| Seed<br>sampling<br>site | No. pure<br>maternal<br>tree | No. hybrid maternal tree | Total no.<br>maternal<br>tree | No. seeds<br>from pure<br>maternal<br>tree <sup>a</sup> | Total no. |
|--------------------------|------------------------------|--------------------------|-------------------------------|---------------------------------------------------------|-----------|
| Gn                       | 8                            | 11                       | 19                            | 140                                                     | 304       |
| Gs                       | 6                            | 8                        | 14                            | 85                                                      | 201       |
| T                        | 15                           | 3                        | 18                            | 272                                                     | 322       |
| D                        | 12                           | 0                        | 12                            | 198                                                     | 207       |
| M                        | 8                            | 5                        | 13                            | 152                                                     | 226       |
|                          | 49                           | 27                       | 76                            | 847                                                     | 1260      |

<sup>4</sup> a seeds used in the STRUCTURE analysis; <sup>b</sup> seeds used in the POLDISP analysis.

## 6 Table S2 Results of BayeScan and Micro-Checker

| BayeScan |                  | Micro-Checker |                   |        |        |        |        |        |        |        |                  |
|----------|------------------|---------------|-------------------|--------|--------|--------|--------|--------|--------|--------|------------------|
| Locus    | log (gyal)       | E             | much              | SHHA   | SHHB   | SHHC   | SHHD   | SHHG   | SHIA   | SHIB   | No. population   |
|          | $log_{10}(qval)$ | $F_{ m ST}$   | <sub>T</sub> prob | (n=28) | (n=34) | (n=37) | (n=31) | (n=37) | (n=30) | (n=24) | with null allele |
| Cal0157  | -0.04            | 0.29          | 0.05              | no     | 0                |
| Cal0166  | -0.03            | 0.29          | 0.04              | no     | no     | no     | no     | no     | no     | yes    | 1                |
| Cal0219  | -0.03            | 0.29          | 0.03              | no     | yes    | no     | no     | no     | yes    | yes    | 3                |
| Cal0302  | -0.04            | 0.29          | 0.05              | no     | 0                |
| Cal0351  | -0.04            | 0.29          | 0.05              | no     | yes    | no     | yes    | no     | yes    | yes    | 4                |
| Cal0800  | -0.03            | 0.29          | 0.03              | no     | 0                |
| Cal0804  | -0.07            | 0.30          | 0.10              | no     | 0                |
| Cal0899  | -0.03            | 0.29          | 0.04              | no     | 0                |
| Cal0952  | -0.04            | 0.29          | 0.05              | no     | 0                |
| Cal1090  | -0.08            | 0.28          | 0.12              | no     | 0                |
| Cal1176  | -0.04            | 0.30          | 0.05              | no     | 0                |
| Cal1290  | -0.04            | 0.29          | 0.04              | no     | no     | no     | no     | no     | no     | yes    | 1                |
| Cal1571  | -0.05            | 0.29          | 0.07              | no     | yes    | no     | no     | no     | no     | no     | 0                |
| Cal1632  | -0.11            | 0.33          | 0.22              | yes    | yes    | no     | yes    | no     | no     | no     | 3                |
| Cal1639  | -0.06            | 0.28          | 0.09              | no     | 0                |
| Cal1647  | -0.05            | 0.29          | 0.05              | no     | no     | no     | no     | no     | yes    | no     | 1                |
| Cal1777  | -0.06            | 0.30          | 0.08              | no     | 0                |

Table S3 Number of cymes used for inter- and intra-cross pollination, and seeds used in germination experiments, and number of seedlings whose mortality was tracked.

|             | Cross pairs |          | No.   | No.           | No. seedlings |  |
|-------------|-------------|----------|-------|---------------|---------------|--|
| Cross type  | Maternal    | Paternal | cymes | seeds<br>sown | tracked       |  |
| Inter-cross | D4          | G2       | 1     | 24            | 10            |  |
|             | D4          | G13      | 2     | 24            | ģ             |  |
|             | D7          | G2       | 1     | 24            | 1             |  |
|             | D7          | G13      | 2     | 24            | 1             |  |
|             | D12         | G2       | 2     | 24            | ;             |  |
|             | D12         | G13      | 2     | 24            | 10            |  |
|             | D14         | G2       | 3     | 24            | ;             |  |
|             | D14         | G13      | 2     | 24            | 10            |  |
|             | D15         | G2       | 1     | 24            | ,             |  |
|             | D15         | G13      | -     | 24            | 1:            |  |
| Total       |             |          | 16    | 240           | 9             |  |
| Intra-cross | D4          | D2       | -     | 24            |               |  |
|             | D4          | D5       | 1     | 24            |               |  |
|             | D4          | D9       | 1     | 24            | 1             |  |
|             | D4          | D13      | 1     | 24            | ,             |  |
|             | D7          | D1       | 1     | 0             | (             |  |
|             | D7          | D2       | 1     | 24            |               |  |
|             | D7          | D3       | 1     | 24            |               |  |
|             | D7          | D9       | 1     | 24            | 1             |  |
|             | D7          | D16      | 2     | 24            | (             |  |
|             | D8          | D5       | 1     | 24            |               |  |
|             | D8          | D16      | 1     | 24            |               |  |
|             | D14         | D2       | 1     | 24            | ,             |  |
|             | D14         | D3       | -     | 24            |               |  |
|             | D14         | D5       | 2     | 24            | ;             |  |
|             | D14         | D9       | 2     | 24            |               |  |
|             | D14         | D16      | 1     | 24            |               |  |
|             | D15         | D6       | 1     | 24            | 12            |  |
| Total       |             |          | 18    | 384           | 90            |  |

