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1 Position of study lakes

The shallow lakes (avg. depth < 6m) which contained sufficient data (five or more consecutive growing
seasons with at least three observations per growing season) to calculate 5-year simple moving averages
(SMA) were unevenly distributed globally (SFig. 1), with only one lake in New Zealand, and most
lakes in the USA (SFig. 2), and in Denmark (SFig. 3).

Global map

Latitude

Longitude

SFig. 1: Global map of lakes with 5-year simple moving average data. Lakes with sufficient data are
situated in the US, Denmark and New Zealand.

2 Description of data-analysis steps

Here, we give a short rundown of the data-analysis steps (SFig. 4). In step 1, all possible moving
averages are calculated for each lake, in step 2 all moving average data is combined. In step 3, the
TN:TP ratio windows are defined with a minimum of In molar TN:TP of 0 and a maximum of In
molar TN:TP of 7, a window width of In molar TN:TP of 3 and a step of 0.1 In molar TN:TP. The
ratio windows are overlapping, hence, each data point can be drafted in multiple windows (step 3).
These TN:TP ratio windows are applied to the data in step 4 (in this example a In molar TN:TP
between 2 and 5). All data filtered in step 4 is then bootstrapped at the lake level (randomly sampled
with replacement, step 5a) and one observation for each randomly sampled lake is picked at random

(step 5b).
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7

This hierarchical bootsrap approach is the best way to reflect the structure of the original data. A
simple, non-hierarchical bootstrap would favor lakes with more five-year means over lakes with less
five-year means, simply because these make up a larger part of the data. Furthermore, sampling
without replacement at lake level would result in five-year means from lakes with few data dominating
the produced random dataset, as every lake would be sampled every time which then would result in
high model leverage of five-year means from lakes with only few data. In contrast, the hierarchical
procedure ensures that every lake has the same chance to end up in the randomly sampled bootstrap,
in the second step it ensures that for each sampled lake, every five-year mean has the same chance to
end up in the random dataset. These notions are in agreement with the findings of an assessment on

how to properly resample hierarchical data by non-parametric bootstrap.’

For the generated random sample, three generalized linear models are calculated and kept, if the
models converged (step 5¢). This is done repeatedly (300 times, step 5d) for the data of each TN:TP
ratio window to find all or most of the possible random combinations of lakes, with the aim to calculate

the error of the model estimates (pseudo R?, AIC, intercept and slopes are used in the study).

Data preparation Data resampling

2. Combine all
moving averages

1. Calculate all 5-year simple moving averages for
data with < 3 years in between

3. For In TN:TP windows between
0 and 7 conduct steps 4 and 5

Lake 1 Lake3 ... .. Lake n =
I3 In molar TN:TP (46 windows in total
1999 1988 2006 lake period ( )
> 2 years 133? ;88; Lake1 i In molar
~ TN:TP =0
2005 1992 2010 J = 0.1 02
2007 1993 2011 ~ :
2000 |- 2 ) 2012 Lakes 1 93
2010 years 2013 Lake3 ii In molar
20m 1998 Lake3 i TN:TP = 3
1999 2 43
2000 33 ..
2001 .
2003 Lake n
7

4. Filter based on

5c. Make models for

5a. Randomly sample lakes

with replacement from filtered
data (same number of lakes as

in original & ignoring time periods

5b. Sample a single
5-year moving
average per randomly
sampled lake

In TN:TP window
eg.INnTN:TP>2 & <5

randomly sampled dataset

for now)
Time n
Lake period InTN:TP Time
T ; 5 x Lake Lake  period
J GLM(Chla ~TP)
v Lake3 Lake3 i
lake3 i 461 ;{ o~ GLM(Chla ~ TN)
Lake3 ii Lake3 Lake3 i
Lake3 i 49 N
GLM(Chla ~ TP+TN)
Lal;; n Laken Lake n

5d. Repeat this 300 times per TN:TP window

SFig. 4: A conceptual depiction of the data-analysis steps conducted within the study.
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3 Approach to extract short-term and long-term signals using

simple moving averages

3.1 Choice of simple moving averages

We chose to use SMAs to extract the short-term and long-term signals, because these are easy to
compute and understand, because this approach compares well to more complex methods for long-
term signal prediction.? Finally, we chose SMAs because short-term signals can easily be extracted by
using their residuals, which is commonly done in e.g. economics, and has already once been done in

limnology.?

