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1 Position of study lakes49

The shallow lakes (avg. depth < 6m) which contained sufficient data (five or more consecutive growing50

seasons with at least three observations per growing season) to calculate 5-year simple moving averages51

(SMA) were unevenly distributed globally (SFig. 1), with only one lake in New Zealand, and most52

lakes in the USA (SFig. 2), and in Denmark (SFig. 3).53

SFig. 1: Global map of lakes with 5-year simple moving average data. Lakes with sufficient data are
situated in the US, Denmark and New Zealand.

2 Description of data-analysis steps54

Here, we give a short rundown of the data-analysis steps (SFig. 4). In step 1, all possible moving55

averages are calculated for each lake, in step 2 all moving average data is combined. In step 3, the56

TN:TP ratio windows are defined with a minimum of ln molar TN:TP of 0 and a maximum of ln57

molar TN:TP of 7, a window width of ln molar TN:TP of 3 and a step of 0.1 ln molar TN:TP. The58

ratio windows are overlapping, hence, each data point can be drafted in multiple windows (step 3).59

These TN:TP ratio windows are applied to the data in step 4 (in this example a ln molar TN:TP60

between 2 and 5). All data filtered in step 4 is then bootstrapped at the lake level (randomly sampled61

with replacement, step 5a) and one observation for each randomly sampled lake is picked at random62

(step 5b).63
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SFig. 2: Map of US lakes with 5-year simple moving average data.

SFig. 3: Map of Danish lakes with 5-year simple moving average data.
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This hierarchical bootsrap approach is the best way to reflect the structure of the original data. A64

simple, non-hierarchical bootstrap would favor lakes with more five-year means over lakes with less65

five-year means, simply because these make up a larger part of the data. Furthermore, sampling66

without replacement at lake level would result in five-year means from lakes with few data dominating67

the produced random dataset, as every lake would be sampled every time which then would result in68

high model leverage of five-year means from lakes with only few data. In contrast, the hierarchical69

procedure ensures that every lake has the same chance to end up in the randomly sampled bootstrap,70

in the second step it ensures that for each sampled lake, every five-year mean has the same chance to71

end up in the random dataset. These notions are in agreement with the findings of an assessment on72

how to properly resample hierarchical data by non-parametric bootstrap.173

For the generated random sample, three generalized linear models are calculated and kept, if the74

models converged (step 5c). This is done repeatedly (300 times, step 5d) for the data of each TN:TP75

ratio window to find all or most of the possible random combinations of lakes, with the aim to calculate76

the error of the model estimates (pseudo R², AIC, intercept and slopes are used in the study).77

SFig. 4: A conceptual depiction of the data-analysis steps conducted within the study.
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3 Approach to extract short-term and long-term signals using78

simple moving averages79

3.1 Choice of simple moving averages80

We chose to use SMAs to extract the short-term and long-term signals, because these are easy to81

compute and understand, because this approach compares well to more complex methods for long-82

term signal prediction.2 Finally, we chose SMAs because short-term signals can easily be extracted by83

using their residuals, which is commonly done in e.g. economics, and has already once been done in84

limnology.385

3.1.1 How to extract of long-term and short-term signals from time series data using86

simple-moving averages87

The SMA should contain the long-term signal and the residuals of the SMA should contain the short88

term signal. The SMA residuals are calculated as 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 − 𝑆𝑀𝐴 for a given time point, e.g. an89

SMA for the years 2010 - 2015 would be positioned in 2013, and this SMA would be subtracted from90

the original observation of 2013.91

Please note that only SMAs with odd numbers should be chosen if the SMA residual extraction92

should work. For even numbers, the time point of the SMA will not be an integer and the short-term93

observation cannot be aligned correctly (e.g., for a 4-year SMA from 2010 - 2014, the mean of the94

SMA would be the year 2012.5, which makes alignment of single-year observations impossible).95

3.2 Choice of lengths of simple moving averages96

Methods to extract different signals for different ranges of time series require to define the length of97

the signal to be extracted. SMAs are no exception to this rule. Here, an earlier study proposed to use98

a version of Akaike’s information criterion, however, this approach gives one value for each time series,99

and the authors found the results of their approach highly variable depending on the individual time100

series.2 Furthermore, this approach compares the predictive capability for different simple moving101

average lengths,2 instead we wanted to have the ideal length at which a long-term signal could be102

extracted if it existed.103

To detect the ideal simple moving average length, we chose to use the sum of absoulte differences104

