

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our [Editorial Policies](#) and the [Editorial Policy Checklist](#).

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F , t , r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen's d , Pearson's r), indicating how they were calculated

Our web collection on [statistics for biologists](#) contains articles on many of the points above.

Software and code

Policy information about [availability of computer code](#)

Data collection

- Connectivity Map
- MaxQuant software
- Image Studio Lite v5.2
- SPECTROstar Nano v2.12
- EPSON Scan v 3.9.3.4 ES
- Leica Application Suite X (LAS X)
- L1000 dataset in Library of Integrated Network-based Cellular Signatures (LINCS) (<http://c3.lincscloud.org>)
- Uniprot proteome reference for Homo Sapiens (Proteome ID: UP000005640_9606, February 2019)
- The studies for obtaining the interspecies KRAS signature are uploaded in GEO as GSE15325, GSE17671 and GSE49200
- Proteomics data are uploaded in ProteomeXchange Consortium (<http://proteomecentral.proteomexchange.org>) via the PRIDE repository with the dataset identifier PXD024023
- RNA Sequencing data is uploaded in GEO as GSE108491

Data analysis

- CompuSyn (www.combosyn.com)
- GraphPad Prism 8
- R statistical program (<http://www.R-project.org>)
- GSEA software
- FloJo Software v9.3
- Perseus software version 1.5.6.0
- Metascape
- 3D Slicer Viewer Software

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio [guidelines for submitting code & software](#) for further information.

Data

Policy information about [availability of data](#)

All manuscripts must include a [data availability statement](#). This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our [policy](#)

All data and methos of the study are available and any additional data will be disclosed upon request. GEO161218,

Human research participants

Policy information about [studies involving human research participants](#) and [Sex and Gender in Research](#).

Reporting on sex and gender

The human data associated to the PDX used in this study are anonymized.

Population characteristics

Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study design questions and have nothing to add here, write "See above."

Recruitment

Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and how these are likely to impact results.

Ethics oversight

Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

Sample size was chosen using <http://www.biostat.mathinfo/power/ttest.html> or based on similar experiments previously published by the authors.

Data exclusions

No data were excluded from the analysis.

Replication

For in vitro experiments, at least 3 independent experiments were carried out with 2-6 replicates per experiment. For in vivo experiments, the number of tumors per group was determined according the ethical guideline.

Randomization

For experiments with mice, mice were randomized by their tumor size in order to have the same average tumor volume in all the groups.

Blinding

Investigators were blinded to group allocation during in vivo data collection.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
<input type="checkbox"/>	<input checked="" type="checkbox"/> Antibodies
<input type="checkbox"/>	<input checked="" type="checkbox"/> Eukaryotic cell lines
<input checked="" type="checkbox"/>	<input type="checkbox"/> Palaeontology and archaeology
<input type="checkbox"/>	<input checked="" type="checkbox"/> Animals and other organisms
<input checked="" type="checkbox"/>	<input type="checkbox"/> Clinical data
<input checked="" type="checkbox"/>	<input type="checkbox"/> Dual use research of concern

Methods

n/a	Involved in the study
<input checked="" type="checkbox"/>	<input type="checkbox"/> ChIP-seq
<input type="checkbox"/>	<input checked="" type="checkbox"/> Flow cytometry
<input checked="" type="checkbox"/>	<input type="checkbox"/> MRI-based neuroimaging

Antibodies

Antibodies used

β-TUBULIN: Santa Cruz Biotechnology, sc-9104
 GAPDH: Abcam, ab9484
 ACTIN: Sigma, A5441
 HSP90: Santa Cruz Biotechnology, sc-69703
 KRAS: Sigma, WH0003845M1
 MYC: Cell Signalling Technology, #5605, D84C12
 ERK1/2: Cell Signalling Technology, #9102
 p-ERK1/2: Cell Signalling Technology, #9101,
 PARP: Cell Signalling Technology, #9542,
 AKT: Cell Signalling Technology, #9272,
 p-AKT: Cell Signalling Technology, #9271,
 p70S6K: Cell Signalling Technology, #2708,
 p-p70S6K: Cell Signalling Technology, #9205,
 EGFR: Cell Signalling Technology, #2232
 p-EGFR: Cell Signalling Technology, #2236,
 STAT3: Cell Signalling Technology, #4904,
 p-STAT3: Cell Signalling Technology, #9145
 cJUN: Cell Signalling Technology, #9165
 SHP2: Cell Signalling Technology, #3397,
 phospho-SHP2: Cell Signalling Technology, #3751
 FLT3: Cell Signalling Technology, #3461
 phospho-FLT3: Cell Signalling Technology, #3462

