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1 Reputation Systems17

Formally, a reputation system determines a label “good” or “bad” for each individual, based on the history18

of interactions the individual was involved in. It is important to note that we allow for the possibility of19

including the reputation of former opponents as well, i.e., players have access to higher-order information.20

For example, the reputation system may rate defection against good or bad players differently.21

In the base model, we initially assume that an individual’s reputation is globally agreed upon and22

based on public information; the later discussion of polarization and tribalism hinges on divergence23

from this appraisal. To model the equivalence in the parallel interaction with all neighbors, we update24

reputation only after all eight neighbor duels of one propagation round have taken place. This also25

accounts for a delay in the exchange of information between neighbors until more tangible outcomes are26

visible; more responsive update rules only enhance the advantage of discriminator systems.27

1.1 Previous Related Work28

A discriminating strategy is only successful if its underlying reputation system provides useful guidance.29

To this end, a considerable variety of functions have been proposed. In some settings, simple reputation30

systems may suffice1,2, but often they are not successful under all circumstances3,4. This observation31

led to the study of more advanced reputation systems that are often able to overcome shortcomings of32

simpler ones4–7, frequently at the expense of using a larger amount of input data. In the following, we33

review the most important previously proposed reputation systems.34

1.1.1 Image Scoring35

The seminal work of Nowak and Sigmund 1,2 popularized investigation of indirect reciprocity in an36

evolutionary setting. The reputation system studied seems intuitive: Image Scoring rewards cooperative37

actions and penalizes defection. It keeps a score per player from the fixed discrete interval {𝑏, . . . , 𝑔}38

(𝑏, 𝑔 ∈ Z with 𝑏 < 𝑔). Each game yields a score change of +1 or −1 if the player in question cooperates39

or defects, respectively — ignoring updates that leave the range {𝑏, . . . , 𝑔}. Players with positive score40

have good reputation, all others are bad. The binary case 𝑏 = 0, 𝑔 = 1 was investigated in great detail2,41

as its simplicity facilitates the use of analytical tools. In out experiments, We also considered the case42

𝑏 = −1 and 𝑔 = 1. Both variants yield identical results.43

Using Image Scoring, a player can extrapolate past actions to future behavior. However, using this44

knowledge comes at a price: If the other player is likely to defect, the best response is to defect as well,45

which in turn causes a loss in the player’s own reputation. This makes punishment of uncooperative46

behavior costly.47

1.1.2 Good Standing48

Leimar and Hammerstein investigate the deficiency of Image Scoring and propose that Standing — as49

initially suggested by Sugden 8 — should be used instead3. All players are initially good. After each duel,50

reputation is updated as shown in Table S1. The row shows the opponent’s reputation, columns indicate51

the chosen action. The entries in the table show the new reputation resulting from the player’s action.52

Several update rules for actions against bad players are referred to as “Standing” reputation systems in53
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cooperate defect

vs. good good bad
vs. bad good or no change no change

Table S1: Reputation update rules for Standing and Strict Standing.

cooperate defect

vs. good good bad
vs. bad bad good

Table S2: Reputation update rules for the Kandori system with 𝑇 = 1.

the literature. We refer to the variant with good in the lower left cell as Standing and with “no change”54

as Strict Standing. The latter is stricter in the sense that it requires more to regain good standing.55

All of them allow non-costly or even beneficial punishment of defectors. However, this is not enough56

to maintain stable cooperation over time. Tolerated AllC’s can soften up the population and subsequently57

allow defectors to take over1,9,10. This makes it desirable to also discriminate between “justified” and58

“blind” cooperation.59

1.1.3 The “Kandori” Reputation60

Kandori 11 showed that mutual cooperation can always be established as a sequential equilibrium by61

choosing a suitable reputation system in a repeated random matching game. One such system is proposed62

by the author, which we refer to as Kandori reputation.63

For some fixed 𝑇 ∈ N, a player’s score is a number in {−𝑇, . . . ,−1, 0}, with only score 0 being64

regarded as good. After each duel, we increment the score by 1 if the player acted “compliant”, i.e.,65

cooperated with a good player or defected against a bad one. If she acted differently, her score is reset66

to −𝑇 . This means a dissenter will undergo 𝑇 rounds of punishment during which she is considered67

bad and receives defecting treatment by the community. If 𝑇 is chosen large enough, any immediate68

incentive to deviate is overcompensated by imminent outcasting. This mechanism has the drawback69

that excessively long “rehabilitation phases” make the system vulnerable to errors: If there is some70

small probability that players are wrongfully perceived as acting non-compliant, accidental punishment71

is amplified excessively. Keeping track of all scores also poses a memory demand on involved players72