(SAD) between single-growing season values and SMAs. The SAD for a time series with a given105

simple moving average length is calculated as:106
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𝑆𝐴𝐷 =
𝑘

∑
𝑖=1

|𝑆𝑀𝐴𝑖 − 𝑔𝑟𝑜𝑤𝑖𝑛𝑔 𝑠𝑒𝑎𝑠𝑜𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑖| (1)

Here, i is the year and k is the length of the time series. For each year i, the absolute difference107

between growing season observation (the mean of all values for a growing season) and value of the108

simple-moving average for the same year is calculated.109

3.3 Approaches to test the usability of simple moving averages and the110

SAD approach to assess their ideal length111

To test the capabilities of our SAD approach to calculate the best length for SMAs, and for SMAs to112

extract short-term and long-term signals from a time series in which systematic variation and random113

variation are mixed, we used two simulations and came to the following conclusions:114

1. We could find the ideal simple moving average length and reconstruct a systematic long-term115

signal from a time series with random long-term random noise. Details on the simulation are116

found below (Section 4.1).117

2. If a short-term signal of a correlation between nutrients and chlorophyll a would have been118

contained in addition to the long-term signal, we also likely would have found it, as we show119

with a second simulation. Details on the simulation are found below (Section 4.2).120

Since the SAD approach worked well with simulated data, we applied it to real time series from our121

lakes, and show that 5-year SMAs are a good trade-off between simple moving average length and122

data availability (Section 5).123

3.4 Why we analysed simple moving averages with a hierarchical bootstrap124

approach125

SMAs have the drawback that they are a kind of auto-regressive model, where past data points and126

future data points affect the current value of the simple moving average[2, potentially affecting results127

of the regressions between nutrients and Chla. To account for this, we randomized data used for the128

correlations with the hierarchical bootstrap procedure described in Section 2 and shown conceptually129

in SFig. 4. Based on this approach, on average, only one observed simple moving average is picked130

from each lake, and, on average, each lake only appears only once in the dataset, making any effects131

of SMAs of the same time series interfering with each other impossible (SFig. 4). The same is true132

for the residuals of the SMAs.133
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4 Simulations of the simple-moving average approach134

4.1 Simulation of a long-term signal135

4.1.1 Generating the long-term signal136

We mixed two signals, a long-term signal containing a perfect linear correlation between two variables137

to which we added a short-term signal, with different random noise for the two variables. Ideally we138

should be able to extract the linear correlation coefficients again from this mix, when using SMAs and139

the SAD approach.140

First we created a long-term signal for a time series with 50 time points (resembling years), a variable141

x (could be e.g. a nutrient) and a variable y (could be phytoplankton biomass), which is dependent142

on x.143

Here, variable x was created as:144

𝑥 = (𝑐𝑜𝑠(𝑝𝑖 ∗ 𝑡𝑖𝑚𝑒1,2,...,50/25) ∗ 2) + 3 (2)

where time is an integer from 1 to 50. With that, the long-term signal has a period length of 50, and145

a simple moving average with a length of 25 should be able to capture it again. The cosinus results146

were multiplied by 5 to which a constant of 3 was added to for better looking positive numbers.147

Variable y was then calculated with a linear model:148

𝑦 = 1 + 𝑥 ∗ 0.5 (3)

Subsequently, we added random noise from a normal distribution to x and y, using the rnorm function149

with 50 samples in R with a mean = 0 and SD = 0.5 to create two independent random normal150

distributions, which we added to x and y. The results of the simulation establishment can be seen151

in SFig. 5. Without the random noise inserted by the normal distributions, r² = 1, slope = 0.5, and152

intercept = 1 for the correlation between x and y. By adding the random noise, the r² between x and153

y is lowered to 0.52, and the intercept and slope are changed randomly (intercept = 1.46, slope =154

0.37). The scatter plot reveals clear variability around the linear model line (SFig. 5c).155

4.1.2 Estimating the ideal simple moving average length156

We calculated the SAD for simple-moving average lengths of k = 2 - 40 (k equals the number of time157

steps) for the simulated x and y. In our simulations, we always see the unimodal pattern appearing158

for the SAD (SFig. 6a, SFig. 6b), where the SMA at the very lower end of the SAD incline capture159
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(a) x time series (b) y time series

