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Supplementary Note 1: Topological charge calculation of the skyrmionic vortex

state

The magnetic configuration formed in a 145-nm tetrahedron is shown in Fig. 2 of
the main text and in Supplementary Fig. 6. As observed in Supplementary Fig. 6a, the
equi-spin surface for all spins with S, = 0 (z-axis along the [001] direction) forms a
potbelly-shaped tube along the z-direction. The tube ends at two opposite edges of the
tetrahedron. Therefore, the topological charge is computed for the [001] projection of the
magnetic configuration (achieved by first averaging the magnetization along the z-axis
and then renormalizing the magnetization unit vector), whose magnetic configuration is
shown in Supplementary Fig. 6b, and the corresponding topological charge density p, =
S (0,8 x 6y§ )/4m is shown in Supplementary Fig. 6¢. Enclosed by the dashed line, the
magnetic configuration resembles a skyrmionic texture, and the topological charge adds
up to 0.93. Although a fractional number, it is very close to 1 for a perfect skyrmion. In
finite geometries, the real-space manifold is not compact, and topological indices allow
fractional values. The deviation is also attributed to the entanglement of the skyrmion
texture and the corner spin twists outside the box. Actually, the topological charge Q =
m - AS,/2, where m is the vorticity in the skyrmion plane and AS, is the difference in
the z-component of the magnetizations of the center and periphery. In this sense, the spin
texture inside the box resembles key features of a skyrmion: it has unity vorticity because
in-plane magnetic moments rotate by an angle of 2z circulating around the center,
magnetic moments therein flip their z-components from the center to the periphery, and
in 3D, it forms countable tubes. In light of its similarity to a skyrmion and to fully account
for the fractional topological charge, we dubbed this state as a skyrmionic vortex to

distinguish it from a perfect skyrmion.



Supplementary Note 2: Energy landscape of magnetic states in FeGe tetrahedral
nanoparticles

When the surface-to-volume ratio is small, tetrahedral nanoparticles are expected
to host the bulk-like ground state, i.e., helical state, in which the helix direction is
determined by the detailed magnetic interaction and the size of the tetrahedron. As the
surface to volume ratio increases, surface effects (e.g., additional symmetry breaking at
the surface of the tetrahedron) and geometrical confinement play vital roles, which lead
to more complicated energy landscapes and give rise to the formation of rich magnetic

states. These different magnetic states will be discussed in detail below.

1. Transition of helix directions

In both the experiments and simulations, a transition of the helix direction
occurred when the tetrahedron size was approximately 300 nm. To understand the phase
diagram, we can first analyze this transition of the helix direction from [111] (or its
equivalence, Supplementary Fig. 7a) to [001] (or its equivalence, Supplementary Fig. 7b).
The magnetic energy under consideration is given by

H = Hex + Heupic + Hsurs + Hg
where Hey = [ d3r [J(VM)? + DM - (V x M)] includes ferromagnetic exchange and
the DM interaction. Heypic = K.J d3r (M} + My 4+ M7) is the cubic crystalline
anisotropy. Hgys = KsJ do(M - #)? is the surface anisotropy associated with four
surfaces of the tetrahedron. 7 is the normal direction of each surface. The last term H,
is the dipolar energy. Magnetization in any helix can be expressed as
M = (M;/2)[mgexp(—i(q-T+6)) +c.c.],

where q isthe wavevector, M is the saturation magnetization, and 6 is the phase shift.

Equivalently, M/M; = R(m,)cos(q - r+ 6) +I(m,)sin(q - + 6). For the [111]
helix, q = (111)q/V3, and we chose m, = —(10T) +%(i2i). For [001] helix,

q = (001)q, and m, = (100) + i{(010). The geometry is shown in Supplementary Fig.
7c. For simplicity, we select the cubic size a as our length scale, such that the edge length

of the tetrahedron is v2a. These two helices have the same H., energy density of

g(] q? — Dq), such that their energies are minimized at the same wavevector of q =



21/A = 2D/].