3.1.1 How to extract of long-term and short-term signals from time series data using

simple-moving averages

The SMA should contain the long-term signal and the residuals of the SMA should contain the short
term signal. The SMA residuals are calculated as observation — SM A for a given time point, e.g. an
SMA for the years 2010 - 2015 would be positioned in 2013, and this SMA would be subtracted from

the original observation of 2013.

Please note that only SMAs with odd numbers should be chosen if the SMA residual extraction
should work. For even numbers, the time point of the SMA will not be an integer and the short-term
observation cannot be aligned correctly (e.g., for a 4-year SMA from 2010 - 2014, the mean of the

SMA would be the year 2012.5, which makes alignment of single-year observations impossible).

3.2 Choice of lengths of simple moving averages

Methods to extract different signals for different ranges of time series require to define the length of
the signal to be extracted. SMAs are no exception to this rule. Here, an earlier study proposed to use
a version of Akaike’s information criterion, however, this approach gives one value for each time series,
and the authors found the results of their approach highly variable depending on the individual time
series.? Furthermore, this approach compares the predictive capability for different simple moving
average lengths,? instead we wanted to have the ideal length at which a long-term signal could be

extracted if it existed.

To detect the ideal simple moving average length, we chose to use the sum of absoulte differences
(SAD) between single-growing season values and SMAs. The SAD for a time series with a given

simple moving average length is calculated as:



107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

k
SAD = Z |SM A, — growing season observation,| (1)
i=1

1=

Here, i is the year and k is the length of the time series. For each year i, the absolute difference
between growing season observation (the mean of all values for a growing season) and value of the

simple-moving average for the same year is calculated.

3.3 Approaches to test the usability of simple moving averages and the

SAD approach to assess their ideal length

To test the capabilities of our SAD approach to calculate the best length for SMAs, and for SMAs to
extract short-term and long-term signals from a time series in which systematic variation and random

variation are mixed, we used two simulations and came to the following conclusions:

1. We could find the ideal simple moving average length and reconstruct a systematic long-term
signal from a time series with random long-term random noise. Details on the simulation are

found below (Section 4.1).

2. If a short-term signal of a correlation between nutrients and chlorophyll a would have been
contained in addition to the long-term signal, we also likely would have found it, as we show

with a second simulation. Details on the simulation are found below (Section 4.2).

Since the SAD approach worked well with simulated data, we applied it to real time series from our
lakes, and show that 5-year SMAs are a good trade-off between simple moving average length and

data availability (Section 5).

3.4 Why we analysed simple moving averages with a hierarchical bootstrap

approach

SMAs have the drawback that they are a kind of auto-regressive model, where past data points and
future data points affect the current value of the simple moving average[?, potentially affecting results
of the regressions between nutrients and Chla. To account for this, we randomized data used for the
correlations with the hierarchical bootstrap procedure described in Section 2 and shown conceptually
in SFig. 4. Based on this approach, on average, only one observed simple moving average is picked
from each lake, and, on average, each lake only appears only once in the dataset, making any effects
of SMAs of the same time series interfering with each other impossible (SFig. 4). The same is true

for the residuals of the SMAs.
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4 Simulations of the simple-moving average approach

4.1 Simulation of a long-term signal
4.1.1 Generating the long-term signal

We mixed two signals, a long-term signal containing a perfect linear correlation between two variables
to which we added a short-term signal, with different random noise for the two variables. Ideally we
should be able to extract the linear correlation coefficients again from this mix, when using SMAs and

the SAD approach.

First we created a long-term signal for a time series with 50 time points (resembling years), a variable
x (could be e.g. a nutrient) and a variable y (could be phytoplankton biomass), which is dependent

on Xx.

Here, variable x was created as:

x = (cos(pi * tim61727..__’50/25) *x2)+3 (2)

where time is an integer from 1 to 50. With that, the long-term signal has a period length of 50, and
a simple moving average with a length of 25 should be able to capture it again. The cosinus results

were multiplied by 5 to which a constant of 3 was added to for better looking positive numbers.

