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Abstract 

Recently, the extensive use of Internet of Things (IoT) applications has a stronger impact and 

greater contribution to the development of the smart city. A smart city (SC) uses IoT-based 

technologies, applications, and communications for maximizing operational efficacy and 

improving the service quality of providers and the living standard of people. With the 

development of SC networks, there also comes the augmented menace of cybersecurity attacks 

and threats. IoT gadgets within an SC network were linked to sensors connected to huge cloud 

servers and are vulnerable to malicious threats and attacks. Therefore, it is significant to 

formulate techniques for preventing such assaults and protecting IoT gadgets from failures. 

This article develops a new transient search algorithm with optimal stacked sparse autoencoder 

(TSA-OSSAE) based cyber threat detection in IoT-enabled SC applications. The presented 

TSA-OSSAE technique majorly focuses on the recognition of cyber threats to attain security 

in the SC. To attain this, the projected TSA-OSSAE system follows TSA based feature 

selection approach to reduce computational complexity. Besides, the TSA-OSSAE technique 

applies the SSAE model for cyber threat detection. At last, the hyperparameters of the SSAE 

approach are optimally chosen by utilizing of multi-versus optimizer (MVO) algorithm. The 

experimental result analysis of the TSA-OSSAE technique was performed by using the 

TON_IoT telemetry database. The simulation outcomes signify the promising performance of 

the TSA-OSSAE methodology over other existing techniques. 

Keywords: Smart cities; Internet of Things; Threat detection; Cybersecurity; Deep learning 

 

1. Introduction 
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Currently, the growth of the Internet of Things (IoT) is extensively rising in societies all over 

the world. In 2017, the count of connected IoT gadgets had touched twenty-seven billion and 

such IoT gadgets would be drastically increased in market demand, thereby the potentiality 

was expected to reach nearly 1,25 billion in 2030. Several SC applications will be connecting 

numerous IoT gadgets to real-time objects, which certainly have very significant advantages to 

day-to-day life [1]. But the enormous number of IoT gadgets over different types of devices, 

services, protocols, and technologies (e.g., Bluetooth, Wireless, Satellites, Cellular, Wired, 

etc.) results in the perplexity of controlling future IoT networks [2]. Thus, such integration 

protocols with the internet cause serious cybersecurity menaces and susceptibilities for 

assaulting the data of the everyday routines of individuals’ lives [3]. The IoT paradigm has 

resulted in the invention of smart cities. Fig. 1 demonstrates the overview of IoT for smart 

cities. 

 

 
Fig. 1. Overview of IoT for smart cities  

 

Smart cities work in real-time for promoting comfort and increasing the quality of life in cities 

[4]. The network traffic of smart cities through IoT systems has seen exponential growth and 

presents novel cybersecurity difficulties as these loT devices were linked to sensors that can be 

straightforwardly linked to enormous cloud servers. To mitigate such attacks, developers 

should advance novel methods to detect infected IoT gadgets [5]. The cyber threats could 

acquire unauthorized access to loT gadgets without the knowledge of the administrator or user 

(for example Miria botnet) [6]. The primary difficulty was how to find zero-day assaults since 

it occurs from various protocols of IoT gadgets in a cloud data center of SC, considering that 

the many assaults are hidden in IoT gadgets. Then the next challenge is how to detect a 

technique to intellectually identify cyberattacks from the IoT system formerly destructing smart 

cities [7].  



Many loT sensors were recently collecting every data which passes via the huge data that is 

identified in cloud servers [8]. At present, conventional IDS was not devised for IoT 

networking devices, since such gadgets contain limited sources and fewer functionalities (e.g., 

smart locks, smart watches, smart lamps, and so on.). Nowadays, deep learning (DL) can be 

extensively utilized on data gathered by research scholars. DL refers to a type of artificial 

intelligence (AI) and machine learning (ML) that mimics similarly with that of the human mind 

used to study a specific subject and contains several applications in smart cities [9]. DL could 

incessantly monitor and collect data and assist the system to adapt to novel spaces. DL can be 

considered a branch of AI that aids neural networks in ML [10]. Currently, a comparison is 

made with conventional ML techniques, computer vision programs made important 

advancements in robotics, natural language processing, and other areas.  