However, in terms of the cubic crystalline anisotropy, these two helices actually

have different energies. For the [111] helix, H [11a] %KCV, where V = §a3 is the

cubic

volume of the tetrahedron. For the [001] helix, H°%Y = Kk_[ a3r E +%cosz(2qz +

cubic

0)] > H M The [001] helix always has larger cubic anisotropy energy than the [111]

cubic*

001 3 K.
[ ]_Z V-

cubic = 3207 cos(2qa +

helix. Integrating over the tetrahedron we obtain H

460)[2ga cos(2qa) — sin(2qa)]. In the bulk limit, gloon _ 3 plid] gocause the

cubic — 3 cubic -
energy scales linearly with the sample volume, at large tetrahedra, the [111] helix is
always preferred, which is consistent with the experiment. In the size of interest here,
tetrahedra can at least host one period of the helix; therefore, qa > 2m and
2qa cos(2qa) — sin(2qa) > 0; then, the [001] helix automatically adjusts its phase to
maximize cos(2qa + 48); therefore, 8 = —qa/2.

Surface anisotropy can in principle be present on each surface of tetrahedra,
arising from either the dipolar energy or additional surface interaction. Without loss of
generality, Hgy s = KsJ do(M - #)? is the dominant lowest order energy term. For the
[111] helix, the base plane (111) does not contribute to Hg,s because the magnetic

moments therein are perpendicular to the normal direction. The contribution from the

2
other three surfaces summed together gives Hs[lllifl = K % For the [001] helix, all four

loo1] _ K 2a?
S

surfaces contribute to the surface anisotropy energy and Hg, . e +
2

5%(61:1)2 cos(qa + 20) [qa cos(qa) — sin(qa)] . Taking the value 6 = —qa/2

determined  from the  prevailing cubic  anisotropy, Hs[g(r)fl] — Hs[lllifl] =

2a%Ks 1
V3 (qa)?

[qa cos(qa) — sin(qa)] ~ 2K;a?/v/3ga in the large qa limit. For

tetrahedra of interest here, this energy difference is approximately equal to or smaller than

0.1K a?, which is small compared with the other energy terms. Nevertheless, the surface



anisotropy still contributes to the formation of the [111] ([001]) helix in the presence of
an easy-plane (easy-axis) type K.
It is difficult to compute the dipolar energy directly; however, a reasonable

estimation can be made by examining the total magnetization My, = | Md3r in the

system. For the [111] helix, [Mtgclu] = (M;a®)? [2(qa)* + 9 + (6(qa)? —

3
8(qa)®

2
9) cosz%—&@qasin%] ,  whereas for the [001] helix, [Mt(;(zclll] =

16
(qa)®

111

2
(Msa®)? (qa cosqz—a— 2qa sinqz—a) . Because here qa>»1 , [Mtoml]

[001]

(M a®)?(qa)~? is much greater than [Mtotal

] Because the dipolar energy difference

0 [0
Hc[l o Hc[zlll] ~ o([Mto?iz] [Mt})hlzl] )V ~ ——IloMzV(qa) z, compared

with the cubic anisotropy, small tetrahedra favor the [001] helix instead. Based on this
rough estimation, the transition from the [111] to [001] helix occurs at approximately
qa = 2na/A ~ 40 with a ~ 450 nm, which is close to both the simulation result and

experimental observation.

2. Skyrmionic vortex state

Skyrmionic vortex states can form as either ground or metastable states in
tetrahedral nanoparticles. Specifically, a single skyrmionic vortex serves as the ground
state in tetrahedra with sizes from 100 to 130 nm. The single- and three-skyrmionic vortex
states are present as metastable states in tetrahedra with sizes from 130 to 250 nm. It
should be noted that the energy landscape of any 3D spin textures is very complicated
because of the comparable energies of competing orders; the metastable magnetic states
derived in simulations are quite sensitive to the initial state and the detailed magnetic
interactions. It is difficult to classify all the possible states; therefore, here we only focus
on the magnetic states that were observed in the experiments.