(Kandori requires ⌈log2(𝑇 + 1)⌉ bits of memory per player).73

We considered Kandori for values 𝑇 ∈ {1, 2, 3, 8, 9}. The simplest choice 𝑇 = 1 gives the reputation74

system shown in Table S2.75

1.1.4 The Leading Eight76

The reputation systems described above were mostly motivated by common sense. Ohtsuki and Iwasa took77

a more comprehensive approach. In5, they studied the PD with reputation and considered all possible78

reputation systems that compute the new reputation deterministically from only the old reputation of79

both players and the chosen action. To judge their quality, the authors combined reputation systems80

with all possible (pure) strategies; for each of those pairs they determined whether it is an evolutionary81

stable strategy in the sense of classical evolutionary game theory; see12. Of the considerable number82
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Leading 2:
cooperate defect

vs. good good bad
vs. bad flip no change

Leading 3:
cooperate defect

vs. good good bad
vs. bad good good

Leading 4:
cooperate defect

vs. good good bad
vs. bad no change good

Leading 5:
cooperate defect

vs. good good bad
vs. bad flip good

Leading 8:
cooperate defect

vs. good good bad
vs. bad bad no change

Table S3: Reputation update rules for Leading 2, 3, 4, 5 and 8.

of 4096 pairs, many were evolutionary stable, but only eight pairs yielded consistently highest payoffs83

under varying cost/benefit ratios. A main contribution of Ohtsuki and Iwasa was the identification of84

common features shared among all those stable pairs: Both (a) cooperating with good players and (b)85

defecting against bad players must be considered as good. Of these eight pairs, only two different86

strategies for selecting the next action are used. In fact, all but the first two pairs use the Disc strategy87

(with varying reputation mechanisms): Cooperate if and only if your duel partner is good according to88

the corresponding reputation system.89

In the following, “Leading 𝑖 ” refers to the pair in the 𝑖th line of Table 4 of Ohtsuki and Iwasa 5 . For90

Leading 1 and Leading 2, the so-called Or strategy is used instead, which cooperates if the opponent91

is good or if we ourselves are seen as bad. This behavior can be seen as the plausible incentive of a bad92

player to cooperate with just anybody to escape ostracism as fast as possible. Or is thus a less strictly93

discriminating strategy. It turns out that three of the leading eight pairs in fact use reputation strategies94

we already described under a different name:95

• Leading 1 uses Standing reputation system,96

• Leading 6 is equivalent to Kandori with 𝑇 = 1 and97

• Leading 7 employs Strict Standing.98

For the remaining pairs, the reputation system is given in Table S3, where the row indicates the99

reputation of the opponent, the column gives the action the current player used against this opponent and100

the cell entry then describes the action corresponding to this player’s reputation: An entry good or bad101

simply requires the reputation to be set to good or bad, “no change” leaves the reputation unchanged,102
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last action

vs. bad \ vs. good defected cooperated
defected bad good

cooperated bad bad

Table S4: Computation of reputation in Gandhi.

and “flip” inverts the reputation: If the player is good at the moment, it becomes bad, and if it was bad,103

it now becomes good.104

1.2 The Gandhi Reputation105

All reputation systems described so far only make use of a single piece of information per player.106

Observing defection, this makes it hard to distinguish between unconditional defection and rightful107

punishment. Similarly, a single cooperative action cannot be used to tell AllC and Disc apart.108

We address this issue by introducing a new reputation system, called Gandhi, which only uses two109

bits of memory; the name is based on a well-known quote by Mahatma Gandhi: “Non-cooperation with110

evil is as much a duty as is cooperation with good.”13. To the best of our knowledge, Gandhi has not111

been described in the study of reputation systems for indirect reciprocity. Other reputation systems, e. g.112

Kandori with large 𝑇 , achieve similar discrimination, but they only do it implicitly over time (leading113

to inferior replicator dynamics), and by utilizing more memory.114

Gandhi remembers for each individual two actions played: the last action against a bad opponent115

and the last action against a good opponent. A player is only regarded as good if its last action against a116

good opponent was cooperate and the last action against a bad opponent was defect. The other (three)117

combinations yield the label bad.118

This self-referential aspect of the Gandhi reputation system hinges on updating preexisting values,119

hence on an initial state. There are different possibilities for initialization; for our base model, we initially120

consider all players to have cooperated with everybody. Accordingly, all players start out bad, and they121

can only turn good by defecting against a bad player.122

1.3 Hidden Information and Perfect Group Cohesion: The Mafia Reputation123

When studying cooperation within a group, a perfect mechanism for group cooperation would make124

group members always cooperate with other group members and defect against all outsiders, without125

giving away group membership to outsiders. This kind of strategy can be based on a hidden “membership126

bit” that is passed on to newly acquired group members, invisible to outsiders. We refer to this strategy as127

