

Analysis of 4-bromophenols degradation mechanism, kinetics and isotherms by *Pichia kluyveri* FM012: Experimental and modeling philosophy

Ismallianto Isia

Curtin University

Yudi Sukmono

Curtin University

Tony Hadibarata (✉ hadibarata@curtin.edu.my)

Curtin University

Murat Yilmaz

Curtin University

Research Article

Keywords: *Pichia kluyveri*, biosorption, 4-bromophenol, biodegradation

Posted Date: June 30th, 2023

DOI: <https://doi.org/10.21203/rs.3.rs-3117471/v1>

License: This work is licensed under a Creative Commons Attribution 4.0 International License.

[Read Full License](#)

Additional Declarations: No competing interests reported.

1 **Analysis of 4-bromophenols degradation mechanism, kinetics and isotherms by**
2 ***Pichia kluyveri* FM012: Experimental and modeling philosophy**

5 Ismallianto Isia¹, Yudi Sukmono¹, Tony Hadibarata^{*1}, Murat Yilmaz²

7 ¹Environmental Engineering Program, Faculty of Engineering and Science, Curtin
8 University, 98009 Miri, Sarawak, Malaysia

9 ²Department of Chemistry and Chemical Processing Technologies, Bahçe Vocational
10 School, Osmaniye Korkut Ata University, 80000, Osmaniye, Türkiye

12 Corresponding author*: hadibarata@curtin.edu.my

14 **Highlights**

- 17 • The *Pichia kluyveri* FM012 is effective biosorbent for 4-bromophenols.
- 18 • Microorganisms on the cell surface contribute to increased biodegradation.
- 19 • At low pH, protonation of H⁺ combined with the fungal surface, increasing
20 biosorption.
- 21 • The addition of glucose to *Pichia kluyveri* FM012 rised the removal of 4-
22 bromophenol.
- 23 • Culture showed the highest degradation (96%) with yeast for 15 days of
24 incubation.

25
26 **Abstract**

28 The use of toxic and persistent pesticides in agriculture results in serious and lasting
29 environmental impacts. Although traditional methods such as physical and chemical
30 reclamation give the best results, treating these contaminants requires high cost and
31 expertise. Therefore, this study focuses on bioremediation recovery, which is more
32 efficient, economical, and safer to remove. In this case, the newly isolated potential of
33 *Pichia kluyveri* FM012 in degrading 4-bromophenol was investigated. The selected
34 strain was isolated from the tropical rainforest in Selangor, Malaysia. The impact of
35 optimized parameters such as agitation, pH, nitrogen and carbon source were also

36 studied. After extensive testing, the best optimal degradation was at pH 5 with 150 rpm
37 stirrer speed. Glucose and yeast performed best compared to other carbon and nitrogen
38 sources. The maximum biosorption capacity ($q_m = 38.46$ mg/g biomass) was predicted
39 by the Langmuir model, but the Freundlich model adsorption gave a better value of $R^2 =$
40 0.999. The pseudo-second-order kinetic model fits the study of biosorption kinetics. The
41 FTIR spectrum revealed the presence of asymmetric and symmetric vibration of the
42 aromatic ring and was assigned C=C or C=O, and fungi showed biosorption ability in
43 broad functional groups. These results provided interesting information about the ability
44 of *Pichia kluyveri* FM012 and potential applications to remediate the resistant pesticide.
45

46 **Keywords:** *Pichia kluyveri*; biosorption; 4-bromophenol; biodegradation
47
48

49 1. Introduction

50

51 Bromophenols (BRPs) are a group of brominated phenolic compounds that can be made
52 from both natural and synthetic processes. It has been extensively used in chemical
53 industry, flame retardants, polymer materials, resorcinol precursors, pharmaceuticals
54 and pesticides for agricultural field as well [1, 2]. Combustion of leaded petrol also rise
55 the producing of bromophenol [2, 3]. In addition, several marine organisms have been
56 reported in nature to produce brominated compounds, including sea sponges, algae, and
57 bacteria [4-6]. However, due to their physicochemical properties such as toxicity,
58 persistence and bioaccumulation [7-10], bromophenols are prohibited by the U.S. EPA
59 listed as a Priority Pollutant due to harmful effects on the environment and organisms
60 [11]. Bromophenol levels of up to 187, 1140 and 3690 mg L⁻¹ have been reported in
61 photographic industrial wastewater [12], river water [13] and estuarine sediments [14],
62 respectively. All of these issues encourage researchers to develop an efficient and
63 effective method for removing pollutants containing 4-bromophenols before they are
64 released into the environment.

65 Several chemical and physical techniques such as photodegradation, photocatalysis,
66 volatilization and advanced oxidation have been proposed and implemented to treat
67 pollutants containing phenolic compounds. Chemical degradation of bromophenols by
68 using advanced oxidation methods such as photocatalysts [15-22], metal oxides [23,
69 24], biomimetic catalytic systems using iron(III)-porphyrins and an oxygen [25-29] and

70 permanganate [15, 30] the positive result. In addition, physical processing treatment can
71 also be used to degrade halogenated aromatic compounds, including UV/Fenton
72 degradation, direct UV irradiation, UVvis/BiOBr, and related reactions [15, 17, 21, 31].
73 Although conventional methods such as physical and chemical treatments gave the
74 appropriate results, the debromination efficiency for brominated aromatics still needs to
75 be further improved due to the complexity of the aromatic reaction mechanism [32] and
76 toxic by-products may be generated during the process. In addition, they required high
77 costs and expertise in the treatment process. Therefore, a biological approach seems to
78 be a good strategy to degrade brominated phenolic compounds.

79 Biodegradation is one of the most important natural processes that has been extensively
80 researched. Due to its many benefits, including lower treatment costs, a lack of
81 secondary contamination, and an environmentally benign treatment process, it has
82 showed potential over these techniques [33]. Depending on the structure of the pollutant
83 and the type of microorganisms, the degradation of the brominated phenolic compounds
84 can take place under aerobic and anaerobic conditions. Algae [34], actinomycetes [35],
85 bacteria [36, 37], yeast [38, 39], and fungi [40, 41] have all been used in studies on the
86 biodegradation of aromatic compounds by microorganisms. Recently, bioremediation
87 research has focused more on bacteria and fungi. Bacteria have been shown the ability
88 to degrade the aromatic compound due to their strong adaptability with high activity and
89 wide distribution [42]. However, the bacterial activity in the degradation of aromatic
90 amines is limited and inhibited [43]. Furthermore, it has been demonstrated that fungi
91 degrade a complex organic material through extracellular ligninolytic enzymes [44]
92 when an efficient system such as the solid-liquid separation method is applied [45].

93 However, the presence of a halogenated group in the aromatic ring increases resistance
94 to microbial attack [46]. Therefore, the degradation of halogenated aromatic compounds
95 by microorganisms has attracted the attention of researchers, and some bacteria and
96 fungi have been shown to enhance the degradation process [47, 48]. Some
97 microorganisms such as *Achromobacter piechaudii* strain TBPZ [49], *Ochrobactrum* sp.
98 strain TB01 [50] is said to degrade bromophenol. In addition, *Sphingopyxis chilensis*
99 S37 and *Sphingopyxis*-like strain S32 have been reported to degrade tribromophenol
100 [51]. *Arthrobacter chlorophenolicus* has been shown to complete the degradation of 4-
101 chlorophenol within 24 hours by using chlorophenol as a carbon and energy source
102 [52].

103 Therefore, the present study aims to investigate the potential of *Pichia kluyveri* FM012
104 for dehalogenation of brominated aromatics in liquid media batches. In particular, we
105 focused on: (1) the efficiency of bromophenol removal, (2) the impact of the typical
106 factors, and (3) studies on debromination kinetics and isotherms. It is very useful to
107 determine the highest degradation of 4-bromophenol over a short period of time using
108 wild isolated fungi.