This article develops a new transient search algorithm with optimal stacked sparse autoencoder 

(TSA-OSSAE) based cyber threat detection in the IoT-based SC applications. The presented 

TSA-OSSAE technique majorly focuses on the recognition of cyber threats to attain security 

in the SC. To attain this, the projected TSA-OSSAE system follows TSA based feature 

selection approach to reduce computational complexity. Besides, the TSA-OSSAE technique 

applies the SSAE model for cyber threat detection. At last, the hyperparameters of the SSAE 

approach are optimally chosen by using of multi-versus optimizer (MVO) algorithm. The 

experimental outcome investigation of the TSA-OSSAE technique is performed utilizing the 

TON_IoT telemetry dataset.  

 

2. Related Works 

In [11], an SC intrusion detection infrastructure dependent upon Restricted Boltzmann 

Machines (RBMs) was presented. RBMs were executed because of their capability for learning 

higher-level features in raw data from an unsupervised method and controlling real data 

representation created in smart meters and sensors. Baig et al. [12] examine an ML-based 

technique to detect hijacking, GPS signal jamming, and DoS attack which is applied to oppose 

a drone. A comprehensive ML-based classifier of drone databases to the DJI Phantom 4 

method, cooperating with either normal or malicious signatures is performed. In [13], intrusion 

detection has been obtained with a 3-stage data traffic investigation, reduction, and classifier 

approach employed for identifying positive trusted service requests against false requests 

which can take place from intrusion attacks. The solution implements a decision tree and deep 

belief from ML processes utilized for data reduction and classifier drives correspondingly. The 

infrastructure is validated with simulations for demonstrating the efficiency of solutions 

concerning intrusion attack recognition. 

Shafiq et al. [14] presented a novel infrastructure method and hybrid technique for solving this 

problem. Primarily, the BoT-IoT identify database was executed and their 44 effectual 

attributes are elected in the number of attributes to ML technique. Afterward, the 5 effectual 

ML technique was selected to detect malicious and anomaly traffic identification and even 

choose the broadly utilized performance evaluation metrics of the ML techniques. In [15], a 

hybrid DL technique was formulated to detect DDoS and replay attacks in a real-time smart 

city platform. The hybrid method's performance can be assessed with the help of real-time SC 

data (smart soil, environmental, and Smart River), whereas replay and DDoS attacks are 

simulated.In order to protect the sensor network, it is essential to safeguard the powerful node 

through which the network is secured, cost-effective, and energy-efficient because Moving the 

anchor node plays a significant function throughout the localization process. [16].  In [17], a 

DL-related technique with recent databases can be used to classify the assaults. A safeguard 

was presented for the reputation of the IoT network and to make sure that it is only accessible 

to appropriate users. A base to incorporate IDS as an IoT-related network as an application was 



presented. The authors in [18] devise a botnet detection mechanism related to a two-level DL 

structure to discriminate legitimate and botnet behaviors semantically at the application layer 

of domain name system (DNS) services. At the fundamental level of a framework, a Siamese 

network related to an already-existing threshold was used to choose the common DNS data 

across Ethernet connections, which was used to find how similar the DNS requests. Coming to 

the second level of the structure, the domain generation method compared with DL 

architectures will be recommended to categorize abnormal and normal domain names. The 

computing to improve IoT solutions for smarter cities by resolving some of its current problems 

and limitations. Internet of Things and cloud computing will enable smart cities to develop 

novel and enhanced services by utilising large amounts of data stored in the cloud and analysing 

it in real-time. [19]. 

 

3. The Proposed Model 

In this article, a novel TSA-OSSAE approach was formulated for the detection and 

classification of cyber threats in IoT-enabled SC applications. The presented TSA-OSSAE 

technique majorly concentrates on the recognition of cyber threats to attain security in the SC.  

 

3.1. Process involved in TSA-FS Technique 

In this article, the presented TSA-OSSAE method follows TSA based feature selection 

approach to reduce computational complexity. The TSA technique is based on the transient 

behaviors of circuits that involve energy storage elements in their configuration [20]. Those 

behaviors are based on the circuit order, either first‐ or second‐order circuits. The circuit order 
is defined by the count of energy storage capacitors, components, and inductors in the circuit 

schematic. This transient behavior comprises steady‐state and transient parts. For first‐order 
circuits, the differential equation defining the aforementioned behavior is formulated by Eq. 