(c) Linear regression between randomized x and y

SFig. 5: Long-term signal (black line) and long-term plus randomized short-term signal for variable x
and y (grey line), and linear regression between randomized variables x and y.
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still considerable short-term variation, and the SMA shortly before, at or after the SAD peak remove160

part of the long term signal (SFig. 6c, SFig. 6d). We, recommend using the SMA in the middle of161

the SAD incline, clearly before the SAD peak. In this case we chose the SMA with k = 15 (here one162

could also use 13 or 17), which largely follows the long-term signal without capturing too much of the163

random short term signal (SFig. 6c, SFig. 6d).164

4.1.3 Reconstructing the long-term signal in the relationship between x and y165

We chose SMA with k = 15 (SFig. 6c, SFig. 6d) and found that the correlation of the SMA of x and y166

improved (r² = 0.9) (SFig. 7) relative to the correlation of the x and y with random noise (r² = 0.52)167

also reported in Section 4.1.1 (and shown in SFig. 5c).168

Then, we tested whether we could reconstruct with the SMA data the original slope and intercept of169

the linear model for x and y defined in Equation 3. For the linear regression SMA of x and y with k =170

15, we found a slope = 0.49 and an intercept = 1.19. This was close to the slope = 0.5 and intercept171

= 1 of the original linear model (Equation 3), and much closer than the slope = 0.37 and intercept =172

1.46 of the regression of x and y with random noise (SFig. 5c).173

We conclude that can find an approbriate SMA length. With that we can successfully reconstruct174

long-term signals in the correlation of two variables, such as TN and Chla or TP and Chla.175

SFig. 7: Linear regression between SMAs with length (k) = 15 of x and y
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(a) SAD for different SMAs of y (vertical lines) (b) SAD for different SMAs of x (vertical lines)

(c) y time series with SMA of different length k (d) x time series with SMA of different length k

SFig. 6: Sums of absolute differences (SAD) for y and x, as well as plots containing the long-term
signal, the randomized long-term signal, and simple moving averages (SMAs) of different lengths (k).
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4.1.4 Assessing whether we falsely detect a systematic short-term signal176

Since we only included a random short-term signal, the residuals of SMA with k = 15 should only177

provide random noise for the correlation between x and y. Here, the residuals were calculated as178

simulated x and y (with random noise) minus the SMA of x and y (see for details)179

For linear regression of the SMA residuals of x and y, the r² = 0.1141812, and the scatter plot also180

indicates no signal of a regression (SFig. 8)181

This analysis shows that our approach does not falsely detect a short-term signal.182

SFig. 8: Scatter plot of x and y residuals, calculated from the simulated x and y minus the SMA (k
= 15) of x and y

4.2 Simulation of a short-term signal combined with a long-term signal183

Above we show that we can successfully reconstruct a long-term signal and do not falsely detect a184

short-term signal (Section 4.1).185

Here, we assess whether we would also detect a short-term signal if it existed in the data using the186

SMA calculation and residual calculation already described above. Please see our approach descrip-187

tion above for further details (Section 3) and the long-term simulation for a more detailed example188

(Section 4.1) of the approach.189

4.2.1 Generating the signals190

We again used the long term relationship between x and y as described in Section 4.1.1. Specifically,191

we calculated the long-term signal (𝑥𝑙𝑜𝑛𝑔 and 𝑦𝑙𝑜𝑛𝑔) based on Equation 2 and Equation 3 (SFig. 9a).192
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To this, we added a short-term signal for x (𝑥𝑠ℎ𝑜𝑟𝑡) and y (𝑦𝑠ℎ𝑜𝑟𝑡) based on a regression with a negative193

slope. To achieve this, we first created a single normal distribution 𝑁𝑠ℎ𝑜𝑟𝑡 = 𝑁(0, 0.5) with 50 values194

(one for each time step). Then we calculated 𝑥𝑠ℎ𝑜𝑟𝑡 = −1 ∗ 𝑁𝑠ℎ𝑜𝑟𝑡 and 𝑦𝑠ℎ𝑜𝑟𝑡 = 2 ∗ 𝑁𝑠ℎ𝑜𝑟𝑡, giving an195

intercept = 0 and a slope = -2 for the regression between 𝑥𝑠ℎ𝑜𝑟𝑡 and 𝑦𝑠ℎ𝑜𝑟𝑡 (SFig. 9b).196