109

110 **2. Materials and methods**

111

112 **2.1 Materials**

113 The chemicals used in the study were obtained from 4-bromophenol Fluka
114 (Switzerland), while D(+)-galactose, chloramphenicol and Remazol Brilliant Blue R
115 were obtained from Acros Organick (Belgium). D(-)-fructose, Malt extract and D(+)-
116 glucose monohydrate obtained from Merk (Germany). Macherey-Nagel (Germany) was
117 used to get silica gel. Bacteriological peptone was obtained from Oxiod (England).
118 Dichloromethane, ammonium nitrate, hydrochloric acid, chloroform, N,N-
119 dimethylformamide and ethyl acetate were purchased from QreC (New Zealand).
120 Tween 80, ammonium tartrate and sodium hydroxide pellets were obtained from Sigma
121 Aldrich (USA) and toluene was purchased from Deajung (Korea).

122

123 **2.2 Microorganism**

124 *Pichia kluyveri* was collected from tropical rainforest by Forest Research Institute
125 Malaysia (FRIM) Selangor, Malaysia. The isolated strain was chosen based on its
126 ability to remove Remazol Brilliant Blue R (RBBR) in a solid medium containing 20
127 mL of malt extract agar (2% (w/v), 2% (w/v) glucose, 0.2% (w/v) yeast, 0.03% (w/v)
128 chloramphenicol and 50 ppm RBBR in a Petri disk, followed by incubation at room
129 temperature for 7 to 15 days transferred to fresh agar obtaining a pure strain. Potential
130 strain changed the hue of the RBBR dye from blue to yellow.

131 **2.3 Liquid culture condition**

132 The selected fungi were screened in several liquid media to find the optimal medium for
133 degrading 4-bromophenol. The liquid medium contains 1% (w/v) glucose, 1% (w/v)
134 yeast and 0.2% chloramphenicol. The experiments were carried out in a 100 mL
135 Erlenmeyer flask containing 20 mL liquid medium and 40 ppm 4-bromophenol
136 dissolved in N,N-dimethylformamide, Tween 80 and distilled water. The liquid medium

137 was sterilized at a temperature of 121 °C for 15 min. Three mycelial plugs of the fungus
138 were punched out with a cork borer from the outer rim of an actively growing culture on
139 an inoculum plate before inoculation into the Erlenmeyer flask. The duration of the pre-
140 incubation was varied between 7 and 15 days to obtain a similar radial. Each liquid
141 medium was supplemented with 40 ppm 4-bromophenol and then incubated for 7-day
142 intervals in the dark at a temperature of 25 °C. Incubation of the liquid medium with 4-
143 bromophenol without inoculum was used as a comparison to determine loss of
144 initiation. During the incubation process, the concentration of 4-bromophenol was also
145 carried out. This investigation was carried out three times.

146

147 **2.4 Effect of physico-chemical parameters**

148 The effects of pH on the bioremoval of 4-bromophenol were studied in the liquid
149 medium containing mycelia and 30 ppm 4-bromophenol solution. In this study, pH
150 values of 5 to 8 were adjusted. The effects of agitation speeds ranging from 0 to 150
151 rpm were evaluated. In addition, the effect of various carbon sources (glucose,
152 galactose, lactose and starch) and nitrogen sources (yeast, peptone, ammonium nitrate
153 and ammonium tartrate) were examined.

154

155 **2.5 Analytical methods**

156 Liquid medium was mixed with ethyl acetate to extract fungal enzyme. The medium
157 was extracted separately with funnel separation three times (200 mL each). The liquid
158 medium and mycelia were separated by filtration and then extracted with ethyl acetate.
159 All extract solutions were evaporated using a rotary evaporator to remove the ethyl
160 acetate solvent. The extracts were pooled for each culture and purified by column
161 chromatography and loaded onto a silica gel column before eluting with 150 mL of
162 dichloromethane. Then the extract solution was evaporated to about 2 mL using a rotary
163 evaporator and then dissolved in 10 mL of toluene for the next analysis.

164 Gas chromatographic analysis of the extract solution was performed using an Agilent
165 7820A instrument fitted with a split/splitless injector and coupled to an ionization flame
166 detector (FID). On an HP-5 capillary column (30 m, 0.32 mm i.d., 0.25 m film
167 thickness), the compounds were separated. The oven's temperature was set at 80 °C for
168 1 min, followed by a linear ramp of 23 °C/min up to 280 °C and a 1-min hold at 310 °C.
169 Temperatures at the injector and detector were 330 °C. The carrier gas used was
170 nitrogen. The injection volume was 1 L, and the flow rate was 3 mL/min. By

171 contrasting the retention times between the sample and the control, the peak of the
 172 sample was identified.

173

174 **2.6 Biosorption isotherm**

175 Two isotherm models, namely Langmuir and Freundlich, were used to describe the
 176 biosorption equilibrium. The Langmuir model assumes that there is no interaction
 177 between adsorbent and pollutant. In addition, the revisable adsorption or desorption
 178 process takes place on a homogeneous surface upon formation of a saturated monolayer.

179 The Langmuir isotherm model can be expressed mathematically as: [53]

$$180 \quad q_e = \frac{q_m \cdot K_L \cdot C_e}{1 + K_L \cdot C_e} \quad (1)$$

181 where K_L is the Langmuir adsorption constant (L/mg) with respect to the adsorption
 182 energy, q_m (mg/g) is the maximum adsorption capacity, q_e and C_e are the biosorption
 183 capacity (mg/g) at equilibrium and equilibrium concentrations of pollutants (mg/L).

184 A Freundlich model is proposed based on the heterogeneous surface adsorption. The
 185 model is given as:

$$186 \quad q_e = K_F \cdot C_e^{\frac{1}{n}} \quad (2)$$

187 where K_F (L/mg) and n are Freundlich constants related to the capacity of the adsorbent-
 188 biosorbent and the adsorption constant of the intensity of the biosorbent, respectively. q_e
 189 is the equilibrium biosorption capacity (mg/g) and C_e is the equilibrium concentration of
 190 the pollutant (mg/L).

191

192 **2.7 Biosorption kinetics**

193 In order to determine the kinetic behavior of 4-bromophenol biosorption, two pseudo-
 194 first-order and pseudo-second-order kinetic models were used. The adsorbent was
 195 mixed with concentrations (30 mg/L) of 4-bromophenol solution in 250 mL of an
 196 Erlenmeyer flask. A total of 34 flasks were prepared to perform this experiment in
 197 duplicate, maintained at constant stirring speed (150 rpm) and temperature (25 °C).
 198 Control flasks without biosorbents were also prepared and these experiments were
 199 performed. The sample was collected at different time points to determine the
 200 concentrations of 4-bromophenol residues. The biosorption capacity (q) was determined
 201 by following the following pseudo-first-order equation: [54]

202

203 $\log(q_e - q_t) = \log(q_e - k_1)t$ (3)

204

205 where q_t (mg/g) is the adsorption capacity at time t (h) and q_e (mg/g) is the equilibrium
206 adsorption capacity and k_1 (h^{-1}) is the equilibrium pseudo first-order constant by plotting
207 $\ln(q_e - q_t)$ vs. t .

208 The pseudo-second-order model is given by the following equation [55]:

209
$$\frac{t}{q_t} = \frac{1}{k_2 \cdot q_e^2} + \frac{1}{q_e} \quad (4)$$

210 where q_t is the amount of pollutant adsorbed at time t ($\text{mg}^{-1}\text{g}^{-1}$), q_e is the steady-state
211 biosorption amount ($\text{mg}^{-1}\text{g}^{-1}$), and k_2 is the pseudo-second-order rate constant (g/mgh).

