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Supplementary Note 1: Topological charge calculation of the skyrmionic vortex 

state  
The magnetic configuration formed in a 145-nm tetrahedron is shown in Fig. 2 of 

the main text and in Supplementary Fig. 6. As observed in Supplementary Fig. 6a, the 

equi-spin surface for all spins with Sz = 0 (z-axis along the [001 ] direction) forms a 

potbelly-shaped tube along the z-direction. The tube ends at two opposite edges of the 

tetrahedron. Therefore, the topological charge is computed for the [001] projection of the 

magnetic configuration (achieved by first averaging the magnetization along the z-axis 

and then renormalizing the magnetization unit vector), whose magnetic configuration is 

shown in Supplementary Fig. 6b, and the corresponding topological charge density 𝜌𝜌𝑄𝑄 =

𝑆̂𝑆 ⋅ (𝜕𝜕𝑥𝑥𝑆̂𝑆 × 𝜕𝜕𝑦𝑦𝑆̂𝑆)/4𝜋𝜋 is shown in Supplementary Fig. 6c. Enclosed by the dashed line, the 

magnetic configuration resembles a skyrmionic texture, and the topological charge adds 

up to 0.93. Although a fractional number, it is very close to 1 for a perfect skyrmion. In 

finite geometries, the real-space manifold is not compact, and topological indices allow 

fractional values. The deviation is also attributed to the entanglement of the skyrmion 

texture and the corner spin twists outside the box. Actually, the topological charge 𝑄𝑄 =

𝑚𝑚 ⋅ Δ𝑆𝑆𝑧𝑧/2, where 𝑚𝑚 is the vorticity in the skyrmion plane and Δ𝑆𝑆𝑧𝑧 is the difference in 

the z-component of the magnetizations of the center and periphery. In this sense, the spin 

texture inside the box resembles key features of a skyrmion: it has unity vorticity because 

in-plane magnetic moments rotate by an angle of 2π circulating around the center, 

magnetic moments therein flip their z-components from the center to the periphery, and 

in 3D, it forms countable tubes. In light of its similarity to a skyrmion and to fully account 

for the fractional topological charge, we dubbed this state as a skyrmionic vortex to 

distinguish it from a perfect skyrmion. 
  



Supplementary Note 2: Energy landscape of magnetic states in FeGe tetrahedral 

nanoparticles 

When the surface-to-volume ratio is small, tetrahedral nanoparticles are expected 

to host the bulk-like ground state, i.e., helical state, in which the helix direction is 

determined by the detailed magnetic interaction and the size of the tetrahedron. As the 

surface to volume ratio increases, surface effects (e.g., additional symmetry breaking at 

the surface of the tetrahedron) and geometrical confinement play vital roles, which lead 

to more complicated energy landscapes and give rise to the formation of rich magnetic 

states. These different magnetic states will be discussed in detail below. 

 

1. Transition of helix directions 

In both the experiments and simulations, a transition of the helix direction 

occurred when the tetrahedron size was approximately 300 nm. To understand the phase 

diagram, we can first analyze this transition of the helix direction from [111 ] (or its 

equivalence, Supplementary Fig. 7a) to [001] (or its equivalence, Supplementary Fig. 7b). 

The magnetic energy under consideration is given by 

𝐻𝐻 = 𝐻𝐻ex + 𝐻𝐻cubic + 𝐻𝐻surf + 𝐻𝐻𝑑𝑑 

where 𝐻𝐻ex = ∫ 𝑑𝑑3𝑟𝑟 [𝐽𝐽(∇𝑴𝑴)2 + 𝐷𝐷𝑴𝑴 ⋅ (∇ × 𝑴𝑴)]  includes ferromagnetic exchange and 

the DM interaction. 𝐻𝐻cubic = 𝐾𝐾𝑐𝑐∫ 𝑑𝑑3𝑟𝑟 (𝑀𝑀𝑥𝑥
4 + 𝑀𝑀𝑦𝑦

4 + 𝑀𝑀𝑧𝑧
4)  is the cubic crystalline 

anisotropy. 𝐻𝐻surf = 𝐾𝐾𝑠𝑠∫ 𝑑𝑑𝑑𝑑(𝑴𝑴 ⋅ 𝑛𝑛�)2  is the surface anisotropy associated with four 

surfaces of the tetrahedron. 𝑛𝑛� is the normal direction of each surface. The last term 𝐻𝐻𝑑𝑑 

is the dipolar energy. Magnetization in any helix can be expressed as 

𝑴𝑴 = (𝑀𝑀𝑠𝑠/2)[𝒎𝒎𝒒𝒒 exp(−𝑖𝑖(𝒒𝒒 ⋅ 𝒓𝒓 + 𝜃𝜃)) + 𝑐𝑐. 𝑐𝑐. ], 

where 𝒒𝒒 is the wavevector, 𝑀𝑀𝑠𝑠 is the saturation magnetization, and 𝜃𝜃 is the phase shift. 

