdot (f_{11D} + f_{21D}) \\
&= \frac{f_{11D} \cdot (1 - f_{11D})}{n_D} + f_{11D}^2 + \left(-\frac{f_{12D} \cdot f_{11D}}{n_D} + f_{12D} \cdot f_{11D} \right) + \dots \\
&\quad \left(-\frac{f_{11D} \cdot f_{21D}}{n_D} + f_{11D} \cdot f_{21D} \right) + \left(-\frac{f_{12D} \cdot f_{21D}}{n_D} + f_{12D} \cdot f_{21D} \right) - (f_{11D} + f_{12D}) \cdot (f_{11D} + f_{21D}) \\
&= \frac{f_{11D} \cdot (1 - f_{11D}) - f_{12D} \cdot f_{11D} - f_{11D} \cdot f_{21D} - f_{12D} \cdot f_{21D}}{n_D} + \dots \\
&\quad f_{11D}^2 + f_{12D} \cdot f_{11D} + f_{11D} \cdot f_{21D} + f_{12D} \cdot f_{21D} - (f_{11D} + f_{12D}) \cdot (f_{11D} + f_{21D}) \\
&= \frac{f_{11D} \cdot (1 - f_{11D}) - f_{12D} \cdot f_{11D} - f_{11D} \cdot f_{21D} - f_{12D} \cdot f_{21D}}{n_D} \\
&= \frac{f_{11D} \cdot (1 - f_{11D} - f_{12D} - f_{21D}) - f_{12D} \cdot f_{21D}}{n_D} \\
&= \frac{f_{11D} \cdot f_{22D} - f_{12D} \cdot f_{21D}}{n_D} \quad . \quad (f)
\end{aligned}$$

From

$$\begin{aligned}
& f_{11D} - (f_{11D} + f_{12D}) \cdot (f_{11D} + f_{21D}) \\
&= f_{11D} - (f_{11D}^2 + f_{11D} \cdot f_{21D} + f_{12D} \cdot f_{11D} + f_{12D} \cdot f_{21D}), \quad (g) \\
&= f_{11D} \cdot (1 - f_{11D} - f_{21D} - f_{12D}) - f_{12D} \cdot f_{21D} \\
&= f_{11D} \cdot f_{22D} - f_{12D} \cdot f_{21D}
\end{aligned}$$

we can get

$$\text{Cov}(f_{11D} + f_{12D}, f_{11D} + f_{21D}) = \frac{f_{11D} \cdot (1 - f_{11D} - f_{21D} - f_{12D}) - f_{12D} \cdot f_{21D}}{n_D} \quad (h)$$

In the same way, $\text{Cov}(f_{11d} + f_{12d}, f_{11d} + f_{21d})$ can be calculated as

$$\text{Cov}(f_{11d} + f_{12d}, f_{11d} + f_{21d}) = \frac{f_{11d} \cdot (1 - f_{11d} - f_{21d} - f_{12d}) - f_{12d} \cdot f_{21d}}{n_d} \quad (i)$$

From Equation 5, Equation 6, Equation 7 in the main body and the nature of the mathematical expectation, $E(\hat{\beta}_D)$ can be calculated as

$$\begin{aligned}
 E(\hat{\beta}_D) &= E(\hat{f}_{11D}) - E[(\hat{f}_{11D} + \hat{f}_{12D}) \cdot (\hat{f}_{11D} + \hat{f}_{21D})] \\
 &= f_{11D} - [E(\hat{f}_{11D} + \hat{f}_{12D}) \cdot E(\hat{f}_{11D} + \hat{f}_{21D}) + Cov(f_{11D} + f_{12D}, f_{11D} + f_{21D})] . \quad (j) \\
 &= f_{11D} - [(f_{11D} + f_{12D}) \cdot (f_{11D} + f_{21D}) + Cov(f_{11D} + f_{12D}, f_{11D} + f_{21D})] \\
 &= f_{11D} \cdot f_{22D} - f_{12D} \cdot f_{21D} - Cov(f_{11D} + f_{12D}, f_{11D} + f_{21D})
 \end{aligned}$$