Variable y was then calculated with a linear model:

y=1+x%0.5 (3)

Subsequently, we added random noise from a normal distribution to x and y, using the rnorm function
with 50 samples in R with a mean = 0 and SD = 0.5 to create two independent random normal
distributions, which we added to x and y. The results of the simulation establishment can be seen
in SFig. 5. Without the random noise inserted by the normal distributions, r2 = 1, slope = 0.5, and
intercept = 1 for the correlation between x and y. By adding the random noise, the r? between x and
y is lowered to 0.52, and the intercept and slope are changed randomly (intercept = 1.46, slope =

0.37). The scatter plot reveals clear variability around the linear model line (SFig. 5c¢).

4.1.2 Estimating the ideal simple moving average length

We calculated the SAD for simple-moving average lengths of k = 2 - 40 (k equals the number of time
steps) for the simulated x and y. In our simulations, we always see the unimodal pattern appearing

for the SAD (SFig. 6a, SFig. 6b), where the SMA at the very lower end of the SAD incline capture
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SFig. 5: Long-term signal (black line) and long-term plus randomized short-term signal for variable x
and y (grey line), and linear regression between randomized variables x and y.
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still considerable short-term variation, and the SMA shortly before, at or after the SAD peak remove
part of the long term signal (SFig. 6¢, SFig. 6d). We, recommend using the SMA in the middle of
the SAD incline, clearly before the SAD peak. In this case we chose the SMA with k = 15 (here one
could also use 13 or 17), which largely follows the long-term signal without capturing too much of the

random short term signal (SFig. 6¢, SFig. 6d).

4.1.3 Reconstructing the long-term signal in the relationship between x and y

We chose SMA with k = 15 (SFig. 6¢, SFig. 6d) and found that the correlation of the SMA of x and y
improved (r? = 0.9) (SFig. 7) relative to the correlation of the x and y with random noise (r? = 0.52)

also reported in Section 4.1.1 (and shown in SFig. 5c¢).

Then, we tested whether we could reconstruct with the SMA data the original slope and intercept of
the linear model for x and y defined in Equation 3. For the linear regression SMA of x and y with k =
15, we found a slope = 0.49 and an intercept = 1.19. This was close to the slope = 0.5 and intercept
= 1 of the original linear model (Equation 3), and much closer than the slope = 0.37 and intercept =

1.46 of the regression of x and y with random noise (SFig. 5¢).

We conclude that can find an approbriate SMA length. With that we can successfully reconstruct

long-term signals in the correlation of two variables, such as TN and Chla or TP and Chla.

SMA ofy (k =15)

16 20 24 28

SMA of x (k=15)

SFig. 7: Linear regression between SMAs with length (k) = 15 of x and y

10
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4.1.4 Assessing whether we falsely detect a systematic short-term signal

Since we only included a random short-term signal, the residuals of SMA with k = 15 should only
provide random noise for the correlation between x and y. Here, the residuals were calculated as

simulated x and y (with random noise) minus the SMA of x and y (see for details)

For linear regression of the SMA residuals of x and y, the r2 = 0.1141812, and the scatter plot also

indicates no signal of a regression (SFig. 8)

This analysis shows that our approach does not falsely detect a short-term signal.

1.0

SMA residuals for y

05 00 05

SMA residuals for x

SFig. 8: Scatter plot of x and y residuals, calculated from the simulated x and y minus the SMA (k
=15) of x and y

4.2 Simulation of a short-term signal combined with a long-term signal

Above we show that we can successfully reconstruct a long-term signal and do not falsely detect a

short-term signal (Section 4.1).

Here, we assess whether we would also detect a short-term signal if it existed in the data using the
SMA calculation and residual calculation already described above. Please see our approach descrip-
tion above for further details (Section 3) and the long-term simulation for a more detailed example

(Section 4.1) of the approach.

4.2.1 Generating the signals

We again used the long term relationship between x and y as described in Section 4.1.1. Specifically,

we calculated the long-term signal (z;,,,, and y,,,,) based on Equation 2 and Equation 3 (SFig. 9a).

