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1 Reputation Systems

Formally, a reputation system determines a label “good” or “bad” for each individual, based on the history
of interactions the individual was involved in. It is important to note that we allow for the possibility of
including the reputation of former opponents as well, i.e., players have access to higher-order information.
For example, the reputation system may rate defection against good or bad players differently.

In the base model, we initially assume that an individual’s reputation is globally agreed upon and
based on public information; the later discussion of polarization and tribalism hinges on divergence
from this appraisal. To model the equivalence in the parallel interaction with all neighbors, we update
reputation only after all eight neighbor duels of one propagation round have taken place. This also
accounts for a delay in the exchange of information between neighbors until more tangible outcomes are
visible; more responsive update rules only enhance the advantage of discriminator systems.

1.1 Previous Related Work

A discriminating strategy is only successful if its underlying reputation system provides useful guidance.
To this end, a considerable variety of functions have been proposed. In some settings, simple reputation
systems may suffice’-, but often they are not successful under all circumstances>#. This observation
led to the study of more advanced reputation systems that are often able to overcome shortcomings of
simpler ones*~’, frequently at the expense of using a larger amount of input data. In the following, we
review the most important previously proposed reputation systems.

1.1.1 Image Scoring

The seminal work of Nowak and Sigmund’-? popularized investigation of indirect reciprocity in an
evolutionary setting. The reputation system studied seems intuitive: IMAGE SCORING rewards cooperative
actions and penalizes defection. It keeps a score per player from the fixed discrete interval {b,..., g}
(b, g € Zwith b < g). Each game yields a score change of +1 or —1 if the player in question cooperates
or defects, respectively —ignoring updates that leave the range {b, ..., g}. Players with positive score
have good reputation, all others are bad. The binary case b = 0, g = 1 was investigated in great detail?,
as its simplicity facilitates the use of analytical tools. In out experiments, We also considered the case
b = -1 and g = 1. Both variants yield identical results.

Using IMAGE SCORING, a player can extrapolate past actions to future behavior. However, using this
knowledge comes at a price: If the other player is likely to defect, the best response is to defect as well,
which in turn causes a loss in the player’s own reputation. This makes punishment of uncooperative
behavior costly.

1.1.2 Good Standing

Leimar and Hammerstein investigate the deficiency of IMAGE SCORING and propose that STANDING — as
initially suggested by Sugden ® — should be used instead”. All players are initially good. After each duel,
reputation is updated as shown in Table S1. The row shows the opponent’s reputation, columns indicate
the chosen action. The entries in the table show the new reputation resulting from the player’s action.
Several update rules for actions against bad players are referred to as “Standing” reputation systems in
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‘ cooperate defect
vs. good good bad
vs. bad | good or no change no change

Table S1: Reputation update rules for STANDING and STRICT STANDING.

‘ cooperate defect
vs. good good bad
vs. bad bad good

Table S2: Reputation update rules for the KANDORI system with 7 = 1.

the literature. We refer to the variant with good in the lower left cell as STANDING and with “no change”
as STRICT STANDING. The latter is stricter in the sense that it requires more to regain good standing.

All of them allow non-costly or even beneficial punishment of defectors. However, this is not enough
to maintain stable cooperation over time. Tolerated ALLC’s can soften up the population and subsequently
allow defectors to take over’*/9. This makes it desirable to also discriminate between “justified” and
“blind” cooperation.

1.1.3 The “Kandori” Reputation

Kandori’/ showed that mutual cooperation can always be established as a sequential equilibrium by
choosing a suitable reputation system in a repeated random matching game. One such system is proposed
by the author, which we refer to as KANDORI reputation.

For some fixed T € N, a player’s score is a number in {-T,...,—1,0}, with only score 0 being
regarded as good. After each duel, we increment the score by 1 if the player acted “compliant”, i.e.,
cooperated with a good player or defected against a bad one. If she acted differently, her score is reset
to —7T. This means a dissenter will undergo 7 rounds of punishment during which she is considered
bad and receives defecting treatment by the community. If T is chosen large enough, any immediate
incentive to deviate is overcompensated by imminent outcasting. This mechanism has the drawback
that excessively long “rehabilitation phases” make the system vulnerable to errors: If there is some
small probability that players are wrongfully perceived as acting non-compliant, accidental punishment
is amplified excessively. Keeping track of all scores also poses a memory demand on involved players
(KAaNDORI requires [log, (7 + 1)] bits of memory per player).

We considered KANDORI for values 7' € {1,2, 3, 8,9}. The simplest choice T = 1 gives the reputation
system shown in Table S2.