 <sup>-</sup> denotes that artificial crosses were performed, but not included in the calculation of the fruit set
 rate since the number of flowers in the cymes were not counted.

Table S4 Percentage of mating pair in hybrid adult trees and hybrid naturally pollinated seeds

| Mating | Adult     | Seeds |  |
|--------|-----------|-------|--|
| pair   | trees (%) | (%)   |  |
| G-T    | 12.5      | 19.6  |  |
| G-D    | 7.4       | 19.2  |  |
| G-M    | 52.3      | 27.2  |  |
| T-D    | 6.0       | 8.0   |  |
| T-M    | 15.7      | 17.0  |  |
| D-M    | 6.0       | 10.3  |  |

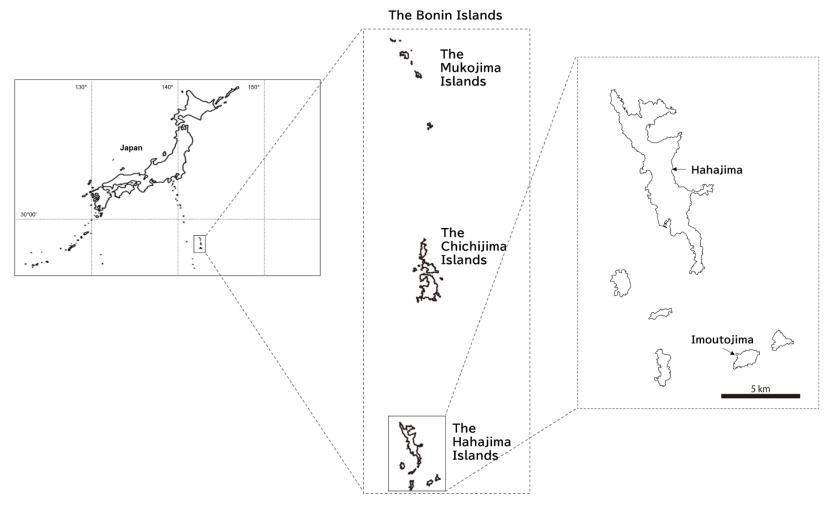



Fig. S1 Location of the Bonin Islands, and the Hahajima and Imoutojima Islands in the Hahajima Islands.

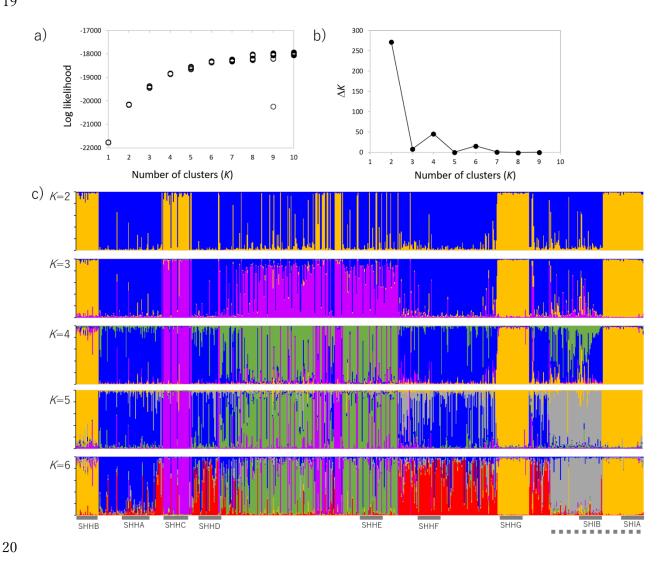



Fig. S2 Results of STRUCTURE analysis. (a) Changes in log likelihood, (b)  $\Delta K$ , representing the number of clusters ranging 1–10, (c) bar plots showing clustering of all adult trees in the Hahajima Islands. Individuals are aligned roughly from north to south by population. The solid gray lines below the bar plot X-axis indicate populations used in Sugai et al. (2019). The gray dashed line refers to individuals on the satellite Imoutojima Island; all other trees are on Hahajima Island.