Equivalently, 𝑴𝑴/𝑀𝑀𝑠𝑠 = ℜ�𝒎𝒎𝒒𝒒� cos(𝒒𝒒 ⋅ 𝒓𝒓 + 𝜃𝜃) + ℑ�𝒎𝒎𝒒𝒒� sin(𝒒𝒒 ⋅ 𝒓𝒓 + 𝜃𝜃) . For the [111] 

helix, 𝒒𝒒 = (111)𝑞𝑞/√3 , and we chose 𝒎𝒎𝒒𝒒 = 1
√2

(101�) + 𝑖𝑖
√6

(1�21�) . For [001 ] helix, 

𝒒𝒒 = (001)𝑞𝑞, and 𝒎𝒎𝒒𝒒 = (100) + 𝑖𝑖(010). The geometry is shown in Supplementary Fig. 

7c. For simplicity, we select the cubic size a as our length scale, such that the edge length 

of the tetrahedron is √2𝑎𝑎 . These two helices have the same 𝐻𝐻ex  energy density of 

8
9

(𝐽𝐽𝑞𝑞2 − 𝐷𝐷𝐷𝐷) , such that their energies are minimized at the same wavevector of 𝑞𝑞 =



2𝜋𝜋/𝜆𝜆 = 2𝐷𝐷/𝐽𝐽.  

 

However, in terms of the cubic crystalline anisotropy, these two helices actually 

have different energies. For the [111 ] helix, 𝐻𝐻cubic
[111] = 1

2
𝐾𝐾𝑐𝑐𝑉𝑉 , where 𝑉𝑉 = 1

3
𝑎𝑎3  is the 

volume of the tetrahedron. For the [001 ] helix, 𝐻𝐻cubic
[001] = 𝐾𝐾𝑐𝑐∫ 𝑑𝑑3𝑟𝑟 �

1
2

+ 1
2

cos2(2𝑞𝑞𝑞𝑞 +

𝜃𝜃)� ≥ 𝐻𝐻cubic
[111]. The [001] helix always has larger cubic anisotropy energy than the [111] 

helix. Integrating over the tetrahedron we obtain 𝐻𝐻cubic
[001] = 3

4
𝐾𝐾𝑐𝑐𝑉𝑉 −

𝐾𝐾𝑐𝑐
32𝑞𝑞3

cos(2𝑞𝑞𝑞𝑞 +

4𝜃𝜃)[2𝑞𝑞𝑞𝑞 cos(2𝑞𝑞𝑞𝑞) − sin(2𝑞𝑞𝑞𝑞)].  In the bulk limit, 𝐻𝐻cubic
[001] = 3

2
𝐻𝐻cubic

[111] . Because the 

energy scales linearly with the sample volume, at large tetrahedra, the [111 ] helix is 

always preferred, which is consistent with the experiment. In the size of interest here, 

tetrahedra can at least host one period of the helix; therefore, 𝑞𝑞𝑞𝑞 > 2𝜋𝜋  and 

2𝑞𝑞𝑞𝑞 cos(2𝑞𝑞𝑞𝑞) − sin(2𝑞𝑞𝑞𝑞) > 0; then, the [001] helix automatically adjusts its phase to 

maximize cos(2𝑞𝑞𝑞𝑞 + 4𝜃𝜃); therefore, 𝜃𝜃 = −𝑞𝑞𝑞𝑞/2. 

Surface anisotropy can in principle be present on each surface of tetrahedra, 

arising from either the dipolar energy or additional surface interaction. Without loss of 

generality, 𝐻𝐻surf = 𝐾𝐾𝑠𝑠∫ 𝑑𝑑𝑑𝑑(𝑴𝑴 ⋅ 𝑛𝑛�)2 is the dominant lowest order energy term. For the 