212 The intraparticle diffusion equation can be expressed as:

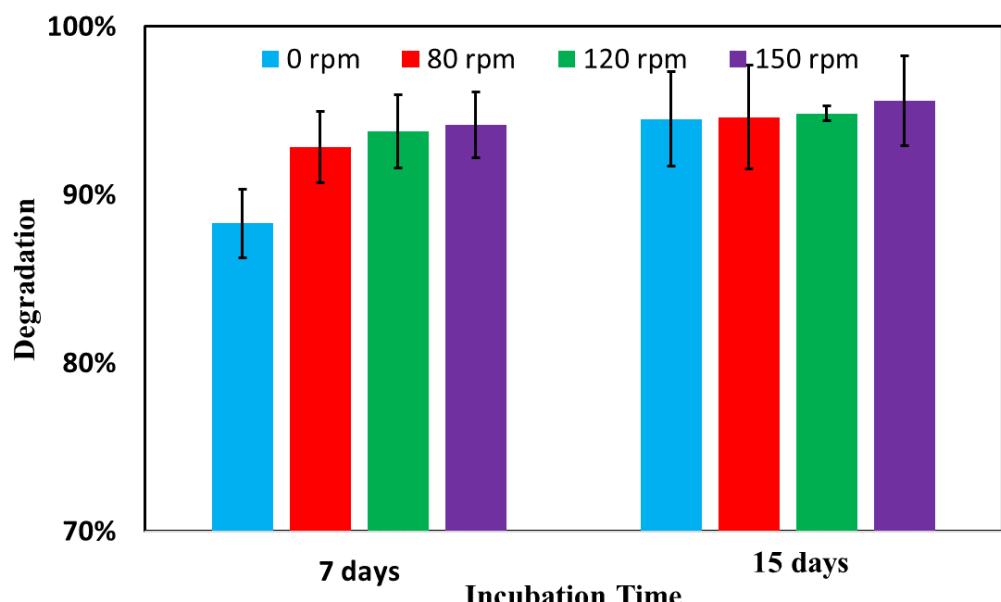
213
$$q_e = k_{\text{diff}} t^{0.5} + C \quad (5)$$

214 where C is the intercept of linear equation and k_{diff} is the intraparticle diffusion rate
215 constant.

217 2.8 Characterization

218 The surface morphology of the sample was observed using scanning electron
219 microscopy (SEM) (HITACHI S-3400N). In addition, the functional group of the
220 sample was examined using Fourier Transform Infrared (FTIR) (Perkin Elmer,
221 Spectrum One). The dried sample was mixed with KBr in a weight ratio of 100:1,
222 followed by compression with a hydraulic piston to obtain a pellet shape with a
223 diameter of 10 mm. The spectra were recorded with wave numbers between 400 and
224 4000 cm^{-1} with a spectral resolution of 4 cm^{-1} . All spectra were compared together
225 between treated and untreated curves.

227 3. Results and Discussion


229 3.1 Effect of agitation

230 Fig. 1 shows the effect of agitation on the degradation of 4-bromophenol by *Pichia*
231 *kluyveri* FM012. Agitation had two main effects on fungal incubation. First, a high
232 agitation speed tends to ensure adequate oxygenation of the culture. On the other hand,
233 it delivers high energy with high shear stress to the damaged culture cells and
234 mycelium. The lowest degradation rate of 4-bromophenol was observed in the static

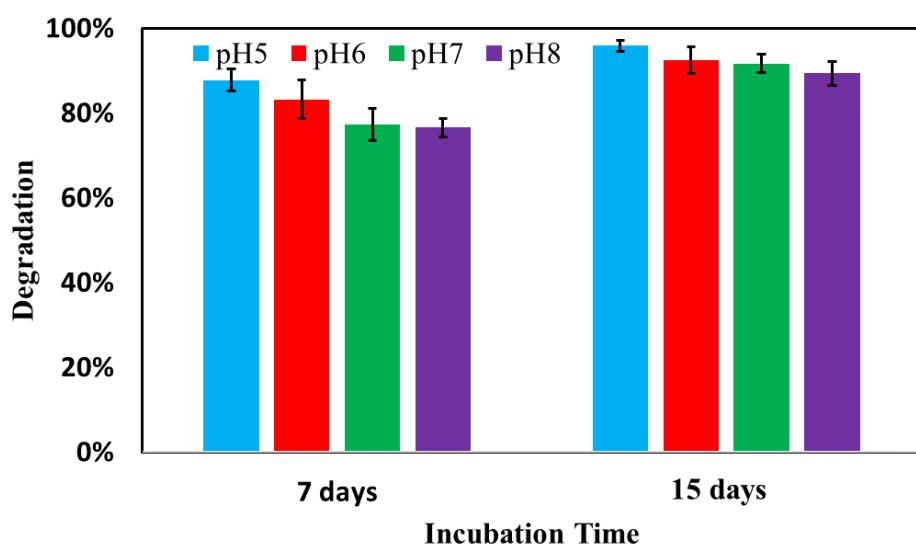
235 phase (88%) for 7 days. After increasing the agitation speed and time, the degradation
 236 rate was generally increased up to 96%. The best breakdown of 4-bromophenol was at a
 237 speed of 150 rpm. The success of decomposition is based on the correlation between the
 238 surface of the fungus and the oxygen supplied. This parallel association leads to an
 239 increased exchange of substances between the medium and the cells. In addition, the
 240 extracellular enzyme activities of fungi such as laccase and manganese also contribute
 241 to the degradation of 4-bromophenol [56]. The highest laccase enzyme productions are
 242 achieved in shake culture and promote degradation. In the stationary phase, degradation
 243 and biosorption limit oxygen transfer to the cells. This inhibits the oxidative enzymes
 244 and prevents optimal 4-bromophenol degradation. The lower rotation speed is probably
 245 related to the lower biosorption and resulted in insufficient contact between adsorbent
 246 particles in aqueous solution [57]. Therefore, the results obtained are consistent with
 247 [56] as they demonstrate that the degradation of pollutant compounds with enzymes
 248 increases over time.

249

250

251

252 Fig. 1. Effect of agitation on degradation of 4-bromophenol by *Pichia Kluyveri* sp. FM012. Condition:
 253 glucose = 10 ppm, yeast = 10 ppm, pH = 5, temperature = 25 °C

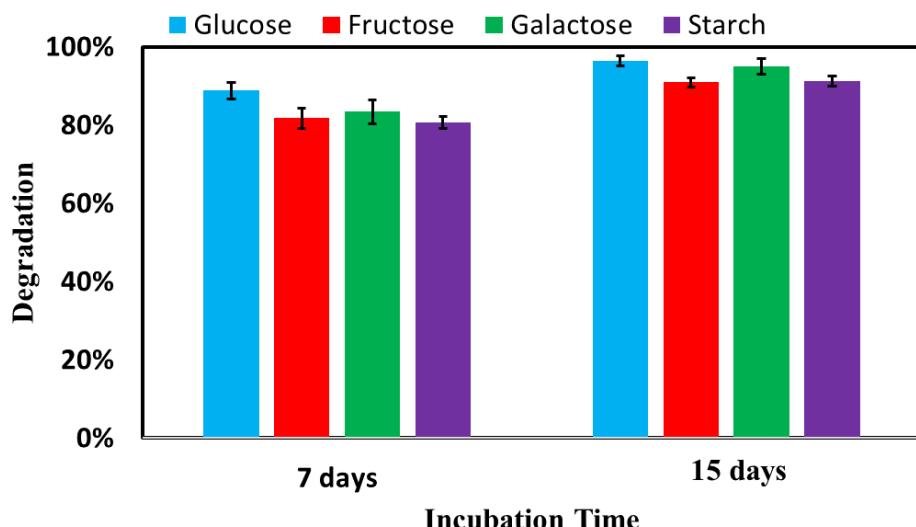

254

255 3.2 Effect of pH

256 Fig. 2 shows the influence of adsorption and degradation of 4-bromophenol. The
 257 optimal pH in this reaction was pH 5.0 with values of 88 and 96% within 7 and 15 days