2. The calculation process of $f_{11D}, f_{12D}, f_{22D}, f_{21D}, f_{11d}, f_{12d}, f_{22d}$ and f_{21d}

As X1, X2, M1 and M2 have two possible values: 0 and 1 respectively, f_{11D} can be calculated using Equation 7 in the main body and Multiplicative Theorem of Conditional Probability as follows

$$\begin{aligned}
 f_{11D} &= P(M_1=1, M_2=1 | D) \\
 &= P(M_1=1, M_2=1, X_1=1, X_2=1 | D) + P(M_1=1, M_2=1, X_1=0, X_2=1 | D) + \dots \\
 &P(M_1=1, M_2=1, X_1=1, X_2=0 | D) + P(M_1=1, M_2=1, X_1=0, X_2=0 | D) \\
 &= P(M_1=1, M_2=1 | X_1=1, X_2=1) \cdot P(X_1=1, X_2=1 | D) + \dots \quad . \quad (k) \\
 &P(M_1=1, M_2=1 | X_1=0, X_2=1) \cdot P(X_1=0, X_2=1 | D) + \dots \\
 &P(M_1=1, M_2=1 | X_1=1, X_2=0) \cdot P(X_1=1, X_2=0 | D) + \dots \\
 &P(M_1=1, M_2=1 | X_1=0, X_2=0) \cdot P(X_1=0, X_2=0 | D)
 \end{aligned}$$

Because X1 and M2 are unlinked and X2 and M1 are unlinked, we can conclude that

$$\begin{aligned}
 P(M_1=1, M_2=1 | X_1=1, X_2=1) &= P(M_1=1 | X_1=1)P(M_2=1 | X_2=1) \\
 P(M_1=1, M_2=1 | X_1=0, X_2=1) &= P(M_1=1 | X_1=0)P(M_2=1 | X_2=1) \quad . \quad (l) \\
 P(M_1=1, M_2=1 | X_1=1, X_2=0) &= P(M_1=1 | X_1=1)P(M_2=1 | X_2=0) \\
 P(M_1=1, M_2=1 | X_1=0, X_2=0) &= P(M_1=1 | X_1=0)P(M_2=1 | X_2=0)
 \end{aligned}$$

According to Bayesian conditional probability formula and Equation 6 in the main body, eight conditional probabilities can be calculated as

$$\begin{aligned}
P(M_1 = 1 | X_1 = 1) &= \frac{P(M_1 = 1, X_1 = 1)}{P(X_1 = 1)} = \frac{P(M_1 = 1) \cdot P(X_1 = 1) + LD_{X1,M1}}{P(X_1 = 1)} \\
P(M_2 = 1 | X_2 = 1) &= \frac{P(M_2 = 1, X_2 = 1)}{P(X_2 = 1)} = \frac{P(M_2 = 1) \cdot P(X_2 = 1) + LD_{X2,M2}}{P(X_2 = 1)} \\
P(M_1 = 1 | X_1 = 0) &= \frac{P(M_1 = 1, X_1 = 0)}{P(X_1 = 0)} = \frac{P(M_1 = 1) \cdot [1 - P(X_1 = 1)] + LD_{X1,M1}}{1 - P(X_1 = 1)} \\
P(M_2 = 1 | X_2 = 0) &= \frac{P(M_2 = 1, X_2 = 0)}{P(X_2 = 0)} = \frac{P(M_2 = 1) \cdot [1 - P(X_2 = 1)] + LD_{X2,M2}}{1 - P(X_2 = 1)} \\
P(M_1 = 0 | X_1 = 1) &= \frac{P(M_1 = 0, X_1 = 1)}{P(X_1 = 1)} = \frac{[1 - P(M_1 = 1)] \cdot P(X_1 = 1) + LD_{X1,M1}}{P(X_1 = 1)} \\
P(M_2 = 0 | X_2 = 1) &= \frac{P(M_2 = 0, X_2 = 1)}{P(X_2 = 1)} = \frac{[1 - P(M_2 = 1)] \cdot P(X_2 = 1) + LD_{X2,M2}}{P(X_2 = 1)} \\
P(M_1 = 0 | X_1 = 0) &= \frac{P(M_1 = 0, X_1 = 0)}{P(X_1 = 0)} = \frac{[1 - P(M_1 = 1)] \cdot [1 - P(X_1 = 1)] + LD_{X1,M1}}{1 - P(X_1 = 1)} \\
P(M_2 = 0 | X_2 = 0) &= \frac{P(M_2 = 0, X_2 = 0)}{P(X_2 = 0)} = \frac{[1 - P(M_2 = 1)] \cdot [1 - P(X_2 = 1)] + LD_{X2,M2}}{1 - P(X_2 = 1)}. \quad (m)
\end{aligned}$$

Thus, $P(M_1 = 1, M_2 = 1 | X_1 = 1, X_2 = 1), P(M_1 = 1, M_2 = 1 | X_1 = 0, X_2 = 1),$

$P(M_1 = 1, M_2 = 1 | X_1 = 1, X_2 = 0)$ and $P(M_1 = 1, M_2 = 1 | X_1 = 0, X_2 = 1)$ can be

calculated according to Equation m in the supplementary methods.