12
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To this, we added a short-term signal for x (x,,,,) and y (y,,..+) based on a regression with a negative
slope. To achieve this, we first created a single normal distribution N, = N(0,0.5) with 50 values

(one for each time step). Then we calculated x ;. = —1 % Ngpope a0d Ygpore = 2 % Nopors, 8lving an

hor

intercept = 0 and a slope = -2 for the regression between ., and vy, (SFig. 9b).

We combined the short-term and long-term signal as z,,,,, < —Zgp0p4 + Tjong (SFig. 10a) and y,,;, <

~Yshort T Yiong (SFig. 10b). The mixed signals z,,;, and y,,,;, exhibited only a weak relationship

X

(SFig. 10c).
- oo™ 5
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%_long x_short
(a) Long-term signal (b) Short-term signal

SFig. 9: Scatter plot of x and y for the long-term and short-term signal

4.2.2 Estimating the ideal simple moving average length

The ideal SMA length is again approximately k = 15, as with longer SMAs, the long-term variation gets
dampened, and shorter SMAs (here k = 5) remove less short-term variation (SFig. 11c & SFig. 11d).
On the SAD curve a SMA with k = 15 is on the middle of the incline before the SAD peak (SFig. 11a
& SFig. 11b)

4.2.3 Reconstructing the long-term and short-term signal in the relationship between

x and y

Neither the short nor the long signal was visible in the mixed signal (r? = 0.06) (SFig. 10c). However,
the long-term signal could be reconstructed to a large extent using SMAs. Here, the SMA with k =
15 gave a r? = 0.76 for the regression between x and y (SFig. 12), and we estimated an intercept =
1.22 and a slope = 0.51, which is close to the actual intercept of 1 and slope = 0.5 of the regression

between x,,,,, and y;,,,,-

We could also reconstruct the short term signal with a r2 = 0.83 (SFig. 13). Here, regressing the SMA
residuals yielded an intercept = -0.22 and slope = -1.88 between x and y, which is reasonably close to

the true slope = -2 and intercept = 0 of x4}, and Ygpone-

13
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25 We conclude that our approach can reconstruct mixed short-term and long-term signals in the regres-
26 sion of two variables. This strongly suggests that our approach would have found a short-term signal

a7 of the relationship between nutrients and Chla, if it existed.
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SFig. 12: Linear regression between SMAs with length (k) = 15 of x and y
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SFig. 13: Scatter plot of x and y SMA residuals, calculated from the simulated x and y minus the
SMA (k = 15) of x and y

16



218

219

220

221

222

223

224

225

226

227

228

229

230

5 Selecting the best simple-moving average length for the lake
data

We use the SAD approach described above (Section 3.2) to select the ideal SMA length for the real lake
data. As can be seen in the simulations with a only long-term, or a mixed long-term and short-term
signal, the ideal SMA length — i.e. the SMA length where the short-term variation is largely removed,
but the long-term variation is not dampened — is at the range of SAD before the peak but not at the

lower end of the incline (see SMA plots of simulation results in Section 4.1.2 and Section 4.2.2).

The SAD of the real lake data shows exactly the same pattern as the simulated data with an increase,
peak and subsequent decrease with longer SMAs. Here the average SAD peak was at an SMA length
of 7 to 11 years, but some time series already showed a decline in SAD with SMA lengths of more
than 7 years (SFig. 14). We therefore considered a 5-year SMA to be ideal, as this was still on the
ascent of the SAD for all time series. A 5-year SMA also allowed us to retain a relatively high number

of shallow lakes (SFig. 14).
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SFig. 14: Sums of absolute differences (SAD) TP (A), TN (B) and Chla (C), and number of lakes in the
dataset dependent on length of SMA for all data, observations with TN : TP < 20, and observations
with TN : TP > 50 (D).
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6 Selecting the best regression models

6.1 Choosing the type of regression model

We chose generalised linear models with a Gamma link function instead of simple linear models for
the 5-year SMAs because Chl-a concentrations best followed a Gamma distribution. In contrast, the
residuals of the SMAs best followed a Normal distribution. We assessed this using the fitdistrplus
package in R,* where we tested how well normal, log-normal and gamma distributions fit the data.
We kept the descriptor variables as they were, so we did not apply any data transformations (log or
otherwise). In both cases we used the GLM function from the GLM package in Julia, with a Gamma
link function for the 5-year SMAs and a Normal link function for the SMA residuals. A Normal link
GLM is equivalent to a linear model. However, we used the GLM function in both cases for maximum

comparability.