[111 ] helix, the base plane (111 ) does not contribute to 𝐻𝐻surf  because the magnetic 

moments therein are perpendicular to the normal direction. The contribution from the 

other three surfaces summed together gives 𝐻𝐻surf
[111] = 𝐾𝐾𝑠𝑠

2𝑎𝑎2

√3
. For the [001] helix, all four 

surfaces contribute to the surface anisotropy energy and 𝐻𝐻surf
[001] = 𝐾𝐾𝑠𝑠

2𝑎𝑎2

√3
+

𝐾𝐾𝑠𝑠
2𝑎𝑎2

√3
1

(𝑞𝑞𝑞𝑞)2 cos(𝑞𝑞𝑞𝑞 + 2𝜃𝜃) [𝑞𝑞𝑞𝑞 cos(𝑞𝑞𝑞𝑞) − sin(𝑞𝑞𝑞𝑞)] . Taking the value 𝜃𝜃 = −𝑞𝑞𝑞𝑞/2 

determined from the prevailing cubic anisotropy, 𝐻𝐻surf
[001] − 𝐻𝐻surf

[111] =

2𝑎𝑎2𝐾𝐾𝑠𝑠
√3

1
(𝑞𝑞𝑞𝑞)2

[𝑞𝑞𝑞𝑞 cos(𝑞𝑞𝑞𝑞) − sin(𝑞𝑞𝑞𝑞)] ∼ 2𝐾𝐾𝑠𝑠𝑎𝑎2/√3𝑞𝑞𝑞𝑞  in the large 𝑞𝑞𝑞𝑞  limit. For 

tetrahedra of interest here, this energy difference is approximately equal to or smaller than 

0.1𝐾𝐾𝑠𝑠𝑎𝑎2, which is small compared with the other energy terms. Nevertheless, the surface 



anisotropy still contributes to the formation of the [111] ([001]) helix in the presence of 

an easy-plane (easy-axis) type 𝐾𝐾𝑠𝑠.   

It is difficult to compute the dipolar energy directly; however, a reasonable 

estimation can be made by examining the total magnetization 𝑴𝑴total = ∫𝑴𝑴𝑑𝑑3𝑟𝑟 in the 

system. For the [111] helix, �𝑴𝑴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
[111]�

2
= (𝑀𝑀𝑠𝑠𝑎𝑎3)2 3

8(𝑞𝑞𝑞𝑞)6 [2(𝑞𝑞𝑞𝑞)4 + 9 + (6(𝑞𝑞𝑞𝑞)2 −

9) cos 2𝑞𝑞𝑞𝑞
√3

− 6√3𝑞𝑞𝑞𝑞 sin 2𝑞𝑞𝑞𝑞
√3

 ] , whereas for the [001] helix, �𝑴𝑴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
[001]�

2
=

(𝑀𝑀𝑠𝑠𝑎𝑎3)2 16
(𝑞𝑞𝑞𝑞)6 �𝑞𝑞𝑞𝑞 cos 𝑞𝑞𝑞𝑞

2
− 2𝑞𝑞𝑞𝑞 sin 𝑞𝑞𝑞𝑞

2
�
2

  . Because here 𝑞𝑞𝑞𝑞 ≫ 1 , �𝑴𝑴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
[111]�

2
∼

3
4

(𝑀𝑀𝑠𝑠𝑎𝑎3)2(𝑞𝑞𝑞𝑞)−2 is much greater than �𝑴𝑴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
[001]�

2
. Because the dipolar energy difference 

𝐻𝐻𝑑𝑑
[001] − 𝐻𝐻𝑑𝑑

[111] ∼ −𝜇𝜇0(�𝑴𝑴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
[001]�

2
− �𝑴𝑴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

[111]�
2

)/𝑉𝑉 ∼ −27
4
𝜇𝜇0𝑀𝑀𝑠𝑠

2𝑉𝑉(𝑞𝑞𝑞𝑞)−2 , compared 

with the cubic anisotropy, small tetrahedra favor the [001] helix instead. Based on this 

rough estimation, the transition from the [111] to [001] helix occurs at approximately 

𝑞𝑞𝑞𝑞 = 2𝜋𝜋𝜋𝜋/𝜆𝜆 ∼ 40 with a ~ 450 nm, which is close to both the simulation result and 

experimental observation. 

 

2. Skyrmionic vortex state 

Skyrmionic vortex states can form as either ground or metastable states in 

tetrahedral nanoparticles. Specifically, a single skyrmionic vortex serves as the ground 

state in tetrahedra with sizes from 100 to 130 nm. The single- and three-skyrmionic vortex 

states are present as metastable states in tetrahedra with sizes from 130 to 250 nm. It 

should be noted that the energy landscape of any 3D spin textures is very complicated 

because of the comparable energies of competing orders; the metastable magnetic states 

derived in simulations are quite sensitive to the initial state and the detailed magnetic 

interactions. It is difficult to classify all the possible states; therefore, here we only focus 

on the magnetic states that were observed in the experiments. 