Although the single-skyrmionic vortex state is mainly driven by chiral geometric
frustration, the three-skyrmionic vortex state in particles with size smaller than 200 nm
also requires a reduction of the dipole field, i.e., the saturation magnetization, at least in

micromagnetic simulations. In real experiments, this is also reasonable because for small



particles, the imperfect surfaces could lead to smaller saturation magnetization than the
bulk value. To reproduce the 185-nm spin texture observed in the experiment, a reduced
saturation magnetization Ms= 192 kA/m was employed.

The surface anisotropy (uniaxial type) was also considered in the simulation. For
the helical state, an easy-plane (easy-axis) type surface anisotropy can favor the formation
of a helix along the [111] ([100]) direction, which is consistent with our analytical
analysis. For the skyrmionic state, the surface anisotropy (with the amplitude around the
cubic anisotropy) does not substantially affect the phase diagram; however, it does modify
the detailed spin textures. To better reproduce the experimental result for a 145-nm

tetrahedron, an easy-plane surface type was included in our simulation.
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Supplementary Figure 1 | Sample loading and mechanical configuration for EH
observation. a, Schematic illustration of loading the specimen grid into the holder. b,
Cross-sectional view of (a) perpendicular to the a rotation axis. ¢, Magnified view of (a)
showing a nanoparticle and the supporting tungsten probe. The inset is a typical SEM

image captured from the same view angle.
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Supplementary Figure 2 | Hologram acquisition and phase reconstruction procedure.
a, Typical hologram recorded at 10 K for a 145-nm tetrahedron. b—d, Reconstructed phase
(@) image taken at (b) 10 K and (¢) 293 K in the form of cos(2 ¢) and (d) subtracted one.

e, Phase shift profiles along the arrow in (b) for the images in (b), (¢), and (d).




b.[00T] projection

d. [010] projection

Supplementary Figure 3 | Protocol and demonstration of the model-based imaging
simulations. a, Schematic of the model for the clockwise helical magnetic structure with
g = [001] confined to a 250-nm tetrahedral size. One helical period with a periodic
wavelength of 70 nm is divided into twelve discrete thin magnetic phases, which are
homogeneously magnetized in the direction normal to the g-vector. The magnetization
directions of the phases, which are color-coded in line with the inserted color ring, differ
from the adjacent ones by 30°. The magnetization of the planes is set to unity. b—d,
Simulated in-plane magnetic flux projections along the (b) [001], (¢) [011], and (d) [010]
directions. The inserted color wheel represents the magnetization direction and density as
the color hue and brightness, respectively, which are qualitatively comparable among

these maps.
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Supplementary Figure 4 | Protocol to visualize the micromagnetically derived
structures as projection maps of the magnetic vector potential as exemplified for a
145-nm nanoparticle. a, Magnetic configurations derived from micromagnetic
simulations (only the z component is displayed for clear visibility). b, Magnetic vector
potential 4,; map projected and integrated along the [001], [011], and [010] directions
displayed in the form of cos(1004p). ¢, Color-coded presentations of the projected
magnetic flux distribution where the color hue and brightness represent the in-plane

magnetic flux direction and density, respectively.
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Supplementary Figure 6 | Single skyrmion configuration in a 145-nm tetrahedron.
a, Equi-spin surface for all spins with S,= 0. b, z-averaged ([001] direction) spin texture
of the single skyrmion configuration. ¢, Calculated topological charge density of the
magnetic configuration shown in (b). The total topological charge within the dashed box

is approximately 0.93.
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Supplementary Figure 7 | Transition of the helix direction from [111] to [001]. a,
Top view of helix state along the [111] direction in a 400-nm tetrahedron (corresponding
to the orange and black lines in the inset). b, Bird’s-eye view of helix state along the
[100] direction in a 210-nm tetrahedron (corresponding to the orange and black lines in

the inset). ¢, Schematic of a tetrahedron embedded within a cube.



Captions of Supplementary Movies
Supplementary Movies 1 and 2 | The simulated 3D view of the skyrmionic vortex in
a 145-nm tetrahedron. In-plane (xy plane) and out-of-plane (z axis) magnetic

components are presented in Movies 1 and 2, respectively.