We combined the short-term and long-term signal as 𝑥𝑚𝑖𝑥 < −𝑥𝑠ℎ𝑜𝑟𝑡 + 𝑥𝑙𝑜𝑛𝑔 (SFig. 10a) and 𝑦𝑚𝑖𝑥 <197

−𝑦𝑠ℎ𝑜𝑟𝑡 + 𝑦𝑙𝑜𝑛𝑔 (SFig. 10b). The mixed signals 𝑥𝑚𝑖𝑥 and 𝑦𝑚𝑖𝑥 exhibited only a weak relationship198

(SFig. 10c).199

(a) Long-term signal (b) Short-term signal

SFig. 9: Scatter plot of x and y for the long-term and short-term signal

4.2.2 Estimating the ideal simple moving average length200

The ideal SMA length is again approximately k = 15, as with longer SMAs, the long-term variation gets201

dampened, and shorter SMAs (here k = 5) remove less short-term variation (SFig. 11c & SFig. 11d).202

On the SAD curve a SMA with k = 15 is on the middle of the incline before the SAD peak (SFig. 11a203

& SFig. 11b)204

4.2.3 Reconstructing the long-term and short-term signal in the relationship between205

x and y206

Neither the short nor the long signal was visible in the mixed signal (r² = 0.06) (SFig. 10c). However,207

the long-term signal could be reconstructed to a large extent using SMAs. Here, the SMA with k =208

15 gave a r² = 0.76 for the regression between x and y (SFig. 12), and we estimated an intercept =209

1.22 and a slope = 0.51, which is close to the actual intercept of 1 and slope = 0.5 of the regression210

between 𝑥𝑙𝑜𝑛𝑔 and 𝑦𝑙𝑜𝑛𝑔.211

We could also reconstruct the short term signal with a r² = 0.83 (SFig. 13). Here, regressing the SMA212

residuals yielded an intercept = -0.22 and slope = -1.88 between x and y, which is reasonably close to213

the true slope = -2 and intercept = 0 of 𝑥𝑠ℎ𝑜𝑟𝑡 and 𝑦𝑠ℎ𝑜𝑟𝑡.214
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(a) x time series (b) y time series

(c) Linear regression between mixed signals of x and y

SFig. 10: Long-term signal (black line), short-term signal (black, dashed line) and mixed signal (grey
line) for variable over time, and linear regression between mixed signals of x and y.

14



(a) SAD for different SMAs of y (vertical lines) (b) SAD for different SMAs of x (vertical lines)

(c) y time series with SMA of different length k (d) x time series with SMA of different length k

SFig. 11: Sums of absolute differences (SAD) for y and x, as well as plots containing the long-term
signal, the randomized long-term signal, and simple moving averages (SMAs) of different lengths (k).
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We conclude that our approach can reconstruct mixed short-term and long-term signals in the regres-215

sion of two variables. This strongly suggests that our approach would have found a short-term signal216

of the relationship between nutrients and Chla, if it existed.217

SFig. 12: Linear regression between SMAs with length (k) = 15 of x and y

SFig. 13: Scatter plot of x and y SMA residuals, calculated from the simulated x and y minus the
SMA (k = 15) of x and y
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5 Selecting the best simple-moving average length for the lake218

data219

We use the SAD approach described above (Section 3.2) to select the ideal SMA length for the real lake220

data. As can be seen in the simulations with a only long-term, or a mixed long-term and short-term221

signal, the ideal SMA length – i.e. the SMA length where the short-term variation is largely removed,222

but the long-term variation is not dampened – is at the range of SAD before the peak but not at the223

lower end of the incline (see SMA plots of simulation results in Section 4.1.2 and Section 4.2.2).224

The SAD of the real lake data shows exactly the same pattern as the simulated data with an increase,225

peak and subsequent decrease with longer SMAs. Here the average SAD peak was at an SMA length226

of 7 to 11 years, but some time series already showed a decline in SAD with SMA lengths of more227

than 7 years (SFig. 14). We therefore considered a 5-year SMA to be ideal, as this was still on the228

ascent of the SAD for all time series. A 5-year SMA also allowed us to retain a relatively high number229

of shallow lakes (SFig. 14).230

SFig. 14: Sums of absolute differences (SAD) TP (A), TN (B) and Chla (C), and number of lakes in the
dataset dependent on length of SMA for all data, observations with TN : TP < 20, and observations
with TN : TP > 50 (D).
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6 Selecting the best regression models231