(1). 𝑑𝑑𝑡 𝑥(𝑡) + 𝑥(𝑡)𝜏 = 𝐾                                                     (1) 

This formula is resolved for 𝑥(𝑡) as a function of time: 𝑥(𝑡) = 𝑥(∞) + (𝑥(0) − 𝑥(∞))𝑒−𝑡𝜏                                   (2) 

In Eq. (2), 𝑥(𝑡) characterizes the inductor current or capacitor voltage. 𝜏 represents the time 

constant. 𝐾 denotes a primary condition‐dependent constant. 𝜒(∞) indicates steady‐state 𝜒 

value. 𝑑2𝑑𝑡2 𝑥(𝑡) + 2𝛼 𝑑𝑑𝑡 𝑥(𝑡) + 𝜔02𝑥(𝑡) = 𝑓(𝑡)                               (3) 

The preceding second‐order differential equation is resolved by the following expression: 𝑥(𝑡) = 𝑒−𝛼𝑡(𝐵1𝑐𝑜𝑠(2𝜋𝑓𝑑𝑡) + 𝐵2𝑠𝑖𝑛(2𝜋𝑓𝑑𝑡)) + 𝑥(∞)      (4) 

In Eq. (4), 𝛼 indicates the damping coefficient, 𝜔0 and 𝑓𝑑 represents the resonant and damped 

frequencies. 𝐵1 and 𝐵2 denotes an arbitrary constant. Like other optimization techniques, the 

primary step in the TSA is to set a random agent whose value lies between predetermined limits 

as follows: 𝑌 = 𝑙𝑏 + 𝑟𝑎𝑛𝑑 × (𝑢𝑏 − 𝑙𝑏)                          (5) 

Then, it examines the optimum solution employing the exploitation and exploration phases. 

The exploration stage was stimulated by the oscillatory response of the second‐order circuit. 
Lastly, it obtains the optimum solution after a predetermined amount of iterations. Furthermore, 

the exploitation stage depends on the exponential decay of the first‐order circuit and it is 
mathematically formulated by the subsequent equation: 



𝑌𝑙+1 = {𝑌𝑙∗ + (𝑌𝑙 − 𝐶1. 𝑌𝑙∗)𝑒−𝑇 𝑟1 < 0.5𝑌𝑙∗ + 𝑒−𝑇[𝑐𝑜𝑠(2𝜋𝑇) + 𝑠𝑖𝑛(2𝜋𝑇)]|𝑌𝑙 − 𝐶1. 𝑌𝑙∗| 𝑟1 ≥ 0.5         (6) 𝑇 = 2 × 𝑎 × 𝑟2 − 𝑎                                           (7) 𝐶1 = 𝑘 × 𝑎 × 𝑟3 + 1                                         (8) 𝑎 = 2 − 2 ( 𝑙𝐿max)                                         (9) 

Now 𝑇, 𝐶1, 𝑟1, 𝑟2, and 𝑟3 indicates random numbers. 𝑌𝑙 and 𝑌𝑙∗ denotes the population and better 

population until the 𝑙-𝑡ℎ iterations, correspondingly 𝑘 indicates the counter that begins from 0. 

The ending condition is that once the iteration reaches 𝐿 max . 𝑌𝑙∗ corresponding to (∞). 

Furthermore, 𝐵1 = 𝐵2 = |𝑌𝑙 − 𝐶1. 𝑌𝑙∗|. ‘T’ denotes a parameter that ranges from −2 to 2, which 

is utilized for balancing the exploitation and exploration procedures.   

 

The fitness function (FF) used in the proposed method was created to achieve a balance 

between the maximum classifier accuracy attained by using minimal attributes and features, 

Eq. (10) denotes the FF for assessing solutions. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼𝛾𝑅(𝐷) + 𝛽 |𝑅||𝐶|                                         (10) 

whereas 𝛾𝑅(𝐷) indicates the classifier error rate of given classifiers, |𝑅| was the cardinality of 

the designated subset and |𝐶| was the total number of attributes in the data, 𝛼, and 𝛽 were 2 

variables respective to the import of classifier quality and subset length. ∈ [1, 0] and 𝛽 = 1 −𝛼. 
 

3.2. SSAE based Cyber Threat Detection 

At this stage, the TSA-OSSAE technique applies the SSAE model for cyber threat detection. 