Mafia. Such a mechanism is not available in systems based on only public information, making Mafia128

a strong benchmark for measuring the ability of a discriminating strategy, i.e., by evaluating how close129

systems can get to Mafia’s performance when only publicly available information can be used.130

2 Quantitative Proof: Gandhi Is an Effective Discriminator131

The two-dimensional spatial model used in the experiments exhibits rich and complex dynamics that132

are hard to predict analytically. In spatial settings without reputation, pair approximation14 is usually133
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Figure S1: The setup: good (𝐺) Gandhi (B) (respectively Mafia) on the left side, bad (𝐵) AllD (A) players on
the right.

the method of choice to predict the model’s long-term behavior or to study the evolution of certain134

parameters15. However, pair approximation is not well suited for analyzing our spatial setting augmented135

with reputation, for the following reasons.136

• The number of differential equations needed to describe the state of the system grows large (it137

doubles, even if one considers only binary reputations).138

• The bookkeeping when deriving the equations by hand gets quite complicated.139

• Pair approximation is in general not very precise and only predicts the qualitative behavior well.140

As we are interested in a specific parameter (i.e., invasion speed), we have developed a Markov chain141

model that turns out to be both surprisingly accurate and relatively simple to analyze. We carry out142

our theoretical analysis for a one-dimensional spatial setting, as opposed to our two-dimensional model.143

We could empirically validate that the analytical invasion speeds derived in 1D fit the 2D experimental144

results very accurately. These observations suggest a general method to analyze suitable parameters (like145

invasion speed) of evolutionary spatial 2D models via a simpler 1D model.146

2.1 One-Dimensional Approximation and Results147

We consider a simple 1D model in which two homogeneous populations with different strategies face148

each other at a boundary (cf. Figure S1). The region left of the boundary is occupied by the Gandhi or149

Mafia players, the right region by AllD players. We then analyze how the boundary moves over time.150

Here we only discuss the situation of Gandhi (resp. Mafia) versus AllD, because the analysis versus151

AllC is considerably simpler.152

The process of duel selection, strategy and reputation updating is analogous to the 2D setting. Note,153

however, that we consider an infinite one-dimensional chain of players, so we ignore any boundary effects.154

It is not hard to see that there can never be a case in which a player is isolated from the other players155

of its strategy population. Hence, the strategy configuration can be fully described by the position of156

the boundary 𝑛 ∈ Z. In addition, one can easily show (for both Gandhi and Mafia) that the reputation157

configuration is fully determined by the reputation of the two players left and right of the boundary, which158

we denote by 𝑋𝑌 , where 𝑋,𝑌 ∈ {𝐺, 𝐵}. Because a defector will never be considered good after a game159

it participated in (as focal or as opponent), the combination 𝐵𝐺 can never occur. Therefore, the tuple160

(𝑛, 𝑋𝑌 ), where 𝑋𝑌 ∈ {𝐺𝐺,𝐺𝐵, 𝐵𝐵}, describes the current state of the process. Also, it fully encodes161

the information that is relevant for performing the next round — the dynamics of (𝑛, 𝑋𝑌 ) over time is162

therefore a Markov process, and completely described by the transition probabilities between two such163

tuples.164
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Figure S2: The three possible configurations of the boundary along with the relevant (focal, opponent) pairs. In
the bottom two cases, a pair is defined as “ relevant” if its choice can lead to a change in the configuration; in the
first case, we arbitrarily define the above four pairs as “relevant” in order to generate an equal number of pairs as in
the other two cases (only (3, 2) is crucial here, the other pairs could be chosen differently). Of these, only the pairs
in boldface can lead to a change in strategies — all other pairs will lead to the “standard” reputation configuration
𝐺𝐵.