6.1 Choosing the type of regression model232

We chose generalised linear models with a Gamma link function instead of simple linear models for233

the 5-year SMAs because Chl-a concentrations best followed a Gamma distribution. In contrast, the234

residuals of the SMAs best followed a Normal distribution. We assessed this using the fitdistrplus235

package in R,4 where we tested how well normal, log-normal and gamma distributions fit the data.236

We kept the descriptor variables as they were, so we did not apply any data transformations (log or237

otherwise). In both cases we used the GLM function from the GLM package in Julia, with a Gamma238

link function for the 5-year SMAs and a Normal link function for the SMA residuals. A Normal link239

GLM is equivalent to a linear model. However, we used the GLM function in both cases for maximum240

comparability.241

6.2 Choice of model terms242

To find the models that parsimoniously explained Chl-a concentrations, we used Akaike’s information243

criterion (AIC)5. Here, we compared one-way models with TN or TP concentrations as explanatory244

variables for Chl-a concentrations with either additive models containing both TN and TP, or with245

models containing both TN and TP and an interaction term between TN and TP.246

Due to the nature of the data, we calculated thousands of AIC values over the range of molar TN:TP247

ratios. To compare AIC values, we were not interested in their absolute values, but in the reduction248

of AIC by the models. To assess this, we calculated the delta AIC (Δ𝐴𝐼𝐶) between models, i.e. the249

change in AIC by adding or removing model terms. To test the improvement in AIC for the additive250

models, we calculated two Δ𝐴𝐼𝐶 for each sample. To compare the TN+TP additive models with the251

TP only models, we calculated Δ𝐴𝐼𝐶𝑇 𝑃 𝑣𝑠 𝑇 𝑁+𝑇 𝑃 as follows:252

Δ𝐴𝐼𝐶𝑇 𝑃 𝑣𝑠 𝑇 𝑁+𝑇 𝑃 = 𝐴𝐼𝐶𝑇 𝑃 𝑚𝑜𝑑𝑒𝑙 − 𝐴𝐼𝐶𝑇 𝑁+𝑇 𝑃 𝑚𝑜𝑑𝑒𝑙 (4)

Similarly, we calculated the Δ𝐴𝐼𝐶𝑇 𝑁 𝑣𝑠 𝑇 𝑁+𝑇 𝑃 as:253

Δ𝐴𝐼𝐶𝑇 𝑁 𝑣𝑠 𝑇 𝑁+𝑇 𝑃 = 𝐴𝐼𝐶𝑇 𝑁 𝑚𝑜𝑑𝑒𝑙 − 𝐴𝐼𝐶𝑇 𝑁+𝑇 𝑃 𝑚𝑜𝑑𝑒𝑙 (5)

To compare the additive models (TN + TP) and models with interaction (TN * TP), we also calculated254

the Δ𝐴𝐼𝐶𝑇 𝑁+𝑇 𝑃 𝑣𝑠 𝑇 𝑁∗𝑇 𝑃 for each random sample:255
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Δ𝐴𝐼𝐶𝑇 𝑁+𝑇 𝑃 𝑣𝑠 𝑇 𝑁∗𝑇 𝑃 = 𝐴𝐼𝐶𝑇 𝑁+𝑇 𝑃 𝑚𝑜𝑑𝑒𝑙 − 𝐴𝐼𝐶𝑇 𝑁∗𝑇 𝑃 𝑚𝑜𝑑𝑒𝑙 (6)

Here, a negative Δ𝐴𝐼𝐶 indicates a reduction in the AIC, i.e. less information is lost and the model256

explains the data better while being parsimonious. A Δ𝐴𝐼𝐶 at or above zero indicates no improvement257

in the model.258

If we plot the Δ𝐴𝐼𝐶𝑇 𝑃 𝑣𝑠 𝑇 𝑁+𝑇 𝑃 calculated by Equation 4 against the mean molar TN:TP of the259

random samples for the 5-year SMAs used in the study, we find considerable variation in the re-260

sponse. In particular, for TN:TP < 40, we find that almost all model solutions have a negative261