6.2 Choice of model terms

To find the models that parsimoniously explained Chl-a concentrations, we used Akaike’s information
criterion (AIC)®. Here, we compared one-way models with TN or TP concentrations as explanatory
variables for Chl-a concentrations with either additive models containing both TN and TP, or with

models containing both TN and TP and an interaction term between TN and TP.

Due to the nature of the data, we calculated thousands of AIC values over the range of molar TN:TP
ratios. To compare AIC values, we were not interested in their absolute values, but in the reduction
of AIC by the models. To assess this, we calculated the delta AIC (AAIC) between models, i.e. the
change in AIC by adding or removing model terms. To test the improvement in AIC for the additive
models, we calculated two AAIC for each sample. To compare the TN+TP additive models with the

TP only models, we calculated AAICsp ., 7ni7p as follows:

AAI CTP vs TN+TP — Al CTP model — Al CTN+TP model (4)

Similarly, we calculated the AAICry .o TNiTP 8S:

AAIC‘TN vs TN+TP — AICTN model AICTN+TP model (5)

To compare the additive models (TN + TP) and models with interaction (TN * TP), we also calculated

the AAIC N 7p vs T p for each random sample:
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A"él]-CYTN+TP vs TNxTP — AICTNJrTP model ~ AICTN*TP model (6)

Here, a negative AAIC indicates a reduction in the AIC, i.e. less information is lost and the model
explains the data better while being parsimonious. A AAIC at or above zero indicates no improvement

in the model.

If we plot the AAIC,p ,, rnirp calculated by Equation 4 against the mean molar TN:TP of the
random samples for the 5-year SMAs used in the study, we find considerable variation in the re-
sponse. In particular, for TN:TP < 40, we find that almost all model solutions have a negative
AAICrp s rnerp (SFig. 15 A). For the AAIC,y s rn+rp calculated by Equation 5, we find a

clear negative deviation from zero, around TN : TP = 50 (SFig. 15 B).

The distribution of AAIC along the TN : TP axis further supports the idea in the main text that TN
and TP affected Chla differently along the TN : TP axis, and that their effects on Chla complement

each other in the additive model with TN + TP.

The use of an interaction term did not improve the model quality, as indicated by the lack of deviation

of AAIC N 7p s TnsTp from zero (calculated by Equation 6, SFig. 15 C).

Additive regression slopes versus TN : TP
S-year SMAs

A B o]

-50

-100

-40
.EO 4

Delta between AIC of TP only and additive model
Delta between AIC of TN only and additive model
Delta AIC between additive model and model with interaction

-804

10 20 30 50 70 100 15( 10 20 a0 50 70 100 150 10 20 30 50 70

100

Mean molar TN:TP of random sample Mean molar TN:TP of random sample Mean melar TN:TP of random sample

SFig. 15: Results on Delta AIC for TP-only models versus additive models (panel A) or TN-only
models versus additive models (panel B), and for the Delta AIC between additive models and models
with interaction term between TN and TP (panel C). The models were constructed for the 5-year
simple moving averages (SMAs), therefore for lakes with 5 or more years of consecutive data. Positive
values indicate an increase of the AIC (hence reduced model quality), negative values indicate a
decrease of the AIC (hence increased model quality). See also Section 2 for details on the statistical
approach. The darker the points, the more overlapping solutions were found for the R? by the bootstrap
procedure. The orange line is the average response, based on a LOESS function.
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7 Separate analyses of the correlation between nutrients and

Chl-a for the Danish dataset and global data

To check whether the Danish dataset (Aarhus University, Danish Centre for Environment,
https://odaforalle.au.dk) and global datasetS revealed the same response of Chl-a to TN or TP at
the same TN:TP ratios, we conducted a separate analysis of the 5-year SMAs for both datasets using
exactly the same statistical approach as for the entire dataset. As for the full dataset, the SMAs

were randomly combined using the hierarchical bootstrap procedure (Section 2).