1.1.4 The Leading Eight

The reputation systems described above were mostly motivated by common sense. Ohtsuki and Iwasa took
a more comprehensive approach. In’, they studied the PD with reputation and considered all possible
reputation systems that compute the new reputation deterministically from only the old reputation of
both players and the chosen action. To judge their quality, the authors combined reputation systems
with all possible (pure) strategies; for each of those pairs they determined whether it is an evolutionary
stable strategy in the sense of classical evolutionary game theory; see’?. Of the considerable number
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cooperate defect
LEADING 2: vs. good good bad
vs. bad flip no change
cooperate defect
LEADING 3: vs. good good bad
vs. bad good good
cooperate defect
LEADING 4: vs. good good bad
vs. bad | no change good
cooperate defect
LEADING 5: vs. good good bad
vs. bad flip good
cooperate defect
LEADING 8: vs. good good bad
vs. bad bad no change

Table S3: Reputation update rules for LEADING 2, 3,4, 5 and 8.

of 4096 pairs, many were evolutionary stable, but only eight pairs yielded consistently highest payoffs
under varying cost/benefit ratios. A main contribution of Ohtsuki and Iwasa was the identification of
common features shared among all those stable pairs: Both (a) cooperating with good players and (b)
defecting against bad players must be considered as good. Of these eight pairs, only two different
strategies for selecting the next action are used. In fact, all but the first two pairs use the Disc strategy
(with varying reputation mechanisms): Cooperate if and only if your duel partner is good according to
the corresponding reputation system.

In the following, “LEADING i refers to the pair in the ith line of Table 4 of Ohtsuki and Iwasa”. For
LEADING 1 and LEADING 2, the so-called OR strategy is used instead, which cooperates if the opponent
is good or if we ourselves are seen as bad. This behavior can be seen as the plausible incentive of a bad
player to cooperate with just anybody to escape ostracism as fast as possible. OR is thus a less strictly
discriminating strategy. It turns out that three of the leading eight pairs in fact use reputation strategies
we already described under a different name:

* LEADING 1 uses STANDING reputation system,

* LEADING 6 is equivalent to KANDORI with 7" = 1 and

* LEADING 7 employs STRICT STANDING.

For the remaining pairs, the reputation system is given in Table S3, where the row indicates the
reputation of the opponent, the column gives the action the current player used against this opponent and

the cell entry then describes the action corresponding to this player’s reputation: An entry good or bad
simply requires the reputation to be set to good or bad, “no change” leaves the reputation unchanged,
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last action
\ vs. good

defected cooperated
defected bad good
cooperated bad bad

vs. bad

Table S4: Computation of reputation in GANDHI.

and “flip” inverts the reputation: If the player is good at the moment, it becomes bad, and if it was bad,
it now becomes good.

1.2 The GanDHI Reputation

All reputation systems described so far only make use of a single piece of information per player.
Observing defection, this makes it hard to distinguish between unconditional defection and rightful
punishment. Similarly, a single cooperative action cannot be used to tell ALLC and Disc apart.

We address this issue by introducing a new reputation system, called GANDHI, which only uses two
bits of memory; the name is based on a well-known quote by Mahatma Gandhi: “Non-cooperation with
evil is as much a duty as is cooperation with good.”’?. To the best of our knowledge, GANDHI has not
been described in the study of reputation systems for indirect reciprocity. Other reputation systems, e. g.
KANDORI with large T, achieve similar discrimination, but they only do it implicitly over time (leading
to inferior replicator dynamics), and by utilizing more memory.

GaNDHI remembers for each individual rwo actions played: the last action against a bad opponent
and the last action against a good opponent. A player is only regarded as good if its last action against a
good opponent was cooperate and the last action against a bad opponent was defect. The other (three)
combinations yield the label bad.

This self-referential aspect of the GANDHI reputation system hinges on updating preexisting values,
hence on an initial state. There are different possibilities for initialization; for our base model, we initially
consider all players to have cooperated with everybody. Accordingly, all players start out bad, and they
can only turn good by defecting against a bad player.

1.3 Hidden Information and Perfect Group Cohesion: The MAFiA Reputation

When studying cooperation within a group, a perfect mechanism for group cooperation would make
group members always cooperate with other group members and defect against all outsiders, without
giving away group membership to outsiders. This kind of strategy can be based on a hidden “membership
bit” that is passed on to newly acquired group members, invisible to outsiders. We refer to this strategy as
MaAFIA. Such a mechanism is not available in systems based on only public information, making MAF1A
a strong benchmark for measuring the ability of a discriminating strategy, i.e., by evaluating how close
systems can get to MAFIA’s performance when only publicly available information can be used.