Δ𝐴𝐼𝐶𝑇 𝑃 𝑣𝑠 𝑇 𝑁+𝑇 𝑃 (SFig. 15 A). For the Δ𝐴𝐼𝐶𝑇 𝑁 𝑣𝑠 𝑇 𝑁+𝑇 𝑃 calculated by Equation 5, we find a262

clear negative deviation from zero, around TN : TP = 50 (SFig. 15 B).263

The distribution of Δ𝐴𝐼𝐶 along the TN : TP axis further supports the idea in the main text that TN264

and TP affected Chla differently along the TN : TP axis, and that their effects on Chla complement265

each other in the additive model with TN + TP.266

The use of an interaction term did not improve the model quality, as indicated by the lack of deviation267

of Δ𝐴𝐼𝐶𝑇 𝑁+𝑇 𝑃 𝑣𝑠 𝑇 𝑁∗𝑇 𝑃 from zero (calculated by Equation 6, SFig. 15 C).268

SFig. 15: Results on Delta AIC for TP-only models versus additive models (panel A) or TN-only
models versus additive models (panel B), and for the Delta AIC between additive models and models
with interaction term between TN and TP (panel C). The models were constructed for the 5-year
simple moving averages (SMAs), therefore for lakes with 5 or more years of consecutive data. Positive
values indicate an increase of the AIC (hence reduced model quality), negative values indicate a
decrease of the AIC (hence increased model quality). See also Section 2 for details on the statistical
approach. The darker the points, the more overlapping solutions were found for the R² by the bootstrap
procedure. The orange line is the average response, based on a LOESS function.
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7 Separate analyses of the correlation between nutrients and269

Chl-a for the Danish dataset and global data270

To check whether the Danish dataset (Aarhus University, Danish Centre for Environment,271

https://odaforalle.au.dk) and global dataset6 revealed the same response of Chl-a to TN or TP at272

the same TN:TP ratios, we conducted a separate analysis of the 5-year SMAs for both datasets using273

exactly the same statistical approach as for the entire dataset. As for the full dataset, the SMAs274

were randomly combined using the hierarchical bootstrap procedure (Section 2).275

The separate analysis reveals two things. Due to the lower number of data within the separate analysis,276

the patterns are linked to somewhat higher uncertainty, hence higher variability of the model results277

on the y axis (SFig. 16, SFig. 17). Still the two datasets give the exactly same answer as the full278

dataset presented in the main text for the pattern of R² (SFig. 16) and slope (SFig. 17) along the TN279

: TP axis.280

SFig. 16: Explained variance (R²) of generalized linear modeös for the long-term varation based on 5-
year simple moving average (SMA) (A - C), and the short-term variation based on the SMA residuals.
Shown are results from generalized-linear models with Gamma distributions for 5-year SMAs, and
linear models with Normal distribution SMA residuals between total phosphorus (TP, mg / L, panel
A) and/or total nitrogen (TN, mg / L, panel B) and chlorophyll a (Chla, µg / L). These are plotted
against the mean molar TN : TP of each of randomly sampled dataset. The darker the points, the
more overlapping solutions were found for the R² by the bootstrap procedure (indicating the error of
the R²). The orange line is the average response based on a LOESS function.
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SFig. 17: Slopes of the additive models for long-term variation based on 5-year simple moving averages
(SMA) (A & B) or short-term variation contained within SMA residuals (C & D) versus the mean
molar TN : TP of each randomly sampled dataset. Shown are slopes from additive models between
total phosphorus (TP, mg / L, panel A, C) or total nitrogen (TN, mg / L, panel B, D) and chlorophyll
a (Chla, µg / L) versus the mean molar TN : TP of each of randomly sampled dataset. The darker the
points, the more overlapping solutions were found for the slopes by the bootstrap procedure (indicating
the error of the slopes). The orange line is the average response, based on a LOESS function. For
easier comparison, we used the same y-axis range for the TP slopes of the 1-year SMA and SMA
residuals, which removed 942 or extreme values for TP slopes of the the SMA residuals (see SI for full
plot). Hence, N = 8252 iterations or n = 9142 for the TN slopes or the TP slopes of the 5-year SMAs,
respectively (A & B); and n = 12858 or n = 13800 iterations for the TP and TN slopes of the SMA
residuals, respectively (C & D).
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8 Model intercepts and slopes281

