Appendix A  Experimental Setup and Plots

A.1 Dataset Generation
A.1.1 Aircraft Dynamics Modeling Experiment

Given the initial position of an aircraft, the aircraft model in [7] calculates the guidance
behavior based on the current state and control commands, and outputs the next state
of the aircraft. The control commands consist of six types of discrete instructions,
each of which is composed of accelerations in thex,y, andzdirections of the Cartesian
coordinate system. These six instructions represent level flight at constant speed,
horizontal right turn, horizontal left turn, climbing, diving, and horizontal acceleration.
The data features include two parts: 1) the one-hot representation of the aircraft’s
control command index at the current moment; 2) the current state of the aircraft,
including thez,y, andzpositions in the Cartesian coordinate system, scalar velocity,
pitch angle, and heading. The data labels only contain the aircraft state at the next
moment (0.005 seconds later), also including thex,y,zpositions, scalar velocity, pitch
angle, and heading in the Cartesian coordinate system.

Each flight trajectory lasts 3,000 time steps, with the initial state of the aircraft
randomly distributed in thex,y, andzdirections of the Cartesian coordinate system
within a range of 1,000 meters. The entire dataset consists of 200 random flight tra-
jectories, approximately 600,000 samples, of which 80% are used for training and 20%
for testing.

A.1.2 Missile Dynamics Modeling Experiment

We employ the missile model in [7] as the cloning or modeling object and adopt
the proportional guidance method. Given the initial state of the missile and the tar-
get, the missile model calculates the corresponding guidance maneuvers based on its
current state and the relative state of the target, and outputs the next state of the
missile using the RK4 numerical integration method with adjustable time step based
on the proportional guidance formula. The missile state comprises six dimensions:
coordinatesz,y,zin the inertial coordinate system, scalar velocity, heading, and pitch
angle. Similarly, the state of the target aircraft includes these six dimensions, repre-
sented byz,y,z,v, ¥, and . After providing the initial state of the missile and the
target aircraft, the target aircraft can freely execute various maneuvers. The missile
adjusts its three accelerations according to the different states generated by the target
and ultimately intercepts the target aircraft.

The data features include two parts: 1) the current state of the target aircraft,
including thez,y,zpositions in the Cartesian coordinate system, scalar velocity, pitch
angle, and heading; 2) the current state of the missile, including thez,y,zpositions in
the Cartesian coordinate system, scalar velocity, pitch angle, and heading. The data
labels only contain the missile state at the next moment (0.005 seconds later), also
including thex,y,zpositions, scalar velocity, pitch angle, and heading in the Cartesian
coordinate system.

Since the time for the missile to attack the target aircraft is not fixed, each missile
flight trajectory lasts between 2,000 and 4,000 time steps. Without loss of generality,



we fix the missile launch coordinates at the origin, and the initial state of the aircraft is
randomly distributed in thex,y,zdirections of the Cartesian coordinate system within
a range of 1,000 meters. The entire dataset consists of 200 random flight trajectories,
approximately 600,000 samples, of which 80% are used for training and 20% for testing.

A.2 Experimental Details

The VHNN model constructs a residual module with a three-layer MLP neural network
with 256 hidden units, connecting the encoder, decoder, and Hamiltonian network
or energy network. Each network uses this residual module as the main body to
ensure smooth gradient flow between different network structures. The encoder takes
data features as input and outputs 32-dimensional generalized coordinates ¢ and 32-
dimensional generalized momenta p. The energy and Hamiltonian networks take ¢, p,
and the target state as inputs and output a 1-dimensional abstract energy. The energy
derivatives with respect to p and ¢ are calculated using Hamilton’s equations (??) and
(??), and the next moment’s generalized coordinates ¢’ and momenta p’ are obtained
using Euler integration within the time interval At. The next moment’s rigid body
state is then decoded by the decoder.