The SSAE is a NN involved in numerous SAEs linked in end-to-end ways [21]. Higher-level 

feature representation of the input dataset has been achieved mainly due to the application of 

the findings of the previous layer's sparse self-encoder as the input of the next layer of self-

encoding. In order to retrieve the optimised relation weight and bias values for the entire SSAE 

network, the greedy layer-by-layer pre-trained model was used to train all of the SSAE's layers 

sequentially. The error BP method was then designed to optimise the SSAE, although the 

achieved error function between the input and output information meets the predictable 

conditions, for receiving an optimal parameter as follows: 𝜕𝜕𝑤𝑖𝑗𝑟 𝐽𝑠𝑝𝑎𝑟𝑠𝑒(𝑊, 𝑏) = 12𝑛𝑟 ∑ 𝜕𝜕𝑤𝑖𝑗𝑟
𝑛𝑟

𝑟=1 𝐽𝑠𝑝𝑎𝑟𝑠𝑒(𝑊, 𝑏, 𝑋(𝑛), 𝑌(𝑛)) + 𝜆𝑤𝑖𝑗𝑟          (11) 𝜕𝜕𝑏𝑟 𝐽𝑠𝑝𝑎𝑟𝑠𝑒(𝑊, 𝑏) = 12𝑛𝑟 ∑ 𝜕𝜕𝑏𝑟
𝑛𝑟

𝑟=1 𝐽𝑠𝑝𝑎𝑟𝑠𝑒(𝑊, 𝑏, 𝑋(𝑛), 𝑌(𝑛))                  (12) 

Consequently, the upgraded method of the weight and bias were given below: 𝑤𝑖𝑗𝑘 = 𝑤𝑖𝑗𝑘 − 𝜂 𝜕𝜕𝑤𝑖𝑗𝑘 𝐽(𝑊, 𝑏)                                (13) 𝑏𝑟 = 𝑏𝑟 − 𝜂 𝜕𝜕𝑏𝑟 𝐽(𝑊, 𝑏)                                (14) 



From the expression, 𝑋(𝑛) and 𝑌(𝑛) are denoted by the 𝑛-𝑡ℎ actual vector and reformation 

vector, and 𝜂 represents the upgraded learning rate. Fig. 2 demonstrates the framework of 

SSAE model. 

 
Fig. 2. Architecture of SSAE 

Assuming sparse constraints in the SSAE approach, it is indispensable applied several rates of 

learning for different variables as diminishing frequency. However, the classic Gradient 

Descent (GD) system has mini-batch GD and SGD which apply undistinguishable learning rate 

for network parameter that should upgrade which generate the complexity for simply gaining 

the local minima and selecting the appropriate rate of learning.  

 

3.3. Hyperparameter Tuning using MVO Algorithm 

Finally, the hyperparameters of the SSAE algorithm are optimally selected by utilizing the 

MVO approach. The MVO algorithm is called a growing metaheuristic approach which tries 

to stimulate the laws of the multi‐verse concept [22]. To upgrade the answer utilizing these 

methods, the rate of travel (𝑇𝐷𝑅) and probability of wormhole existence (𝑊𝐸𝑃) should be 

initially calculated. This parameter determines the magnitude and frequency of solution 

changes in the optimization algorithm as follows: 𝑊𝐸𝑃 = 𝑎 + 𝑡 × (𝑏 − 𝑎𝑇 )                                             (15) 

The overall iteration number is 𝑇, equivalent to the minimal, 𝑏 to the maximal, and 𝑡 to the 

existing iteration. 𝑇𝐷𝑅 = 1 − 𝑡1𝑃𝑇1𝑃                                                           (16) 𝑝 denotes the exploitation accuracy. 𝑃 is the most important 𝑇𝐷𝑅 measure. The emphasis on 

exploitation rises as the value of choice increases. 