258 of incubation, respectively. The lowest percentage biosorption was observed at pH 8.0.
 259 Increasing the pH from 5.0 to 8.0 for 15 days has a significant effect on the degradation
 260 and biosorption of 4-bromophenol. At lower pH, protonation of H^+ can combine with
 261 the surface of the fungi to increase degradation and biosorption [7]. However, as pH
 262 continues to increase, the degradation and biosorption process decreases due to the low
 263 solubility of hydroxide precipitation. Lesser precipitates disrupt the biosorption process
 264 and make them unavailable for biosorption. These results have been confirmed by many
 265 reports and studies showing that the pH range between 4.0 and 6.0 is an optimal pH for
 266 degradation and adsorption [58-61].

267

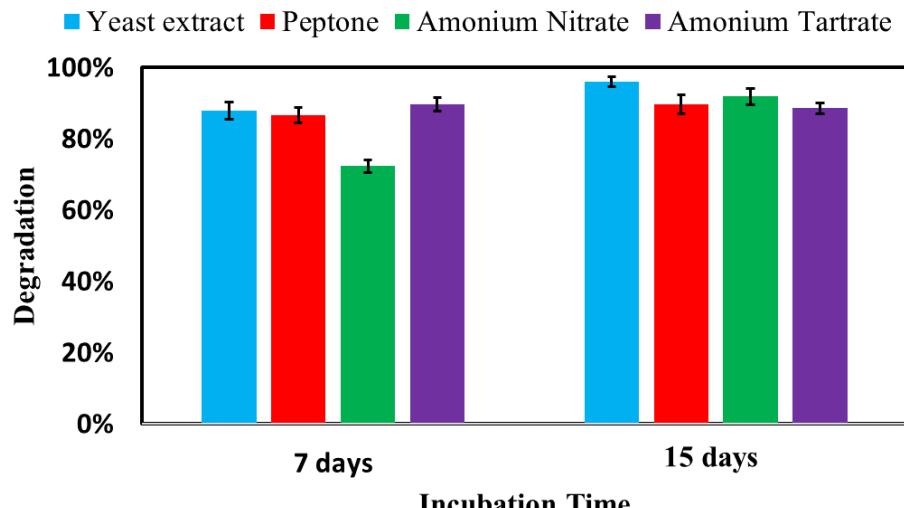

268

269 Fig. 2. Effect of pH on degradation of 4-bromophenol by *Pichia Kluyveri* sp. FM012. Condition: glucose
 270 = 10 ppm, yeast = 10 ppm, agitation speed = 150 rpm, temperature = 25 °C
 271

272 3.3 Effect of Carbon Sources

273 Fig. 3 shows the effects of different carbon sources on the degradation of 4-
 274 bromophenol. Glucose, fructose, galactose and starch were used as carbon sources and
 275 added to liquid medium containing *Pichia kluyveri* FM012. Of all the carbon sources
 276 tested, the lowest degradation rate of 4-bromophenol was observed with strengths of 81
 277 and 91% for 7 and 15 days of incubation, respectively. After 15 days, glucose showed
 278 the highest degradation rate of 4-bromophenol with a value of 96%. In the same period,
 279 the degradation rate of fructose and galactose reached 91% and 95%, respectively. 4-
 280 bromophenol readily degradable by *Pichia kluyveri* FM012 supplemented with glucose
 281 under aerobic conditions. This is because glucose is a compound with the simplest
 282 source of carbon and is easily consumed by fungi. The addition of an easily degradable

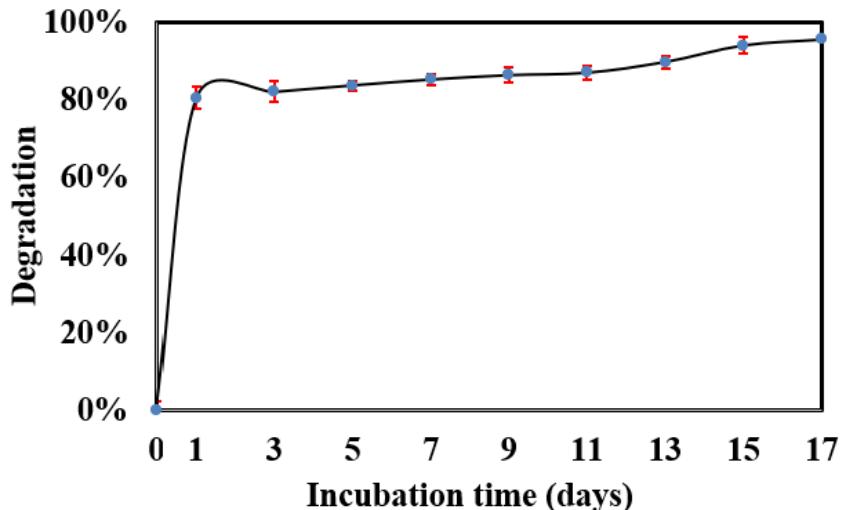
283 carbon source such as glucose can stimulate the biodegradation of pollutants and
 284 shorten the degradation lag time in liquid medium [62] showed that mechanisms of the
 285 stimulating effect of an easily accessible carbon source such as fructose and glucose.
 286 The pattern of the presence of carbon sources was influenced in the fungal degradation
 287 of 4-bromophenol. In general, fungi consume the carbon source as the main energy for
 288 growth by producing extracellular enzymes and secondary metabolites for
 289 biodegradation [63]. Due to the more easily degradable carbons, they discovered that
 290 the relationship between the microbial response and organic additions increased the
 291 breakdown of 4-bromophenol and hindered the mineralization of the pollutant.



292
 293 Fig. 3. Effect of carbon source on degradation of 4-bromophenol by *Pichia Kluyveri* sp. FM012.
 294 Condition: yeast = 10 ppm, agitation speed = 150 rpm, pH = 5, temperature = 25 °C
 295

296 3.4 Effect of nitrogen sources

297 Various sources of nitrogen are shown in Fig. 4. Four nitrogen sources were added to
 298 the *Pichia kluyveri* FM012 cultures. Yeast, peptone, ammonium nitrate and ammonium
 299 tartrate were used as nitrogen sources in incubation for 7 and 15 days. The culture
 300 showed the highest degradation rate of 4-bromophenol in shake flask liquid cultures
 301 observed with yeast 88 and 96% for 7- and 15-days incubation, respectively. On the
 302 other hand, degradation cultures supplemented with peptone and ammonium tartrate
 303 reached 90 and 89% after 15 days of incubation. Due to the oxygen and nutrients that
 304 are present in aerobic conditions, bacteria can breakdown a variety of contaminants in
 305 groundwater and soil [3]. Adding a yeast as the simplest nutrient would increase
 306 degradation due to the ease of utilization of the more easily degradable nutrient.
 307 Meanwhile, the performance of ammonium nitrate in breaking down 4-bromophenol


308 was not very effective for 7 days, but increased rapidly after 15 days later. Therefore,
 309 yeast was selected as the best and most suitable nitrogen source for fungi to break down
 310 4-bromophenol.