Validation

β-TUBULIN: <https://www.scbt.com/es/p/beta-tubulin-antibody-h-235>
 GAPDH: file:///C:/Users/imanayae/Downloads/datasheet_9484.pdf
 ACTIN: https://www.thermofisher.com/order/genome-database/dataSheetPdf?producttype=antibody&products subtype=antibody_primary&productId=MA5-15739&version=225
 HSP90: <https://datasheets.scbt.com/sc-69703.pdf>
 KRAS: <https://www.sigmaltd.com/ES/es/product/sigma/wh0003845m1>
 MYC: <https://www.cellsignal.com/datasheet.jsp?productId=5605&images=1&size=A4>
 ERK1/2: <https://www.cellsignal.com/datasheet.jsp?productId=9102&images=1&size=A4>
 p-ERK1/2: <https://www.cellsignal.com/datasheet.jsp?productId=9101&images=1&size=A4>
 PARP: <https://www.cellsignal.com/datasheet.jsp?productId=9542&images=1&size=A4>
 AKT: <https://www.cellsignal.com/datasheet.jsp?productId=9272&images=1&size=A4>
 p-AKT: <https://www.cellsignal.com/datasheet.jsp?productId=9271&images=1&size=A4>
 p70S6K: <https://www.cellsignal.com/datasheet.jsp?productId=2708&images=1&size=A4>
 p-p70S6K: <https://www.cellsignal.com/datasheet.jsp?productId=9205&images=1&size=A4>
 EGFR: <https://www.cellsignal.com/datasheet.jsp?productId=2232&images=1&size=A4>
 p-EGFR: <https://www.cellsignal.com/datasheet.jsp?productId=2236&images=1&size=A4>
 STAT3: <https://www.cellsignal.com/datasheet.jsp?productId=4904&images=1&size=A4>
 p-STAT3: <https://www.cellsignal.com/datasheet.jsp?productId=9145&images=1&size=A4>
 cJUN: <https://www.cellsignal.com/datasheet.jsp?productId=9165&images=1&size=A4>
 SHP2: <https://www.cellsignal.com/datasheet.jsp?productId=3397&images=1&size=A4>
 phospho-SHP2: <https://www.cellsignal.com/datasheet.jsp?productId=3751&images=1&size=A4>
 FLT3: AML cell lines lysates
 phospho-FLT3: AML cell lines lysates

Eukaryotic cell lines

Policy information about [cell lines and Sex and Gender in Research](#)

Cell line source(s)

H1437: ATCC, Human, Male, Lung adenocarcinoma
 H1568: ATCC, Human, Female, Lung adenocarcinoma
 H2126: ATCC, Human, Male, Lung adenocarcinoma
 HCC78: ATCC, Human, Male, Lung adenocarcinoma
 H1650: ATCC, Human, Male, Lung adenocarcinoma
 H1993: ATCC, Human, Female, Lung adenocarcinoma
 H1792: ATCC, Human, Male, Lung adenocarcinoma
 H2009: ATCC, Human, Female, Lung adenocarcinoma