Although the single-skyrmionic vortex state is mainly driven by chiral geometric 

frustration, the three-skyrmionic vortex state in particles with size smaller than 200 nm 

also requires a reduction of the dipole field, i.e., the saturation magnetization, at least in 

micromagnetic simulations. In real experiments, this is also reasonable because for small 



particles, the imperfect surfaces could lead to smaller saturation magnetization than the 

bulk value. To reproduce the 185-nm spin texture observed in the experiment, a reduced 

saturation magnetization MS = 192 kA/m was employed. 

The surface anisotropy (uniaxial type) was also considered in the simulation. For 

the helical state, an easy-plane (easy-axis) type surface anisotropy can favor the formation 

of a helix along the [111 ] ([100 ]) direction, which is consistent with our analytical 

analysis. For the skyrmionic state, the surface anisotropy (with the amplitude around the 

cubic anisotropy) does not substantially affect the phase diagram; however, it does modify 

the detailed spin textures. To better reproduce the experimental result for a 145-nm 

tetrahedron, an easy-plane surface type was included in our simulation. 
  



Supplementary Figure 1 | Sample loading and mechanical configuration for EH 
observation. a, Schematic illustration of loading the specimen grid into the holder. b, 
Cross-sectional view of (a) perpendicular to the α rotation axis. c, Magnified view of (a) 
showing a nanoparticle and the supporting tungsten probe. The inset is a typical SEM 
image captured from the same view angle. 
  



Supplementary Figure 2 | Hologram acquisition and phase reconstruction procedure. 
a, Typical hologram recorded at 10 K for a 145-nm tetrahedron. b–d, Reconstructed phase 
(ϕ) image taken at (b) 10 K and (c) 293 K in the form of cos(2ϕ) and (d) subtracted one. 
e, Phase shift profiles along the arrow in (b) for the images in (b), (c), and (d). 
  



 
Supplementary Figure 3 | Protocol and demonstration of the model-based imaging 
simulations. a, Schematic of the model for the clockwise helical magnetic structure with 
q = [001 ] confined to a 250-nm tetrahedral size. One helical period with a periodic 
wavelength of 70 nm is divided into twelve discrete thin magnetic phases, which are 
homogeneously magnetized in the direction normal to the q-vector. The magnetization 
directions of the phases, which are color-coded in line with the inserted color ring, differ 
from the adjacent ones by 30°. The magnetization of the planes is set to unity. b–d, 
Simulated in-plane magnetic flux projections along the (b) [001�], (c) [011�], and (d) [010] 
directions. The inserted color wheel represents the magnetization direction and density as 
the color hue and brightness, respectively, which are qualitatively comparable among 
these maps. 
  



 

Supplementary Figure 4 | Protocol to visualize the micromagnetically derived 
structures as projection maps of the magnetic vector potential as exemplified for a 
145-nm nanoparticle. a, Magnetic configurations derived from micromagnetic 
simulations (only the z component is displayed for clear visibility). b, Magnetic vector 
potential Apj map projected and integrated along the [001�], [011�], and [010] directions 
displayed in the form of cos(100Apj). c, Color-coded presentations of the projected 
magnetic flux distribution where the color hue and brightness represent the in-plane 
magnetic flux direction and density, respectively. 
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Supplementary Figure 6 | Single skyrmion configuration in a 145-nm tetrahedron. 
a, Equi-spin surface for all spins with Sz = 0. b, z-averaged ([001] direction) spin texture 
of the single skyrmion configuration. c, Calculated topological charge density of the 
magnetic configuration shown in (b). The total topological charge within the dashed box 
is approximately 0.93. 
  



 

Supplementary Figure 7 | Transition of the helix direction from [𝟏𝟏𝟏𝟏𝟏𝟏] to [𝟎𝟎𝟎𝟎𝟎𝟎]. a, 
Top view of helix state along the [111] direction in a 400-nm tetrahedron (corresponding 
to the orange and black lines in the inset). b, Bird’s-eye view of helix state along the 
[100] direction in a 210-nm tetrahedron (corresponding to the orange and black lines in 
the inset). c, Schematic of a tetrahedron embedded within a cube. 
  



Captions of Supplementary Movies 

Supplementary Movies 1 and 2 | The simulated 3D view of the skyrmionic vortex in 

a 145-nm tetrahedron. In-plane (xy plane) and out-of-plane (z axis) magnetic 

components are presented in Movies 1 and 2, respectively. 