The separate analysis reveals two things. Due to the lower number of data within the separate analysis,
the patterns are linked to somewhat higher uncertainty, hence higher variability of the model results
on the y axis (SFig. 16, SFig. 17). Still the two datasets give the exactly same answer as the full
dataset presented in the main text for the pattern of R? (SFig. 16) and slope (SFig. 17) along the TN
: TP axis.

Re versus TN:TP
A- G (left): 5-year SMAs, D - F (right): SMA residuals (short-term variation)

D
TP-Chla regressions TP-Chla regressions
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TN-Chla regressions TN-Chla regressions

& 0504 Location DK US and NZ

0.00 0.00
10 20 30 50 70 100 150 10 20 30 50 70 100 150
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Mean molar TN:TP of random sample Mean molar TN:TP of random sample

SFig. 16: Explained variance (R?) of generalized linear modeds for the long-term varation based on 5-
year simple moving average (SMA) (A - C), and the short-term variation based on the SMA residuals.
Shown are results from generalized-linear models with Gamma distributions for 5-year SMAs, and
linear models with Normal distribution SMA residuals between total phosphorus (TP, mg / L, panel
A) and/or total nitrogen (TN, mg / L, panel B) and chlorophyll a (Chla, pg / L). These are plotted
against the mean molar TN : TP of each of randomly sampled dataset. The darker the points, the
more overlapping solutions were found for the R? by the bootstrap procedure (indicating the error of
the R?). The orange line is the average response based on a LOESS function.
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Additive model (TN+TP-Chla) slopes versus TN:TP
A & B (left). 5-year SMAs, C & D (right). SMA residuals (short-term variation)
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SFig. 17: Slopes of the additive models for long-term variation based on 5-year simple moving averages
(SMA) (A & B) or short-term variation contained within SMA residuals (C & D) versus the mean
molar TN : TP of each randomly sampled dataset. Shown are slopes from additive models between
total phosphorus (TP, mg / L, panel A, C) or total nitrogen (TN, mg / L, panel B, D) and chlorophyll
a (Chla, pg / L) versus the mean molar TN : TP of each of randomly sampled dataset. The darker the
points, the more overlapping solutions were found for the slopes by the bootstrap procedure (indicating
the error of the slopes). The orange line is the average response, based on a LOESS function. For
easier comparison, we used the same y-axis range for the TP slopes of the 1-year SMA and SMA
residuals, which removed 942 or extreme values for TP slopes of the the SMA residuals (see SI for full
plot). Hence, N = 8252 iterations or n = 9142 for the TN slopes or the TP slopes of the 5-year SMAs,
respectively (A & B); and n = 12858 or n = 13800 iterations for the TP and TN slopes of the SMA
residuals, respectively (C & D).
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- 8 Model intercepts and slopes

w» 8.1 Slopes, 5-year simple moving averages and residuals

3 8.1.1 TN model slopes

TN model slopes versus TN:TP
A (left): 5-year SMAs, B (right): SMA residuals (short-term variation)
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SFig. 18: Slopes of the TN models for long-term variation based on 5-year simple moving averages
(SMA) (A) or short-term variation contained within SMA residuals (B) versus the mean molar TN
: TP of each randomly sampled dataset. Shown are TN model between total nitrogen (TN, mg / L,
panel B, D) and chlorophyll a (Chla, ng / L) versus the mean molar TN : TP of each of randomly
sampled dataset. The darker the points, the more overlapping solutions were found for the slopes by
the bootstrap procedure (indicating the error of the slopes). The orange line is the average response,
based on a LOESS function.
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8.1.2 TP model slopes
TP model slopes versus TN:TP

A (left): 5-year SMAs, B (right): SMA residuals (short-term variation)
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SFig. 19: Slopes of the TP models for long-term variation based on 5-year simple moving averages
(SMA) (A) or short-term variation contained within SMA residuals (B) versus the mean molar TN :
TP of each randomly sampled dataset. Shown are TP model slopes between total nitrogen (TP, mg /
L, panel B, D) and chlorophyll a (Chla, png / L) versus the mean molar TN : TP of each of randomly
sampled dataset. The darker the points, the more overlapping solutions were found for the slopes by
the bootstrap procedure (indicating the error of the slopes). The orange line is the average response,
based on a LOESS function.
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»  8.1.3 Additive model slopes