Update the solution position as follows: 

𝑥𝑖𝑗 {{𝜒𝑗 + 𝑇𝐷𝑅 + ((𝑢𝑏𝑗 − 𝑙𝑏𝑗) ∗ 𝑟4 + 𝑙𝑏𝑗) 𝑖𝑓𝑟3 < 0.5𝜒𝑗 − 𝑇𝐷𝑅 + ((𝑢𝑏𝑗 − 𝑙𝑏𝑗) ∗ 𝑟4 + 𝑙𝑏𝑗) 𝑖𝑓𝑟3 ≥ 0.5𝑥𝑟𝑜𝑢𝑙𝑒𝑡𝑡𝑒 𝑊ℎ𝑒𝑒𝑙𝑗  𝑖𝑓 𝑟2 ≥ 𝑊𝐸𝑃  𝑖𝑓 𝑟2 < 𝑊𝐸𝑃      (17) 



In Eq. (17), 𝜒𝑗 is set to be 𝑗-𝑡ℎ elements from the best-predetermined individuals, 𝑊𝐸𝑃, 𝑇𝐷𝑅 

represents coefficients, 𝑙𝑏𝑖 and 𝑢𝑏𝑖 indicates the lower and upper limits of the 𝑗-𝑡ℎ elements, 𝑟2, 𝑟3, 𝑟4 indicates arbitrary number ranges from [0,1], 𝑥𝑖𝑗 signifies the 𝑗-𝑡ℎ variable in 𝑖-𝑡ℎ 

individuals, and 𝑥𝑟𝑜𝑢𝑙𝑒𝑡𝑡𝑒 𝑊ℎ𝑒𝑒𝑙𝑗
 does the roulette wheel selection model for picking the 𝑗-𝑡ℎ 

component of the solution. This formula is utilized for computing a novel solution location and 

compared to the best‐in‐class participant in 𝑊𝐸𝑃. If 𝑟3, If a random value within [0,1], is lesser 

than 0.5, then the optimum solution value for 𝑗-𝑡ℎ parameter needs a solution. By rising 𝑊𝐸𝑃 

in the process of optimization, MVO rises the usage of the best solution. 

The MVO method will improve a fitness function (FF) for attaining greater classifier outcomes. 

It resolves a positive value for designating the best performance of candidate results. In this 

study, the decreased classifier rate of errors was signified as the FF, as presented in Eq. (18).    𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) = 𝑛𝑜. 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ∗ 100                  (18) 

 

4. Results and Discussion 

The experimental validation of the TSA-OSSAE method was tested by exploiting the TON-

IoT dataset [23]. Table 1 showcases a detailed description of the dataset. 

Table 1 Details of the dataset  

 

Label Attack Type No. of Records 

A1 Backdoor 1000 

A2 DDoS 1000 

A3 DoS 1000 

A4 Injection 1000 

A5 MITM 1000 

A6 Password 1000 

A7 Ransomware 1000 

A8 Scanning 1000 

A9 XSS 1000 

N Benign 1000 

Total Number of Attacks 10000 

 



 
Fig. 3. Confusion matrix of TSA-OSSAE algorithm on the Entire database 

The confusion matrices created by the presented TSA-OSSAE technique on the entire dataset 

are reported in Fig. 3. The figure demonstrated that the TSA-OSSAE method has categorized 

all the classes of cyber threats effectively and accurately. 

Table 2 and Fig. 4 demonstrate an overall cyber threat classification performance of the TSA-

OSSAE methodology on the entire database. The simulation values represented that the TSA-

OSSAE approach has revealed enhanced performance under all classes. For sample, on class 

A1, the TSA-OSSAE algorithm has provided 𝑎𝑐𝑐𝑢𝑦 of 99.89%, 𝑝𝑟𝑒𝑐𝑛 of 99.50%, 𝑟𝑒𝑐𝑎𝑙 of 

99.40%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.45%, and MCC of 99.39%. Meanwhile, in class A5, the TSA-OSSAE 

technique has offered 𝑎𝑐𝑐𝑢𝑦 of 99.81%, 𝑝𝑟𝑒𝑐𝑛 of 99.10%, 𝑟𝑒𝑐𝑎𝑙 of 99%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.05%, 

and MCC of 98.94%. Eventually, in class A9, the TSA-OSSAE method has rendered 𝑎𝑐𝑐𝑢𝑦 of 

99.84%, 𝑝𝑟𝑒𝑐𝑛 of 99.10%, 𝑟𝑒𝑐𝑎𝑙 of 99.30%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.25%, and MCC of 99.11%. 