311
 312 Fig. 4. Effect of nitrogen source on degradation of 4-bromophenol by *Pichia Kluyveri* sp. FM012.
 313 Condition: glucose = 10 ppm, agitation speed = 150 rpm, pH = 5, temperature = 25 °C
 314

315 **3.5 Effect of contact time**

316 The contact time has a parallel correlation with the biomass surface area in adsorption
 317 studies [64]. It is important to design batch adsorption studies by monitoring the
 318 percentage of 4-bromophenol degradation. The sample was observed for two days
 319 during a 17-day incubation to assess fungal growth. The biosorption of 4-bromophenol
 320 almost reached equilibrium within 17 days of contact time and remained constant with
 321 increasing time (Fig. 5). Thereafter, there was no significant change in biosorption and
 322 the maximum adsorption capacity reached after 17 days.
 323

324

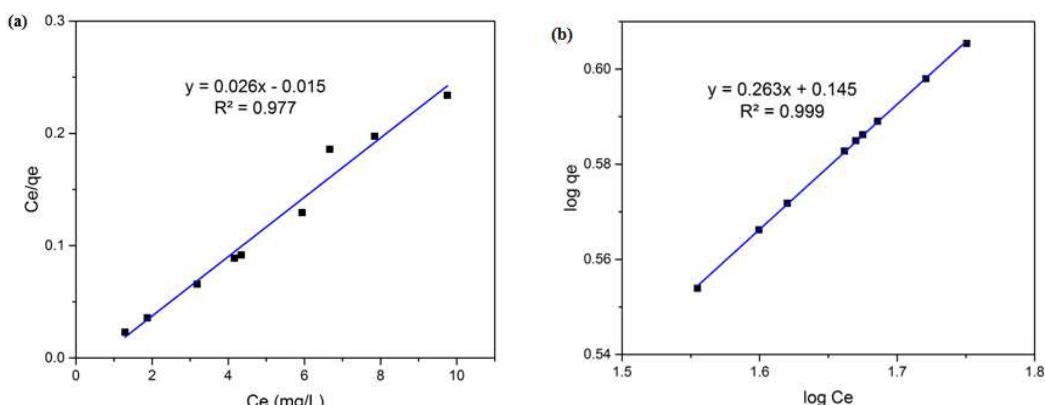
325 Fig. 5. Effect of contact time on degradation of 4-bromophenol by *Pichia Kluyveri* sp. FM012. Condition:
 326 glucose = 10 ppm, yeast = 10 ppm, agitation speed = 150 rpm, pH = 5, temperature = 25 °C

327 3.6 Isotherms Adsorption

328 An equilibrium sorption isotherm is important to develop an equation that describes the
 329 capacity of an affinity and surface biomass properties. Table 1 shows that two
 330 biosorption isotherm equilibrium data were fit into the linearized Langmuir and
 331 Freundlich models. To use the isotherm equation, it was assumed that this is a
 332 monolayer cover equilibrium model and adsorption sites are equally probable. For both
 333 tested isotherm models, the correlation coefficient (R^2) of both models was mostly close
 334 to 1, but the value of the Langmuir correlation coefficient ($R^2 < 0.97$) was slightly lower
 335 than that of the Freundlich isotherm ($R^2 > 0.99$), which shows that the Freundlich model
 336 better represents the equilibrium biosorption of 4-bromophenol by *Pichia kluyveri*
 337 FM012. These observational results imply heterogeneous surface conditions (Fig. 6).

338 A plot of C_e/q_e versus C_e of the Langmuir equation gives a straight-line plot with an
 339 intercept of b and a slope of $1/q_{max}$. Therefore, the Langmuir model shows that the
 340 maximum adsorption capacity (q_m) for 15 days is 38.46 (mg/g) and the K_L value (-
 341 1.733) is a Langmuir constant related to the adsorption/desorption energy [65, 66]. The
 342 Freundlich isotherm equation was used to analyze the adsorption intensity of the
 343 sorbent. The linearized Freundlich equation was plotted with $\log q_e$ versus $\log C_e$ to
 344 give a straight-line graph with intercept ($\log K_F$) and slope ($1/n$). Values of n (3.802)
 345 and K_F (1.396) are Freundlich constants. A comparison between Langmuir and
 346 Freundlich R^2 values shows that the biosorption of 4-bromophenol on *Pichia kluyveri*
 347 FM012 fits the Freundlich isotherm model better than the Langmuir isotherm model and

348 shows the correlation between the equilibrium concentration and the amount of
 349 adsorbate.


350

351 Table 1. Biosorption equilibrium parameters of the isotherm models by *Pichia Kluyveri* sp. FM012
 352

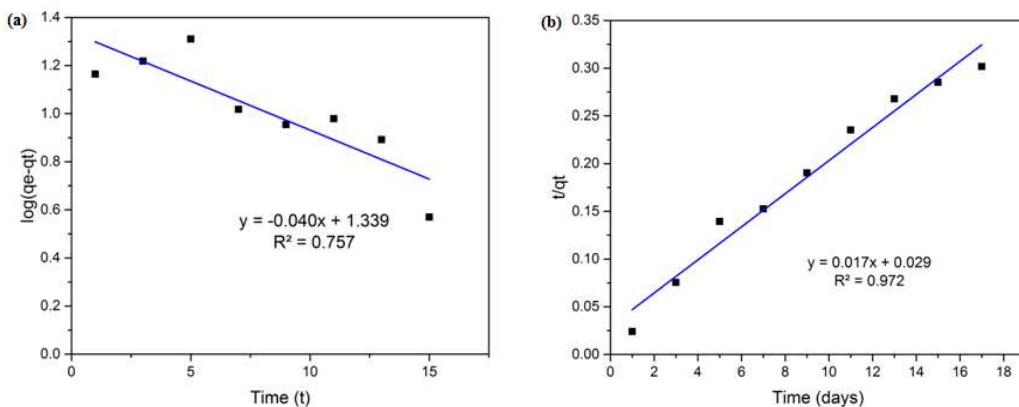
Biomass	Langmuir parameters			Freundlich parameters		
	q_{max} (mg/g)	K_L (L/mg)	R^2	K_F (L/mg)	n	R^2
<i>Pichia Kluyveri</i> sp. FM012	38.46	-1.733	0.977	1.802	3.802	0.999

353

354

355

356 Fig. 6. Adsorption isotherms: (a) Langmuir and (b) Freundlich isotherm for the adsorption of 4-
 357 bromophenol


358

359 3.7 Biosorption kinetics

360 The studies of kinetics are important to determine the efficacy and effectiveness of
 361 biosorption. This study is quite significant for controlling the residence time of solute
 362 uptake at the solid solution interface of waste water treatment [67]. The kinetics of 4-
 363 bromophenol adsorption were determined in both models; pseudo-first-order and
 364 pseudo-second-order kinetic models. Table 2 shows the results of pseudo first order and
 365 pseudo second order values of biosorption by *Pichia kluyveri* FM012. The data were
 366 fitted to the linearized graph to obtain values of q_e , K_1 and K_2 through the slope and
 367 intercept calculations. The value of the correlation coefficient (R^2) of the pseudo-first-
 368 order kinetic model ($R^2 = 0.757$) was lower than that of the pseudo-second-order model
 369 ($R^2 = 0.972$) (Fig. 7). The pseudo-first-order reaction is more indicative of the reaction
 370 of the physisorption process, assuming that between the uptake rate and time is directly
 371 proportional to the amount of active site on the adsorbent surface. In contrast, the

372 second-order pseudo-model suggested a chemisorption process assuming that chemical
 373 adsorption between adsorbate and adsorbent has a short time span.