A549: ATCC, Human, Male, Lung carcinoma
 H358: ATCC, Human, Male, Lung carcinoma
 H23: ATCC, Human, Male, Lung adenocarcinoma
 HCC44: ATCC, Human, Female, Lung adenocarcinoma
 CP435: General Hospital of Valencia, Human
 H1373: ATCC, Human, Male, Adenocarcinoma
 H2122: ATCC, Human, Female, Lung adenocarcinoma
 H2030: ATCC, Human, Male, Lung adenocarcinoma
 SW1573: ATCC, Human, Female, Lung carcinoma
 H1792 Trametinib resistant: Generated in this study
 H2009 Trametinib resistant: Generated in this study
 A549 Trametinib resistant: Generated in this study
 H23 Sotorasib resistant: Generated in this study
 H358 Sotorasib resistant: Generated in this study
 H2009-LacZ: Generated in this study
 H2009-MYC overexpressed: Generated in this study
 H23-LacZ: Generated in this study
 H23-MYC overexpressed: Generated in this study
 H358-LacZ: Generated in this study
 H358-MYC overexpressed: Generated in this study
 TP60 PDX: H12O, Human
 TP79 PDX: H12O, Human
 TP80 PDX: H12O, Human
 TP181 PDX: H12O, Human
 TP126 PDX: H12O, Human
 KLA: CIMA, Mouse, Male, Lung cancer (<https://doi.org/10.1172/JCI129012>)
 KLA⁵³ko: Generated in this study
 T1: CNIO, Mouse, Lung cancer, Generated in this study
 T2: CNIO, Mouse, Lung cancer, Generated in this study
 T3: CNIO, Mouse, Lung cancer, Generated in this study
 220-1: CNIO, Mouse, Lung cancer
 220-2: CNIO, Mouse, Lung cancer
 95: CNIO, Mouse, Lung cancer

Authentication

Human cancer cell lines were authenticated by the Genomics Unit at CIMA using Short Tandem Repeat profiling (AmpFLSTR® Identifier® Plus PCR Amplification Kit). Mouse cell lines were authenticated by specific genomic PCRs.

Mycoplasma contamination

Cell lines were tested for mycoplasma contamination using the MycoAlert Mycoplasma Detection Kit (LONZA). Only mycoplasma-free cells were used.

Commonly misidentified lines (See [ICLAC](#) register)

No commonly misidentified cell lines were used in this study.

Animals and other research organisms

Policy information about [studies involving animals](#); [ARRIVE guidelines](#) recommended for reporting animal research, and [Sex and Gender in Research](#)

Laboratory animals

Mouse, immune deficient Rag2^{-/-}IL2R^{-/-}, 8-12 week-old, female
 Mouse, KRas^{FSFG12C};Trp53^{FRT/FRT} (mixed background, C57Bl/6 x Sv129), 8-12 week-old

Wild animals

The study did not involve wild animals.

Reporting on sex

Experiments with immunodeficient mice were done with female mice due to comportamental behaviour that allowed a safer manipulation

Field-collected samples

The study did not involve samples collected from the field.

Ethics oversight

All experiments in mice were performed following ARRIVE guidelines and approved by the institutional Committee on Animal Research and Ethics of CIMA and CNIO under the protocol numbers 057-18 and PROEX 316/19.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

Confirm that:

- The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
- The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
- All plots are contour plots with outliers or pseudocolor plots.
- A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Cells were seeded and treated for 24 h with specified drugs. Then, cells were harvested and resuspended at 10^6 cells/mL in Annexin-binding buffer (10 mM HEPES, 140 mM NaCl and 2.5 mM CaCl₂, pH 7.4). Cells were incubated with 3 μ L of Alexa Fluor 647-conjugated Annexin-V and 15 μ L of 7AAD for 15 minutes in the dark at RT. Finally, 400 μ L of binding buffer were added to each tube and cells were acquired in FACSCanto II Cytometer (BD Biosciences).

Instrument

FACSCanto II Cytometer (BD Biosciences)

Software

FlowJo® software v9.3

Cell population abundance

Ten thousand cells of P1 population (On FSC/SSC plot) were aquired per sample.

Gating strategy

Alive and single cells were selected through FSC/SSC plots. Only 7AAD stained or only Alexa Fluor 647-Annexin V stained cells were used to select the positive populations. Results of experimental samples are plotted as 7ADD (Y axis) vs Annexin V (X axis).

- Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.