We train four models using the same dataset: a three-layer MLP with 512 hidden
units, VHNN, and HNN and HGN models with network structures and hyperparam-
eters similar to the VHNN. It is worth noting that the original HGN paper mainly
focuses on image sequences, but techniques related to image sequences are not nec-
essary for the rigid body model cloning task. Therefore, only the core idea of HGN
is retained for comparison. Additionally, as the original HNN and HGN algorithms
do not include an input mechanism for external control variables, we incorporate
the conditional input into the encoder module according to the experimental feature
requirements, while the decoder still outputs the next moment’s state.

The energy comparisons of each model in Appendices B and C are formed by scaling
the Hamiltonian or VHNN energy to the mechanical energy of the true trajectory,
resulting in a contrast of energy differences.

A.3 Aircraft Dynamics Modeling Experiment Plots
Deep Aircraft Dynamics Modeling Experiment Results Figures:A1,A2, A3,A4,A5

A.4 Missile Guidance Dynamics Modeling Experiment Plots
Deep modeling experimental results of missile guidance dynamics: A6,A7,A8,A9,A10



MLP aircraft run trajectory
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Fig. A1l Aircraft dynamic modeling experiment simulation trajectory of the MLP model, incor-
porating differences in the Cartesian coordinate system’s three-axis coordinates and disparities in
velocity magnitudes.

HNN aircraft run trajectory
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Fig. A2 Aircraft dynamic modeling experiment simulation trajectory of the HNN model, comprising
normalized energy discrepancies, Mean Absolute Error (MAE) of normalized energies, distinctions in
the Cartesian coordinate system’s three-axis coordinates, and disparities in velocity magnitudes.



HGN aircraft run trajectory
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Fig. A3 Aircraft dynamic modeling experiment simulation trajectory of the HGN model, encompass-
ing normalized energy discrepancies, Mean Absolute Error (MAE) of normalized energies, variations
in the Cartesian coordinate system’s three-axis coordinates, and disparities in velocity magnitudes.

VHNN aircraft run trajectory
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Fig. A4 Aircraft dynamic modeling experiment simulation trajectory of the VHNN model, including
normalized energy discrepancies, Mean Absolute Error (MAE) of normalized energies, differences in
the Cartesian coordinate system’s three-axis coordinates, and disparities in velocity magnitudes.



Aircraft Dynamic Time Reverse Trajectory
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Fig. A5 This is a comparison diagram of forward and backward extrapolation over time in the
aircraft modeling experiment using the VHNN model.

MLP missile run trajectory
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Fig. A6 Trajectory simulation of missile guidance dynamics modeling experiment using MLP model,
including the differences in Cartesian coordinate system’s three-axis coordinates and the differences
in velocity scalar magnitudes.



HNN missile run trajectory
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Fig. A7 Trajectory simulation of missile guidance dynamics modeling experiment employing HNN
model, encompassing the disparities in normalized energy, normalized energy’s mean absolute error
(MAE), deviations in Cartesian coordinate system’s three-axis coordinates, and the dissimilarities in
velocity scalar magnitudes.

HGN missile run trajectory
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Fig. A8 Trajectory simulation of missile guidance dynamics modeling experiment using HGN model,
comprising the discrepancies in normalized energy, normalized energy’s mean absolute error (MAE),
variations in Cartesian coordinate system’s three-axis coordinates, and the distinctions in velocity
scalar magnitudes.



VHNN missile run trajectory
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Fig. A9 Trajectory simulation of missile guidance dynamics modeling experiment conducted with
VHNN model, incorporating the differences in normalized energy, normalized energy’s mean abso-
lute error (MAE), fluctuations in Cartesian coordinate system’s three-axis coordinates, and the
discrepancies in velocity scalar magnitudes.

Missile Guidance Dynamic Time Reverse Trajectory
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Fig. A10 This illustration depicts the comparison between forward and backward extrapolation
over time in the VHNN model during the missile guidance modeling experiment.
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