Additive model (TN+TP-Chla) slopes versus TN:TP
A & B (left): 5-year SMAs, C & D (right): SMA residuals (short-term variation)
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SFig. 20: Slopes of the additive models for long-term variation based on 5-year simple moving averages
(SMA) (A & B) or short-term variation contained within SMA residuals (C & D) versus the mean
molar TN : TP of each randomly sampled dataset. Shown are slopes from additive models between
total phosphorus (TP, mg / L, panel A, C) or total nitrogen (TN, mg / L, panel B, D) and chlorophyll
a (Chla, pg / L) versus the mean molar TN : TP of each of randomly sampled dataset. The darker the
points, the more overlapping solutions were found for the slopes by the bootstrap procedure (indicating
the error of the slopes). The orange line is the average response, based on a LOESS function.
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= 8.2 Intercepts, 5-year simple moving averages and residuals

7 8.2.1 TN model intercepts

TN model intercepts versus TN:TP
A (left): 5-year SMAs, B (right): SMA residuals (short-term variation)
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SFig. 21: Intercepts of the TN models for long-term variation based on 5-year simple moving averages
(SMA) (A) or short-term variation contained within SMA residuals (B) versus the mean molar TN :
TP of each randomly sampled dataset. Shown are TN model intercepts between total nitrogen (TN,
mg / L, panel B, D) and chlorophyll a (Chla, ng / L) versus the mean molar TN : TP of each of
randomly sampled dataset. The darker the points, the more overlapping solutions were found for the
intercepts by the bootstrap procedure (indicating the error of the intercepts). The orange line is the
average response, based on a LOESS function.
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% 8.2.2 TP model intercepts

TP model intercepts versus TN:TP
A (left): 5-year SMAs, B (right): SMA residuals (short-term variation)
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SFig. 22: Intercepts of the TP models for long-term variation based on 5-year simple moving averages
(SMA) (A) or short-term variation contained within SMA residuals (B) versus the mean molar TN :
TP of each randomly sampled dataset. Shown are TN model intercepts between total nitrogen (TP,
mg / L, panel B, D) and chlorophyll a (Chla, ng / L) versus the mean molar TN : TP of each of
randomly sampled dataset. The darker the points, the more overlapping solutions were found for the
intercepts by the bootstrap procedure (indicating the error of the intercepts). The orange line is the
average response, based on a LOESS function.
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8.2.3 Additive model intercepts

Additive model intercepts versus TN:TP
A (left): 5-year SMAs, B (right): SMA residuals (short-term variation)
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SFig. 23: Intercepts of the additive models for long-term variation based on 5-year simple moving
averages (SMA) (A & B) or short-term variation contained within SMA residuals (C & D) versus the
mean molar TN : TP of each randomly sampled dataset. Shown are intercepts from additive models
between total phosphorus (TP, mg / L, panel A, C) or total nitrogen (TN, mg / L, panel B, D) and
chlorophyll a (Chla, ng / L) versus the mean molar TN : TP of each of randomly sampled dataset.
The darker the points, the more overlapping solutions were found for the intercepts by the bootstrap
procedure (indicating the error of the intecepts). The orange line is the average response, based on a
LOESS function.
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» 9 Random average dataset TN and TP concentrations versus
o average random dataset TN:TP

Scatter plots of concentrations versus TN:TP (molar)
A (left): TN concentration, B (right): TP concentration
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SFig. 24: Scatter plots of TN (panel A) and TP (panel B) concentrations verus TN:TP ratios for the
5-year SMA. The less transparent the points, the more overlapping data are displayed.

» 10 Data and code availability

23 Links to used open-access software, all code developed for this study, as well as all data used in this
24 study are available here: https://git.ufz.de/graeber/long-term-nutrient-chla-links-shallow-lakes. All
205 code developed for this study is published under the BSD-3-Clause License (allowing open access and

26 free software usage with full recognition of the original copyright).
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