Table 2 Classification analysis of the TSA-OSSAE algorithm with different classes on the 

entire database  

Entire Dataset 

Labels 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 MCC 

A1 99.89 99.50 99.40 99.45 99.39 

A2 99.91 99.50 99.60 99.55 99.50 

A3 99.88 99.20 99.60 99.40 99.33 

A4 99.83 99.30 99.00 99.15 99.05 

A5 99.81 99.10 99.00 99.05 98.94 

A6 99.82 99.20 99.00 99.10 99.00 

A7 99.93 99.90 99.40 99.65 99.61 



A8 99.92 99.21 100.00 99.60 99.56 

A9 99.84 99.10 99.30 99.20 99.11 

N 99.89 99.60 99.30 99.45 99.39 

Average 99.87 99.36 99.36 99.36 99.29 

 
Fig. 4. Average outcome of TSA-OSSAE algorithm on the entire dataset 

The confusion matrices produced by the proposed TSA-OSSAE technique on 70% of TRS 

have been revealed in Fig. 5. The figure illustrated the TSA-OSSAE system had classified 

every class of cyber threats accurately and effectively. 

 
Fig. 5. Confusion matrix of TSA-OSSAE algorithm on 70% of TRS 

Table 3 and Fig. 6 portray a complete cyber threat classification performance of the TSA-

OSSAE system on 70% of TRS. The simulation values signified the TSA-OSSAE algorithm 

has displayed enhanced performance in every class. For example, in class A1, the TSA-OSSAE 

system has presented 𝑎𝑐𝑐𝑢𝑦 of 99.90%, 𝑝𝑟𝑒𝑐𝑛 of 99.57%, 𝑟𝑒𝑐𝑎𝑙 of 99.42%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.49%, 

and MCC of 99.44%. In the meantime, on class A5, the TSA-OSSAE algorithm has rendered 𝑎𝑐𝑐𝑢𝑦 of 99.81%, 𝑝𝑟𝑒𝑐𝑛 of 99.13%, 𝑟𝑒𝑐𝑎𝑙 of 98.99%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.06%, and MCC of 98.96%. 



Finally, in class A9, the TSA-OSSAE approach has offered 𝑎𝑐𝑐𝑢𝑦 of 99.80%, 𝑝𝑟𝑒𝑐𝑛 of 

98.85%, 𝑟𝑒𝑐𝑎𝑙 of 99.13%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.99%, and MCC of 98.88%. 

 

Table 3 Classifier outcome of TSA-OSSAE methodology with distinct classes under 70% of 

TRS  

Training Set (70%) 

Labels 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 MCC 

A1 99.90 99.57 99.42 99.49 99.44 

A2 99.91 99.56 99.56 99.56 99.51 

A3 99.90 99.42 99.57 99.49 99.44 

A4 99.83 99.17 99.17 99.17 99.07 

A5 99.81 99.13 98.99 99.06 98.96 

A6 99.84 99.28 99.14 99.21 99.12 

A7 99.91 100.00 99.13 99.56 99.51 

A8 99.89 98.91 100.00 99.45 99.39 

A9 99.80 98.85 99.13 98.99 98.88 

N 99.89 99.58 99.30 99.44 99.38 

Average 99.87 99.35 99.34 99.34 99.27 

 
Fig. 6. Average outcome of TSA-OSSAE system on 70% of TRS 

The confusion matrices generated by the presented TSA-OSSAE system on the 30% of TSS 

are given in Fig. 7. The figure designated the TSA-OSSAE methodology classified every class 

of cyber threats accurately and effectively. 



 
Fig. 7. Confusion matrix of TSA-OSSAE algorithm on 30% of TSS 

Table 4 and Fig. 8 establish a complete cyber threat classification performance of the TSA-

OSSAE approach on 30% of TSS. The simulation values represented by the TSA-OSSAE 

system have demonstrated improved performance in distinct classes. For example, in class A1, 

the TSA-OSSAE approach has projected 𝑎𝑐𝑐𝑢𝑦 of 99.87%, 𝑝𝑟𝑒𝑐𝑛 of 99.35%, 𝑟𝑒𝑐𝑎𝑙 of 

99.35%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.35%, and MCC of 99.28%. In the meantime, in class A5, the TSA-OSSAE 

methodology has presented 𝑎𝑐𝑐𝑢𝑦 of 99.80%, 𝑝𝑟𝑒𝑐𝑛 of 99.02%, 𝑟𝑒𝑐𝑎𝑙 of 99.02%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 

99.02%, and MCC of 98.91%. Finally, in class A9, the TSA-OSSAE method has offered 𝑎𝑐𝑐𝑢𝑦 

of 99.93%, 𝑝𝑟𝑒𝑐𝑛 of 99.68%, 𝑟𝑒𝑐𝑎𝑙 of 99.68%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 99.68%, and MCC of 99.64%. 