Analyzing the speed of the (reputation-free) setting Mafia vs. AllD is relatively straighforward, as165

the boundary can only move to the right. The mathematical analysis of Section 2.2 yields166

𝜓+ =
1
8

1 − 𝑢
1 + 𝑢

for the drift speed of the boundary.167

The invasion speed of Gandhi vs. AllD can be analyzed by solving a recurrence equation for the168

expected time to go from state (𝐵𝐵, 𝑛 − 1) to (𝐵𝐵, 𝑛) (see below for details). We obtain169

𝑇−1 =
−5𝑢2 − 3𝑢 + 8

41𝑢2 + 111𝑢 + 72
for the drift speed. This can be well approximated by 8/9 of that of the (optimal) Mafia vs. AllD drift170

(cf. Extended Data Fig. 2a), as follows.171

𝑇−1 ≈ 1
9

1 − 𝑢
1 + 𝑢 .

There is a simple intuitive explanation for this factor: After defeating an opponent and extending the172

boundary of Gandhi, one in eight cases requires an additional round at the boundary for updating the173

reputation; this is not necessary for Mafia, as it uses hidden information that is updated instantaneously.174

2.2 Mathematical Analysis175

For easier exposition, we only consider situations from which a change in strategies or reputations can176

result. It suffices to consider four pairs of players for that (see Figure S2); when we report probabilities177
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Figure S3: Transition probabilities for Gandhi vs. AllD (PD), where 𝑝 = 𝑝/4, 𝑞 = 𝑞/4 and 𝑟 = 𝑟/4.

in this section, they are always meant conditional to one of these four pairs being chosen. (Note that the178

pairs change over time, but there are always four of them.)179

There are the following different focal/opponent combinations in which the boundary can move with180

the given probabilities, conditional to the pair being selected in this particular focal← opponent order:181

𝐵

Gandhi←
𝐵

AllD with prob. 𝑝 =
𝑢

2(1 + 𝑢)
𝐺

Gandhi←
𝐺

AllD with prob. 𝑞 =
2𝑢

2(1 + 𝑢)
𝐺

Gandhi→
𝐵

AllD with prob. 𝑟 =
1 − 𝑢

2(1 + 𝑢)

Mafia→ AllD with prob. 𝑟 =
1 − 𝑢

2(1 + 𝑢)

For Mafia playing Prisoner’s Dilemma against AllD, reputation does not play a role. The only possible182

transition is183

Mafia → AllD,

which has (conditional) probability 𝑟. Hence the probability of the boundary moving from 𝑛 − 1 to 𝑛 is184

𝜓+ =
1
4
𝑟 =

1
8

1 − 𝑢
1 + 𝑢 ,

where we have re-scaled to match our time normalization.185

For Gandhi playing Prisoner’s Dilemma against AllD, the situation is more involved, because it is186

now possible that the boundary moves left as well as right. The transition probabilities are now as shown187

in Figure S3. While these probabilities define the Markov chain completely, we proceed to provide a188

more analytic measure for the overall drift of the boundary, i.e., the probability of the boundary moving189
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left or right. We analyze the infinite 1-dimensional Markov chain by a recursion that yields the expected190

time for reaching 𝑛 from 𝑛 − 1. The inverse of this time serves as an estimate of the drift speed.191

Note that moving the boundary from 𝑛−1 to 𝑛 requires going through the state (𝐵𝐵, 𝑛). This motivates192

the following definition: Denote by 𝑇𝑛 (𝑋𝑌, 𝑘) the expected time to reach (𝐵𝐵, 𝑛) from (𝑋𝑌, 𝑘), where193

𝑋𝑌 ∈ {𝐺𝐺,𝐺𝐵, 𝐵𝐵}. Conversely, every transition from 𝑛 to 𝑛 − 1 has to go through (𝐺𝐺, 𝑛 − 1), so we194

are particularly interested in 𝑡𝑛 = 𝑇𝑛 (𝐺𝐺, 𝑛 − 1).195

First, we find that196

𝑡𝑛 = 𝑇𝑛 (𝐺𝐺, 𝑛 − 1)

=
𝑞

4
(
1 + 𝑇𝑛 (𝐺𝐺, 𝑛 − 2)

)
+
(
1 − 𝑞

4

) (
1 + 𝑇𝑛 (𝐺𝐵, 𝑛 − 1)

)
. (1)

The only transition away from (𝐺𝐵, 𝑛 − 1) leads to (𝐵𝐵, 𝑛) and is taken with probability 𝑟/4. So we will197

eventually reach (𝐵𝐵, 𝑛) and the number of steps needed is geometrically distributed with parameter 𝑟/4.198

The expectation is then given by the inverse of this parameter:199

𝑇𝑛 (𝐺𝐵, 𝑛 − 1) = 4/𝑟. (2)