374

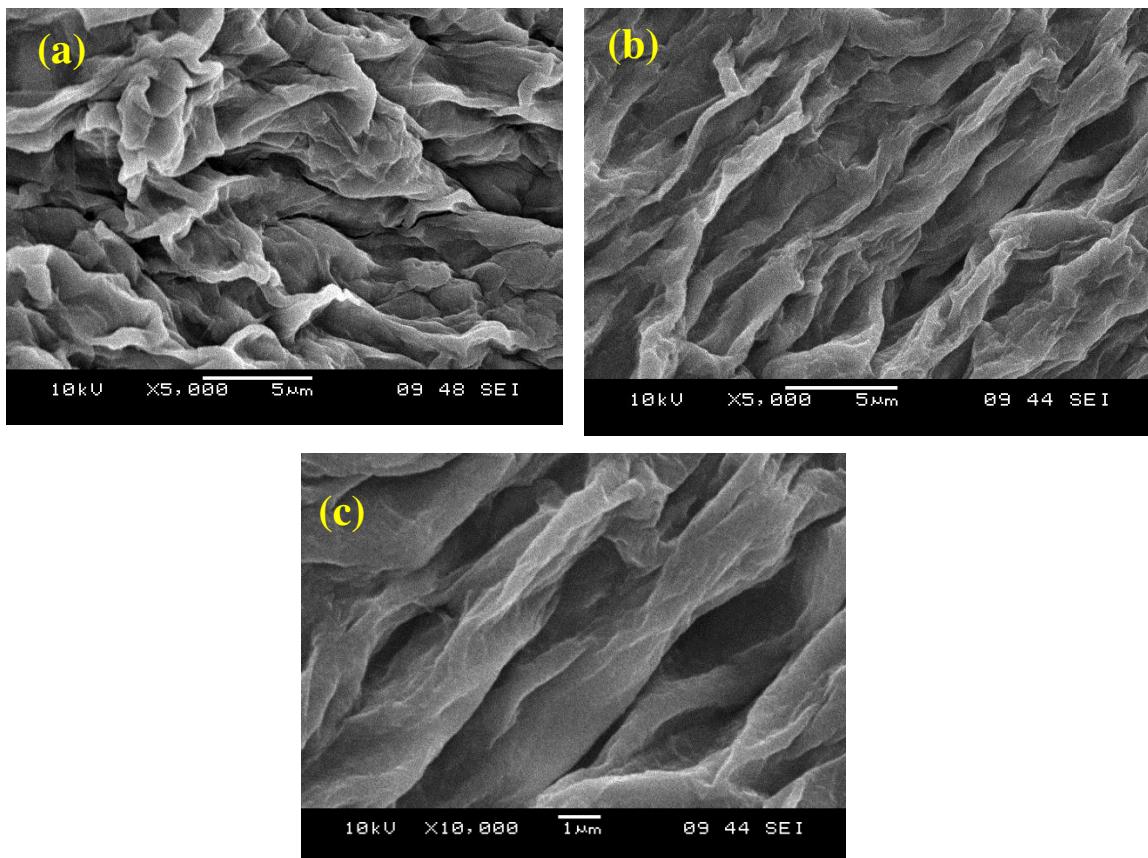
375

376 Fig. 7. Adsorption dynamics: (a) Pseudo first-order and (b) Pseudo second-order kinetics plots for the
 377 adsorption of 4-bromophenol by *Pichia Kluyveri* sp. FM012

378

379 Table 2. Integrated equations, boundary conditions and kinetic parameters of the biosorption of 4-
 380 bromophenol by *Pichia Kluyveri* sp. FM012

Parameters	Pseudo-first order			Pseudo-second order			Intra-particle diffusion		
	q_e (mg/g)	k_1	R^2	q_e (mg/g)	k_2	R^2	C	k_{diff}	R^2
	83.946	0.073	0.757	83.333	0.1519	0.972	36.85	2.05	0.793


381

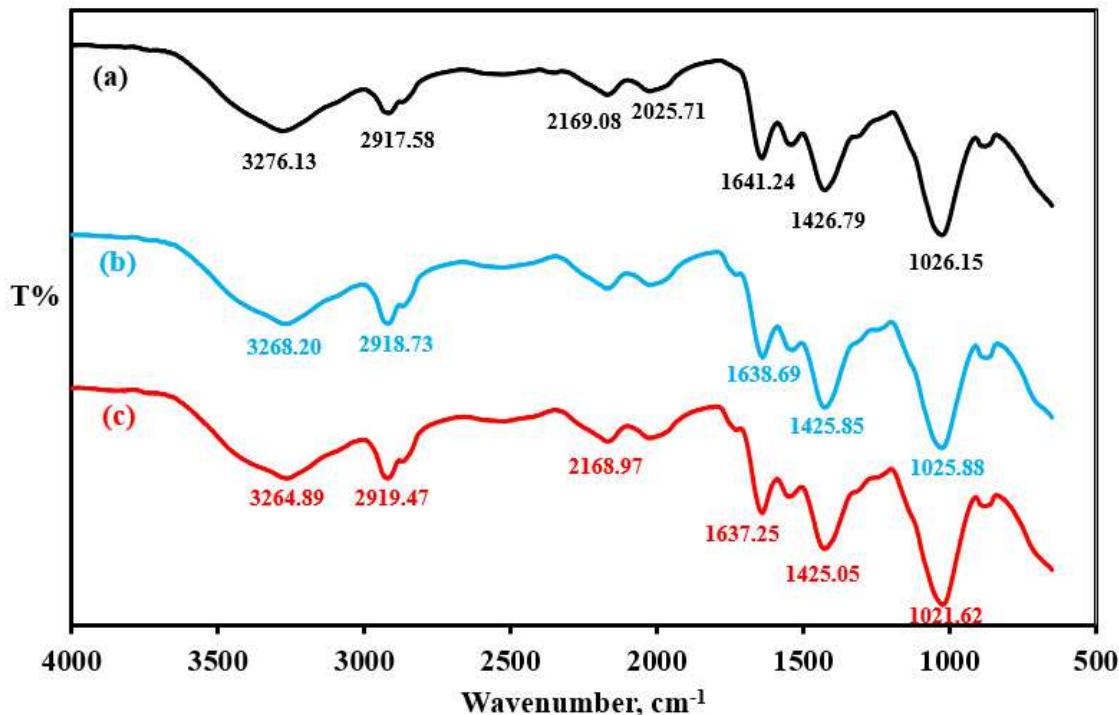
382

383 3.8 Characterization of *Pichia Kluyveri* before/after biosorption

384 Scanning electron microscopy (SEM) is a tool used to examine the morphology of
 385 strand samples before and after biosorption of 4-bromophenol by *Pichia kluyveri*
 386 FM012. The SEM images observed in Fig. 8 showed detailed surface morphology and
 387 structure of the biosorbent between the control and the sample at different
 388 magnifications. The surface morphology of the untreated adsorbent differs significantly
 389 from that of the treated one. Before adsorption (Fig. 8a), the surface of the adsorbent
 390 was rough, uneven, streaky folds with many valleys and pores appeared. The correlation
 391 between pores and the number of available binding sites was the increase in biosorption
 392 capacity. In contrast, Figs. 8b and 8c show a morphological change on the surface of
 393 *Pichia kluyveri* FM012, the surface of the biosorbent was less streaky, wrinkles, valleys
 394 and pores appeared, which could be due to the adsorption of 4-bromophenol. In
 395 addition, the biosorbing surfaces become adhesive and thicker after the biosorption

396 process. This is evidence that *Pichia kluyveri* FM012. support the degradation and
 397 increase the biosorption capacity.