 

Table 4 Classifier outcome of TSA-OSSAE scheme with various class labels on 30% of TSS  

Testing Set (30%) 

Labels 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 MCC 

A1 99.87 99.35 99.35 99.35 99.28 

A2 99.90 99.37 99.68 99.53 99.47 

A3 99.83 98.72 99.68 99.19 99.10 

A4 99.83 99.64 98.56 99.09 99.00 

A5 99.80 99.02 99.02 99.02 98.91 

A6 99.77 99.00 98.68 98.84 98.71 

A7 99.97 99.68 100.00 99.84 99.82 

A8 100.00 100.00 100.00 100.00 100.00 

A9 99.93 99.68 99.68 99.68 99.64 

N 99.90 99.65 99.30 99.47 99.42 

Average 99.88 99.41 99.39 99.40 99.34 



 
Fig. 8. Average outcome of TSA-OSSAE algorithm on 30% of TSS 

 
Fig. 9. Precision-recall curve analysis of the TSA-OSSAE approach 

An obvious precision-recall (PR) assessment of the TSA-OSSAE system in the test database is 

given in Fig. 9. The figure designated the TSA-OSSAE system has resulted in improved values 

of PR values in distinct classes. 

Table 5 Comparative outcome of TSA-OSSAE method with recent methodologies  

Methods 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 

TSA-OSSAE 99.88 99.41 99.39 99.40 

Voting Classifier-SMOTE 99.69 98.15 96.40 97.13 

ANN 90.12 94.32 99.08 93.44 

1D-CNN 83.69 88.70 83.51 89.71 

Random Forest 99.35 97.56 98.24 98.36 



Deep Random Neural Network 99.50 99.18 99.09 99.16 

 

Table 5 renders an overall outcome investigation of the TSA-OSSAE model with recent models 

[16]. A comparative investigation of the TSA-OSSAE algorithm with existing methods is given 

in Fig. 10. From the outcomes, it is apparent that the 1D-CNN method has shown minimal 

performance over other existing techniques. Also, the ANN model has reached slightly 

improved results whereas the RF model has reached even increased outcomes. Although the 

Voting classifier-SMOTE and DRNN models have resulted in reasonable performance, the 

TSA-OSSAE approach has demonstrated higher outcomes over other approaches. 

 
Fig. 10. Comparative analysis of the TSA-OSSAE system with recent methodologies  

Lastly, a detailed 𝑎𝑐𝑐𝑢𝑦 examination of the TSA-OSSAE methodology with existing 

approaches occurs in Fig. 11. The experimental values represented by the TSA-OSSAE 

methodology have resulted in increased 𝑎𝑐𝑐𝑢𝑦 of 99.88% whereas the voting-classifier-

SMOTE, ANN, 1D-CNN, RF, and DRNN models have accomplished reduced 𝑎𝑐𝑐𝑢𝑦 of 

99.69%, 90.12%, 83.69%, 99.35%, and 99.50% respectively. Thus, the TSA-OSSAE model 

can be applied for enhanced cyber threat detection performance.  

 



Fig. 11. 𝐴𝑐𝑐𝑢𝑦 the outcome of TSA-OSSAE methodology with recent methodologies 

 

5. Conclusion  

In this article, a novel TSA-OSSAE system has been projected for the detection and 

classification of cyber threats in IoT-enabled SC applications. The presented TSA-OSSAE 

algorithm majorly focuses on the detection of cyber threats to attain security in the SC. To 

attain this, this TSA-OSSAE approach follows TSA based feature selection approach to reduce 

computational complexity. Besides, the TSA-OSSAE technique applies the SSAE model for 

cyber threat detection. At last, the hyperparameters of the SSAE approach are optimally chosen 

by using the MVO technique. The experimental result investigation of the TSA-OSSAE 

technique was performed by making use of the TON_IoT telemetry dataset. The experimental 

outcomes establish the optimal performance of the TSA-OSSAE system to other recent 

methodologies. In the future, the performance of the TSA-OSSAE methodology was 

improvised by the outlier removal process. 
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