2 Quantitative Proof: GANDHI Is an Effective Discriminator

The two-dimensional spatial model used in the experiments exhibits rich and complex dynamics that
are hard to predict analytically. In spatial settings without reputation, pair approximation’# is usually
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Figure S1: The setup: good (G) GANDHI (B) (respectively MAF1A) on the left side, bad (B) ALLD (A) players on
the right.

the method of choice to predict the model’s long-term behavior or to study the evolution of certain
parameters’>. However, pair approximation is not well suited for analyzing our spatial setting augmented
with reputation, for the following reasons.

* The number of differential equations needed to describe the state of the system grows large (it
doubles, even if one considers only binary reputations).

» The bookkeeping when deriving the equations by hand gets quite complicated.
* Pair approximation is in general not very precise and only predicts the qualitative behavior well.

As we are interested in a specific parameter (i.e., invasion speed), we have developed a Markov chain
model that turns out to be both surprisingly accurate and relatively simple to analyze. We carry out
our theoretical analysis for a one-dimensional spatial setting, as opposed to our two-dimensional model.
We could empirically validate that the analytical invasion speeds derived in 1D fit the 2D experimental
results very accurately. These observations suggest a general method to analyze suitable parameters (like
invasion speed) of evolutionary spatial 2D models via a simpler 1D model.

2.1 One-Dimensional Approximation and Results

We consider a simple 1D model in which two homogeneous populations with different strategies face
each other at a boundary (cf. Figure S1). The region left of the boundary is occupied by the GANDHI or
MAFIA players, the right region by ALLD players. We then analyze how the boundary moves over time.
Here we only discuss the situation of GANDHI (resp. MAFIA) versus ALLD, because the analysis versus
ALLC is considerably simpler.

The process of duel selection, strategy and reputation updating is analogous to the 2D setting. Note,
however, that we consider an infinite one-dimensional chain of players, so we ignore any boundary effects.

It is not hard to see that there can never be a case in which a player is isolated from the other players
of its strategy population. Hence, the strategy configuration can be fully described by the position of
the boundary n € Z. In addition, one can easily show (for both GANDHI and MAFIA) that the reputation
configuration is fully determined by the reputation of the two players left and right of the boundary, which
we denote by XY, where X,Y € {G, B}. Because a defector will never be considered good after a game
it participated in (as focal or as opponent), the combination BG can never occur. Therefore, the tuple
(n, XY), where XY € {GG,GB, BB}, describes the current state of the process. Also, it fully encodes
the information that is relevant for performing the next round — the dynamics of (n, XY) over time is
therefore a Markov process, and completely described by the transition probabilities between two such
tuples.
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Figure S2: The three possible configurations of the boundary along with the relevant (focal, opponent) pairs. In
the bottom two cases, a pair is defined as “ relevant” if its choice can lead to a change in the configuration; in the
first case, we arbitrarily define the above four pairs as “relevant” in order to generate an equal number of pairs as in
the other two cases (only (3, 2) is crucial here, the other pairs could be chosen differently). Of these, only the pairs
in boldface can lead to a change in strategies — all other pairs will lead to the “standard” reputation configuration
GB.

Analyzing the speed of the (reputation-free) setting MAFIA vs. ALLD is relatively straighforward, as
the boundary can only move to the right. The mathematical analysis of Section 2.2 yields
11—-u
81+u

vy =

for the drift speed of the boundary.
The invasion speed of GANDHI vs. ALLD can be analyzed by solving a recurrence equation for the
expected time to go from state (BB,n — 1) to (BB, n) (see below for details). We obtain

—5u?-3u+38
41u?2 + 111u+72

for the drift speed. This can be well approximated by 8/9 of that of the (optimal) MAFIA vs. ALLD drift
(cf. Extended Data Fig. 2a), as follows.

77! =

11-u
91+u’
There is a simple intuitive explanation for this factor: After defeating an opponent and extending the

boundary of GANDHI, one in eight cases requires an additional round at the boundary for updating the
reputation; this is not necessary for MAFIA, as it uses hidden information that is updated instantaneously.

T ~

2.2 Mathematical Analysis

For easier exposition, we only consider situations from which a change in strategies or reputations can
result. It suffices to consider four pairs of players for that (see Figure S2); when we report probabilities

7



n-1 n n+1

Figure S3: Transition probabilities for GANDHI vs. ALLD (PD), where p = p/4, G = q/4 and 7 = r /4.

178 1n this section, they are always meant conditional to one of these four pairs being chosen. (Note that the
179 pairs change over time, but there are always four of them.)