398


399 Fig. 8. Scanning electron microscopy (SEM) micrographs of the *Pichia Kluyveri* before (a) and after (b
 400 and c) of biosorption

401

402 The FT-IR spectrum is a crucial instrument for demonstrating how macromolecules'
 403 functional groups are impacted. After 15 days of adsorption, the new peak at 3276.13
 404 cm^{-1} which symbolizes the elongation of the hydroxyl groups shifted to 3264.89 cm^{-1}
 405 (Fig. 9), demonstrating that the combination of 4-bromophenol with the endophytic
 406 elongation is the bond length and the vibration brought on by stretching increases the -
 407 OH group. In addition, aliphatic CH stretching is attributed to the peaks of 2917.58 cm^{-1}
 408 and 1426.79 cm^{-1} . These peaks were moved to 291.47 cm^{-1} and 1425.06 cm^{-1} after
 409 adsorption. In Fig. 9, a shift peak was seen at 1637.25 cm^{-1} and 877.94 cm^{-1} of two
 410 additional peaks, which was attributed to the ester and amide functional groups' bond C-
 411 O stretch [68]. The second peak may be due to disulfide or nitro groups [68, 69], and
 412 bioligands [70]. The peak at 1641.24 cm^{-1} represents the asymmetric and symmetric
 413 vibration of the aromatic ring and is assigned C=C or C=O. The peak of the amide

414 bonds is at 1541.01 cm^{-1} . After the adsorption process, these peaks shift to 1537.01 cm^{-1}
 415 1 . In general, the bacteria and fungi showed biosorption ability in broad functional
 416 groups [71]. All of these findings indicated that adhesion of 4-bromophenol to the cell
 417 surface pores, and active binding sites resulted in adsorption.

418

419

420 Fig. 9. FTIR spectra of *Pichia Kluyveri* sp. FM012: (a) control, (b) 7 days, (c) 15 days.

421

422 4. Conclusions

423 The biodegradation efficiency of brominated phenolic compounds is related to the
 424 halogen atom, the optimal conditions, and abilities of the microorganism to decompose
 425 pollutants in the experiments, as well as the cell surface properties of microorganisms.
 426 In the present study, the new potency of *Pichia kluyveri* FM012 demonstrated the
 427 degradation of 4-bromophenol under aerobic conditions. The degradation process
 428 followed Freundlich adsorption and pseudo-second-order kinetics and was enhanced
 429 under optimal conditions. In addition, microorganisms with a high level of
 430 hydrophobicity on the cell surface also contribute to increasing biodegradation. This is
 431 an interesting finding in the bioremediation of resistant pollutants that should be
 432 explored in future studies for other toxic and recalcitrant environmental pollutants.

433

434

435

436

437

438 **Ethical Approval**

439 Not Applicable.

440

441 **Competing interests**

442 The authors declare that there is no conflict of interest.

443

444 **Authors' contributions**

445 **Ismallianto Isia:** Investigation, methodology, data formal analysis. **Yudi Sukmono:**
446 Investigation, methodology, data formal analysis, validation, writing-original draft,
447 review and editing. **Tony Hadibarata:** Investigation, conceptualization, writing, review
448 and editing, supervision. **Murat Yilmaz:** Writing - Review & Editing, Visualization.

449

450 **Funding**

451 The authors would like to thank Malaysian Ministry of Higher Education through
452 Fundamental Research Grant Scheme No. 5F244.

453

454

455 **Availability of data and materials**

456 Data will be made available on request.

457

458

459 **References**

460

461 [1] S.-K. Rhee, D.E. Fennell, M.M. Häggblom, L.J. Kerkhof, FEMS microbiology
462 ecology 43 (2003) 317-324.
463 [2] B. Uhnáková, A. Petříčková, D. Biedermann, L. Homolka, V. Vejvoda, P. Bednář,
464 B. Papoušková, M. Šulc, L. Martinkova, Chemosphere 76 (2009) 826-832.
465 [3] P. Howe, S. Dobson, H. Malcolm, 2, 4, 6-Tribromophenol and other simple
466 brominated phenols, World health organization, 2005.
467 [4] A. Malmvärn, G. Marsh, L. Kautsky, M. Athanasiadou, Å. Bergman, L. Asplund,
468 Environmental science & technology 39 (2005) 2990-2997.
469 [5] F.B. Whitfield, F. Helidoniotis, K.J. Shaw, D. Svoronos, Journal of agricultural and
470 food chemistry 47 (1999) 2367-2373.
471 [6] G.W. Gribble, Chemosphere 52 (2003) 289-297.

472 [7] L.C. Commandeur, J.R. Parsons, Biodegradation of halogenated aromatic
473 compounds, *Biochemistry of microbial degradation*, Springer, 1994, pp. 423-458.

474 [8] D.C. Muir, P.H. Howard, *Environmental science & technology* 40 (2006) 7157-
475 7166.

476 [9] R.P. Schwarzenbach, T. Egli, T.B. Hofstetter, U. Von Gunten, B. Wehrli, *Annual
477 Review of Environment and Resources* 35 (2010) 109-136.

478 [10] M. Van den Berg, L. Birnbaum, A. Bosveld, B. Brunström, P. Cook, M. Feeley,
479 J.P. Giesy, A. Hanberg, R. Hasegawa, S.W. Kennedy, *Environmental health
480 perspectives* 106 (1998) 775.

481 [11] A. Dell'Erba, D. Falsanisi, L. Liberti, M. Notarnicola, D. Santoro, *Desalination* 215
482 (2007) 177-186.

483 [12] J.T. Bursey, E.D. Pellizzari, Analysis of industrial wastewater for organic
484 pollutants in consent decree survey, *Analysis of industrial wastewater for organic
485 pollutants in consent decree survey*, EPA, 1983.

486 [13] A.A. Nomani, M. Ajmal, S. Ahmad, *Environmental monitoring and assessment* 40
487 (1996) 1-9.

488 [14] I. Tolosa, J. Bayona, J. Albaigés, *Marine pollution bulletin* 22 (1991) 603-607.

489 [15] P. Miró, A. Arques, A. Amat, M. Marin, M. Miranda, *Applied Catalysis B:
490 Environmental* 140 (2013) 412-418.

491 [16] K. Yu, S. Yang, C. Liu, H. Chen, H. Li, C. Sun, S.A. Boyd, *Environmental science
492 & technology* 46 (2012) 7318-7326.

493 [17] J. Xu, W. Meng, Y. Zhang, L. Li, C. Guo, *Applied Catalysis B: Environmental* 107
494 (2011) 355-362.

495 [18] E. Díez-Mato, F. Cortezón-Tamarit, S. Bogianni, D. García-Fresnadillo, M.
496 Marazuela, *Applied Catalysis B: Environmental* 160 (2014) 445-455.

497 [19] B. Gao, L. Liu, J. Liu, F. Yang, *Applied Catalysis B: Environmental* 147 (2014)
498 929-939.

499 [20] C. Sun, W. Chang, W. Ma, C. Chen, J. Zhao, *Environmental science & technology*
500 47 (2013) 2370-2377.

501 [21] Y. Zhong, X. Liang, Y. Zhong, J. Zhu, S. Zhu, P. Yuan, H. He, J. Zhang, *water
502 research* 46 (2012) 4633-4644.

503 [22] Y. Guo, L. Chen, X. Yang, F. Ma, S. Zhang, Y. Yang, Y. Guo, X. Yuan, *RSC
504 Advances* 2 (2012) 4656-4663.

505 [23] K. Lin, W. Liu, J. Gan, *Environmental science & technology* 43 (2009) 4480-4486.

506 [24] L. Zhou, L. Ji, P.-C. Ma, Y. Shao, H. Zhang, W. Gao, Y. Li, *Journal of hazardous
507 materials* 265 (2014) 104-114.