Also, we have that200

𝑇𝑛 (𝐺𝐺, 𝑛 − 2) = 𝑇𝑛−1(𝐺𝐺, 𝑛 − 2) + 𝑇𝑛 (𝐵𝐵, 𝑛 − 1)

= 𝑡𝑛−1 +
𝑝

4
(
1 + 𝑇𝑛 (𝐺𝐺, 𝑛 − 2)

)
+
(
1 − 𝑝

4

) (
1 + 𝑇𝑛 (𝐺𝐵, 𝑛 − 1)︸            ︷︷            ︸

=4/𝑟 by (2)

)
= 𝑡𝑛−1 + 1 + 𝑝

4
𝑇𝑛 (𝐺𝐺, 𝑛 − 2) +

(
1 − 𝑝

4

) 4
𝑟
.

Rearranging the terms yields201

𝑇𝑛 (𝐺𝐺, 𝑛 − 2) =
𝑡𝑛−1 + 1
1 − 𝑝/4 +

4
𝑟
. (3)

Substituting back into (1) results in202

𝑡𝑛 =
𝑞

4

(
1 + 𝑡𝑛−1 + 1

1 − 𝑝/4 +
4
𝑟

)
+
(
1 − 𝑞

4

) (
1 + 4

𝑟

)
.

Because there is no boundary, we have 𝑡𝑛 = 𝑡𝑛−1 =: 𝑡 by symmetry. Hence,203

𝑡 =
4 − 𝑝 + 44−𝑝

𝑟
+ 𝑞

4 − 𝑝 − 𝑞 .

Then, the expected time it takes from (𝐵𝐵, 𝑛 − 1) to (𝐵𝐵, 𝑛) is204

𝑇 = 𝑇𝑛 (𝐵𝐵, 𝑛 − 1)

=
𝑝

4
(
1 + 𝑇𝑛 (𝐺𝐺, 𝑛 − 2)︸            ︷︷            ︸

= 𝑡+1
1−𝑝/4+4/𝑟 by (3)

)
+
(
1 − 𝑝

4

) (
1 + 𝑇𝑛 (𝐺𝐵, 𝑛 − 1)︸            ︷︷            ︸

=4/𝑟 by (2)

)
= 1 + 𝑝 𝑡 + 1

4 − 𝑝
+ 4
𝑟

=

(
1 + 4

𝑟

)
(1 + 𝑝) + 𝑝 𝑞 + 1

4 − 𝑝
.
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By substituting 𝑢 in, we obtain205

𝑇−1 =
−5𝑢2 − 3𝑢 + 8

41𝑢2 + 111𝑢 + 72

as an estimate for the drift speed.206

Our analysis suggests that the drift of the 1-dimensional Markov chain for Gandhi vs. AllD can be207

approximated by 8
9 of that of the (optimal) Mafia vs. AllD drift. Hence,208

𝑇−1 ≈ 1
9

1 − 𝑢
1 + 𝑢

appears to be a good estimate for the invasion speed.209

As we show in the following Section 2.2.1, data from two-dimensional simulation and from this210

one-dimensional analysis match extremely well. This is no coincidence: a strongly invading population211

will tend to form a large shape that is close to being convex, resulting in a well-focused, uniform average212

degree with respect to the own subpopulation for individuals along the boundary. (In a grid setting, this213

average degree very rapidly converges to five for large clusters.) Thus, we get the same fundamental214

behavior as in the one-dimensional case, subject to some scaling to account for different normalization.215

2.2.1 Validation of the 1D Model on 2D Data216

If we compare the experimental invasion speed plots from Figure 2b to the functions from above, we217

see that their qualitative agreement is excellent. More precisely, if 𝑀 (𝑢), 𝑢 ∈ {0.1, 0.2, . . . , 0.9}, is the218

vector of experimental Mafia speeds and 𝑓 (𝑢) is the analytically derived speed, we see that 𝑀 (𝑢)
𝑓 (𝑢) is219

(almost) constant. Because we count time steps differently in our 1D analysis and in order to adjust for220

geometric effects of dimensionality, we scale the functions by this constant (which we call 𝑐), which turns221

out to be 𝑐 = 4.8167.222

Because we only use Mafia in the PD to determine 𝑐, we can use the exact same scaling for the223

Gandhi speeds in order to validate our claim that 𝑐 only captures the effects of dimensionality and224

the different counting of timesteps. A plot of these scaled functions together with the respective data225

and figures from the main paper shows that the 1D analysis matches the 2D data remarkably well; see226

Extended Data Fig. 2b.227
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