8.1 Slopes, 5-year simple moving averages and residuals282

8.1.1 TN model slopes283

SFig. 18: Slopes of the TN models for long-term variation based on 5-year simple moving averages
(SMA) (A) or short-term variation contained within SMA residuals (B) versus the mean molar TN
: TP of each randomly sampled dataset. Shown are TN model between total nitrogen (TN, mg / L,
panel B, D) and chlorophyll a (Chla, µg / L) versus the mean molar TN : TP of each of randomly
sampled dataset. The darker the points, the more overlapping solutions were found for the slopes by
the bootstrap procedure (indicating the error of the slopes). The orange line is the average response,
based on a LOESS function.
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8.1.2 TP model slopes284

SFig. 19: Slopes of the TP models for long-term variation based on 5-year simple moving averages
(SMA) (A) or short-term variation contained within SMA residuals (B) versus the mean molar TN :
TP of each randomly sampled dataset. Shown are TP model slopes between total nitrogen (TP, mg /
L, panel B, D) and chlorophyll a (Chla, µg / L) versus the mean molar TN : TP of each of randomly
sampled dataset. The darker the points, the more overlapping solutions were found for the slopes by
the bootstrap procedure (indicating the error of the slopes). The orange line is the average response,
based on a LOESS function.
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8.1.3 Additive model slopes285

SFig. 20: Slopes of the additive models for long-term variation based on 5-year simple moving averages
(SMA) (A & B) or short-term variation contained within SMA residuals (C & D) versus the mean
molar TN : TP of each randomly sampled dataset. Shown are slopes from additive models between
total phosphorus (TP, mg / L, panel A, C) or total nitrogen (TN, mg / L, panel B, D) and chlorophyll
a (Chla, µg / L) versus the mean molar TN : TP of each of randomly sampled dataset. The darker the
points, the more overlapping solutions were found for the slopes by the bootstrap procedure (indicating
the error of the slopes). The orange line is the average response, based on a LOESS function.
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8.2 Intercepts, 5-year simple moving averages and residuals286

8.2.1 TN model intercepts287

SFig. 21: Intercepts of the TN models for long-term variation based on 5-year simple moving averages
(SMA) (A) or short-term variation contained within SMA residuals (B) versus the mean molar TN :
TP of each randomly sampled dataset. Shown are TN model intercepts between total nitrogen (TN,
mg / L, panel B, D) and chlorophyll a (Chla, µg / L) versus the mean molar TN : TP of each of
randomly sampled dataset. The darker the points, the more overlapping solutions were found for the
intercepts by the bootstrap procedure (indicating the error of the intercepts). The orange line is the
average response, based on a LOESS function.
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8.2.2 TP model intercepts288

SFig. 22: Intercepts of the TP models for long-term variation based on 5-year simple moving averages
(SMA) (A) or short-term variation contained within SMA residuals (B) versus the mean molar TN :
TP of each randomly sampled dataset. Shown are TN model intercepts between total nitrogen (TP,
mg / L, panel B, D) and chlorophyll a (Chla, µg / L) versus the mean molar TN : TP of each of
randomly sampled dataset. The darker the points, the more overlapping solutions were found for the
intercepts by the bootstrap procedure (indicating the error of the intercepts). The orange line is the
average response, based on a LOESS function.
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8.2.3 Additive model intercepts289

SFig. 23: Intercepts of the additive models for long-term variation based on 5-year simple moving
averages (SMA) (A & B) or short-term variation contained within SMA residuals (C & D) versus the
mean molar TN : TP of each randomly sampled dataset. Shown are intercepts from additive models
between total phosphorus (TP, mg / L, panel A, C) or total nitrogen (TN, mg / L, panel B, D) and
chlorophyll a (Chla, µg / L) versus the mean molar TN : TP of each of randomly sampled dataset.
The darker the points, the more overlapping solutions were found for the intercepts by the bootstrap
procedure (indicating the error of the intecepts). The orange line is the average response, based on a
LOESS function.
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9 Random average dataset TN and TP concentrations versus290

average random dataset TN:TP291

SFig. 24: Scatter plots of TN (panel A) and TP (panel B) concentrations verus TN:TP ratios for the
5-year SMA. The less transparent the points, the more overlapping data are displayed.

10 Data and code availability292

Links to used open-access software, all code developed for this study, as well as all data used in this293

study are available here: https://git.ufz.de/graeber/long-term-nutrient-chla-links-shallow-lakes. All294

code developed for this study is published under the BSD-3-Clause License (allowing open access and295

free software usage with full recognition of the original copyright).296
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