508 [25] Q. Zhu, S. Maeno, R. Nishimoto, T. Miyamoto, M. Fukushima, *Journal of
509 Molecular Catalysis A: Chemical* 385 (2014) 31-37.

510 [26] Q. Zhu, Y. Mizutani, S. Maeno, M. Fukushima, *Molecules* 18 (2013) 5360-5372.

511 [27] Q. Zhu, Y. Mizutani, S. Maeno, R. Nishimoto, T. Miyamoto, M. Fukushima,
512 *Journal of Environmental Science and Health, Part A* 48 (2013) 1593-1601.

513 [28] Q. Zhu, S. Maeno, M. Sasaki, T. Miyamoto, M. Fukushima, *Applied Catalysis B:
514 Environmental* 163 (2015) 459-466.

515 [29] Y. Ding, L. Zhu, N. Wang, H. Tang, *Applied Catalysis B: Environmental* 129
516 (2013) 153-162.

517 [30] S.-Y. Pang, J. Jiang, Y. Gao, Y. Zhou, X. Huangfu, Y. Liu, J. Ma, *Environmental
518 science & technology* 48 (2013) 615-623.

519 [31] G.P. Anipsitakis, D.D. Dionysiou, *Applied Catalysis B: Environmental* 54 (2004)
520 155-163.

521 [32] W.E. Wentworth, R.S. Becker, R. Tung, *The Journal of Physical Chemistry* 71
522 (1967) 1652-1665.

523 [33] D.T. Sponza, A. Uluköy, *Process biochemistry* 40 (2005) 3419-3428.

524 [34] M.M. El-Sheekh, M. Gharieb, G. Abou-El-Souod, *International Biodeterioration &*
525 *Biodegradation* 63 (2009) 699-704.

526 [35] A. Badis, F. Ferradji, A. Boucherit, D. Fodil, H. Boutoumi, *Desalination* 259
527 (2010) 216-222.

528 [36] L. Ayed, K. Bekir, S. Achour, A. Cheref, A. Bakhrouf, *Water and Environment*
529 *Journal* 31 (2017) 80-89.

530 [37] A.V. Buntić, M.D. Pavlović, D.G. Antonović, S.S. Šiler-Marinković, S.I.
531 Dimitrijević-Branković, *Journal of Cleaner Production* 148 (2017) 347-354.

532 [38] L. Song, Y. Shao, S. Ning, L. Tan, *Bioresource technology* 233 (2017) 21-29.

533 [39] A. Singh, S. Rani, N.R. Bishnoi, *Ecological engineering* 47 (2012) 291-296.

534 [40] C.-Y. Lai, C.-H. Wu, C.-T. Meng, C.-W. Lin, *Applied Energy* 188 (2017) 392-398.

535 [41] R.A. Kristanti, M.K.A. Kamisan, T. Hadibarata, *Water, Air, & Soil Pollution* 227
536 (2016) 134.

537 [42] A.B. Dos Santos, F.J. Cervantes, J.B. van Lier, *Bioresource technology* 98 (2007)
538 2369-2385.

539 [43] Y. Qu, S. Shi, F. Ma, B. Yan, *Bioresource Technology* 101 (2010) 8016-8023.

540 [44] S.K. Sen, S. Raut, P. Bandyopadhyay, S. Raut, *Fungal Biology Reviews* 30 (2016)
541 112-133.

542 [45] A. Mishra, A. Malik, *Critical reviews in environmental science and technology* 43
543 (2013) 1162-1222.

544 [46] V. Uberoi, S.K. Bhattacharya, *Water Environment Research* 69 (1997) 146-156.

545 [47] A.S. Purnomo, I. Kamei, R. Kondo, *Journal of bioscience and bioengineering* 105
546 (2008) 614-621.

547 [48] A.S. Purnomo, T. Mori, I. Kamei, T. Nishii, R. Kondo, *International*
548 *Biodeterioration & Biodegradation* 64 (2010) 397-402.

549 [49] Z. Ronen, S. Visnovsky, A. Nejidat, *Soil Biology and Biochemistry* 37 (2005)
550 1640-1647.

551 [50] T. Yamada, Y. Takahama, Y. Yamada, *Bioscience, biotechnology, and*
552 *biochemistry* 72 (2008) 1264-1271.

553 [51] C. Aranda, F. Godoy, J. Becerra, R. Barra, M. Martínez, *Biodegradation* 14 (2003)
554 265-274.

555 [52] K. Westerberg, A.M. Elväng, E. Stackebrandt, J.K. Jansson, *International journal*
556 *of systematic and evolutionary microbiology* 50 (2000) 2083-2092.

557 [53] H.R. Dash, S. Das, *International Biodeterioration & Biodegradation* 103 (2015)
558 179-185.

559 [54] Ş. Taşar, F. Kaya, A. Özer, *Journal of Environmental Chemical Engineering* 2
560 (2014) 1018-1026.

561 [55] H.R. Dash, N. Mangwani, S. Das, *Environmental Science and Pollution Research*
562 21 (2014) 2642-2653.

563 [56] K. Parvathi, R.N. Kumar, R. Nagendran, *World Journal of Microbiology and*
564 *Biotechnology* 23 (2007) 671-676.

565 [57] V. Rajesh, A.S.K. Kumar, N. Rajesh, *Chemical Engineering Journal* 235 (2014)
566 176-185.

567 [58] P. Kalac, M. Niznanska, D. Bevilaqua, I. Staskova, *Science of the Total*
568 *Environment* 177 (1996) 251-258.

569 [59] M.E. Argun, S. Dursun, *J. Int. Environ. Appl. Sci* 1 (2006) 27-40.

570 [60] R. Jalali, H. Ghafourian, Y. Asef, S. Davarpanah, S. Sepehr, Journal of Hazardous
571 Materials 92 (2002) 253-262.

572 [61] W.P. Putra, A. Kamari, S.N.M. Yusoff, C.F. Ishak, A. Mohamed, N. Hashim, I.M.
573 Isa, Journal of Encapsulation and Adsorption Sciences 4 (2014) 25.

574 [62] T.L. Östberg, A.P. Jonsson, U.S. Lundström, International biodeterioration &
575 biodegradation 57 (2006) 190-194.

576 [63] E. Khelifi, L. Ayed, H. Bouallagui, Y. Touhami, M. Hamdi, Journal of hazardous
577 materials 163 (2009) 1056-1062.

578 [64] F. Huang, Z. Dang, C.-L. Guo, G.-N. Lu, R.R. Gu, H.-J. Liu, H. Zhang, Colloids
579 and surfaces b: biointerfaces 107 (2013) 11-18.

580 [65] D. Onyancha, W. Mavura, J.C. Ngila, P. Ongoma, J. Chacha, Journal of Hazardous
581 Materials 158 (2008) 605-614.

582 [66] J.O. Babalola, N.A. Babarinde, O.A. Popoola, V.O. Oninla, The Pacific Journal of
583 Science and Technology 10 (2009) 428-438.

584 [67] B. Hameed, D. Mahmoud, A. Ahmad, Journal of Hazardous Materials 158 (2008)
585 65-72.

586 [68] L. Ramrakhiani, R. Majumder, S. Khowala, Chemical Engineering Journal 171
587 (2011) 1060-1068.

588 [69] Y. Zhao, D. Wang, H. Xie, S.W. Won, L. Cui, G. Wu, Bioprocess and biosystems
589 engineering 38 (2015) 69-77.

590 [70] S.T. Akar, A. Gorgulu, B. Anilan, Z. Kaynak, T. Akar, Journal of hazardous
591 materials 165 (2009) 126-133.

592 [71] X. Wei, L. Fang, P. Cai, Q. Huang, H. Chen, W. Liang, X. Rong, Environmental
593 pollution 159 (2011) 1369-1374.

594