Assume that $P(X_1 = 1, X_2 = 1 | D) = (1 + K)P(X_1 = 1 | D)P(X_2 = 1 | D)$, from

Equation 6 in the main body we can conclude that

$$\begin{aligned}
P(X_1 = 1, X_2 = 0 | D) &= P(X_1 = 1 | D) - P(X_1 = 1, X_2 = 1 | D) \\
P(X_1 = 0, X_2 = 1 | D) &= P(X_2 = 1 | D) - P(X_1 = 1, X_2 = 1 | D) \\
P(X_1 = 0, X_2 = 0 | D) &= 1 - P(X_1 = 1, X_2 = 1 | D) - P(X_1 = 1, X_2 = 0 | D) - P(X_1 = 0, X_2 = 1 | D) \quad . \quad (n)
\end{aligned}$$

From Bayesian conditional probability formula, Equation 6 and Equation 10 in the main body we can conclude that

$$\begin{aligned}
RR_{X_1} &= \frac{P(D | X_1 = 1)}{P(D | X_1 = 0)} \\
&= \frac{P(D, X_1 = 1) / P(X_1 = 1)}{P(D, X_1 = 0) / P(X_1 = 0)} \\
&= \frac{P(D, X_1 = 1) \cdot P(X_1 = 0)}{P(D, X_1 = 0) \cdot P(X_1 = 1)} \\
&= \frac{P(X_1 = 1 | D) \cdot P(X_1 = 0)}{[1 - P(X_1 = 1 | D)] \cdot P(X_1 = 1)} , \quad (o) \\
RR_{X_1} \cdot P(X_1 = 1) \cdot [1 - P(X_1 = 1 | D)] &= P(X_1 = 0) \cdot P(X_1 = 1 | D) \\
RR_{X_1} \cdot P(X_1 = 1) &= RR_{X_1} \cdot P(X_1 = 1) \cdot P(X_1 = 1 | D) + P(X_1 = 0) \cdot P(X_1 = 1 | D) \\
RR_{X_1} \cdot P(X_1 = 1) &= [RR_{X_1} \cdot P(X_1 = 1) + P(X_1 = 0)] \cdot P(X_1 = 1 | D)
\end{aligned}$$

$$P(X_1 = 1 | D) = \frac{RR_{X_1} \cdot P(X_1 = 1)}{RR_{X_1} \cdot P(X_1 = 1) + P(X_1 = 0)} , \quad (p)$$

$$P(X_2 = 1 | D) = \frac{RR_{X_2} \cdot P(X_2 = 1)}{RR_{X_2} \cdot P(X_2 = 1) + P(X_2 = 0)} . \quad (q)$$

According to Equation n, Equation p and Equation q, $P(X_1 = 1, X_2 = 1 | D)$, $P(X_1 = 1, X_2 = 0 | D)$, $P(X_1 = 0, X_2 = 1 | D)$ and $P(X_1 = 0, X_2 = 0 | D)$ can be calculated using known parameters as follows

$$\begin{aligned}
P(X_1 = 1, X_2 = 1 | D) &= (1+K) \cdot P(X_1 = 1 | D) \cdot P(X_2 = 1 | D) \\
P(X_1 = 1, X_2 = 0 | D) &= P(X_1 = 1 | D) - (1+K) \cdot P(X_1 = 1 | D) \cdot P(X_2 = 1 | D) \\
P(X_1 = 0, X_2 = 1 | D) &= P(X_2 = 1 | D) - (1+K) \cdot P(X_1 = 1 | D) \cdot P(X_2 = 1 | D) \\
P(X_1 = 0, X_2 = 0 | D) &= 1 - P(X_1 = 1 | D) - P(X_2 = 1 | D) + (1+K) \cdot P(X_1 = 1 | D) \cdot P(X_2 = 1 | D) . \quad (r)
\end{aligned}$$

Thus, f_{11D} can be calculated from Equation k, Equation m and Equation r.

$f_{12D}, f_{22D}, f_{21D}, f_{11d}, f_{12d}, f_{22d}$ and f_{21d} can be calculated in the same way.