180 There are the following different focal/opponent combinations in which the boundary can move with
181 the given probabilities, conditional to the pair being selected in this particular focal < opponent order:

B B _ u
GANDHI < ALLD with prob. p = m
G G ) 2u
GANDHI < ALLD with prob. g = m

G B 1-u
GANDHI — ALLD with prob. r = ———
2(1+u)
MAFIA — ALLD with prob. r = 1;14
2(1+u)

182 For MAFIA playing Prisoner’s Dilemma against ALLD, reputation does not play a role. The only possible
183 transition is

MaAFIA — ALLD,

184 which has (conditional) probability r. Hence the probability of the boundary moving from n — 1 to n is

1 11-u

AU

185 where we have re-scaled to match our time normalization.

186 For GANDHI playing Prisoner’s Dilemma against ALLD, the situation is more involved, because it is
187 now possible that the boundary moves left as well as right. The transition probabilities are now as shown
18 1in Figure S3. While these probabilities define the Markov chain completely, we proceed to provide a
180 more analytic measure for the overall drift of the boundary, i.e., the probability of the boundary moving
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left or right. We analyze the infinite 1-dimensional Markov chain by a recursion that yields the expected
time for reaching n from n — 1. The inverse of this time serves as an estimate of the drift speed.

Note that moving the boundary from n— 1 to n requires going through the state (BB, n). This motivates
the following definition: Denote by T, (X7, k) the expected time to reach (BB, n) from (XY, k), where
XY € {GG, GB, BB}. Conversely, every transition from n to n — 1 has to go through (GG,n — 1), so we
are particularly interested in ¢, = T,,(GG,n — 1).

First, we find that

tn = T,(GG,n—1)

%(1+Tn(GG,n—2))+(1—%)(1+Tn(GB,n—1)). (1)

The only transition away from (G B, n — 1) leads to (BB, n) and is taken with probability r/4. So we will
eventually reach (BB, n) and the number of steps needed is geometrically distributed with parameter r /4.
The expectation is then given by the inverse of this parameter:

T,(GB,n—1) = 4/r. (2)

Also, we have that

T,(GG,n-2) = T,_1(GG,n-2)+T,(BB,n— 1)
- zn,1+§(1+Tn(GG,n—2))+(1—%)(HT,,(GB,n—l))
———
=4/r by (2)
4
- tn_1+1+£Tn(GG,n—2)+(1—l—))—
4 4/ r
Rearranging the terms yields
th.1+1 4
T,(GG,n-2) = -. 3
W(GGn=2) = T G
Substituting back into (1) results in
H e ) -4
th = —(1l+———+—-)+ ({1 == {1+
"4 1-p/4 r 4 r
Because there is no boundary, we have t,, = t,,_| =: t by symmetry. Hence,
4—p+44;p +q
=
4-p-q
Then, the expected time it takes from (BB,n — 1) to (BB, n) is
T = T,(BB,n—1)
= %(1+Tn(GG,n—2))+(1—§) (1+T,(GB,n—1))
—————— —————
=itg+4/r by (3) =4/r by (2)
t+1 4
=1+p + —
4-p r

4 1
(1+—)(1+p)+p&.
r 4-p
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By substituting u in, we obtain

—5u?-3u+38

77! =
M2+ 111u+72

as an estimate for the drift speed.
Our analysis suggests that the drift of the 1-dimensional Markov chain for GANDHI vs. ALLD can be
approximated by % of that of the (optimal) MAFIA vs. ALLD drift. Hence,

11-u
91+u

T-' ~

appears to be a good estimate for the invasion speed.

As we show in the following Section 2.2.1, data from two-dimensional simulation and from this
one-dimensional analysis match extremely well. This is no coincidence: a strongly invading population
will tend to form a large shape that is close to being convex, resulting in a well-focused, uniform average
degree with respect to the own subpopulation for individuals along the boundary. (In a grid setting, this
average degree very rapidly converges to five for large clusters.) Thus, we get the same fundamental
behavior as in the one-dimensional case, subject to some scaling to account for different normalization.

2.2.1 Validation of the 1D Model on 2D Data

If we compare the experimental invasion speed plots from Figure 2b to the functions from above, we
see that their qualitative agreement is excellent. More precisely, if M (u), u € {0.1,0.2,...,0.9}, is the
vector of experimental MAFIA speeds and f(u) is the analytically derived speed, we see that 1}7((:)) is
(almost) constant. Because we count time steps differently in our 1D analysis and in order to adjust for
geometric effects of dimensionality, we scale the functions by this constant (which we call ¢), which turns
out to be ¢ = 4.8167.

Because we only use MAFIA in the PD to determine ¢, we can use the exact same scaling for the
GANDHI speeds in order to validate our claim that ¢ only captures the effects of dimensionality and
the different counting of timesteps. A plot of these scaled functions together with the respective data
and figures from the main paper shows that the 1D analysis matches the 2D data remarkably well; see
Extended Data Fig. 2b.
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