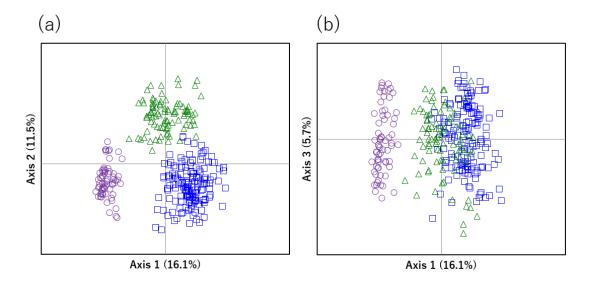



Fig. S3 Principal coordinate analysis (PCoA) scatter plots of pure adults from ecotypes G (blue squares), T (purple circles), and M (green triangles) for the  $1^{st}$  and  $2^{nd}$  principal coordinate axes (a) and the  $2^{nd}$  and  $3^{rd}$  principal coordinate axes (b).

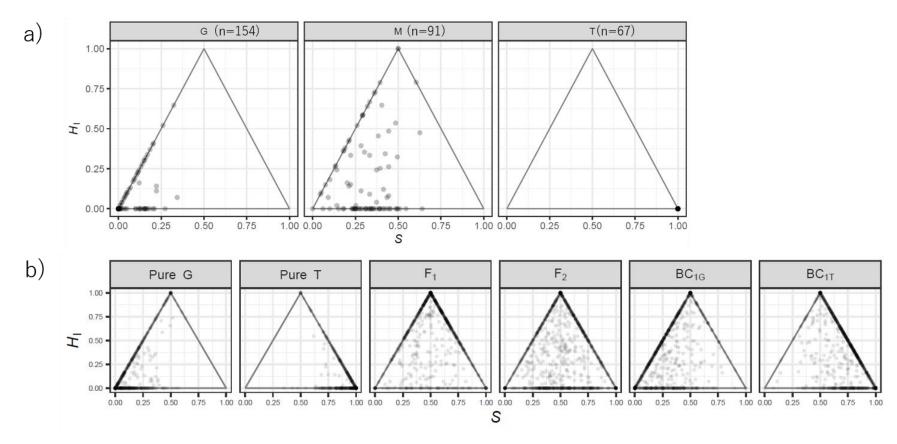



Fig. S4 Triangular plots depicting the ancestry of T (S) and interclass heterozygosity ( $H_I$ ) for observed (a) and simulated data (b) as estimated by HIest. F<sub>1</sub>, first filial hybrids; F<sub>2</sub>, second filial hybrids; BC<sub>1G</sub>, first-generation backcross hybrids to G; BC<sub>1T</sub>, first-generation backcross hybrids to T.

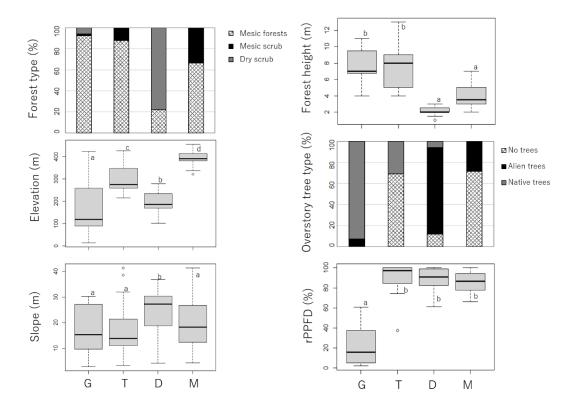



Fig. S5 Forest type, elevation, slope, forest height, overstory tree type, and rPPFD (relative photosynthetic photon flux density) of pure adult trees of each ecotype. Different letters indicate significant differences among ecotypes (p < 0.05, pairwise t-test with Bonferroni correction).

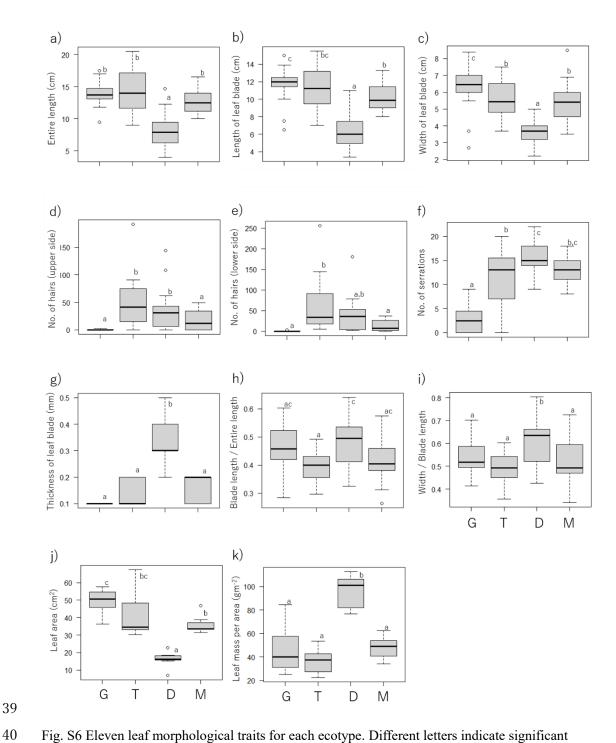



Fig. S6 Eleven leaf morphological traits for each ecotype. Different letters indicate significant differences among ecotypes (p < 0.05, pairwise t-test with Bonferroni correction).

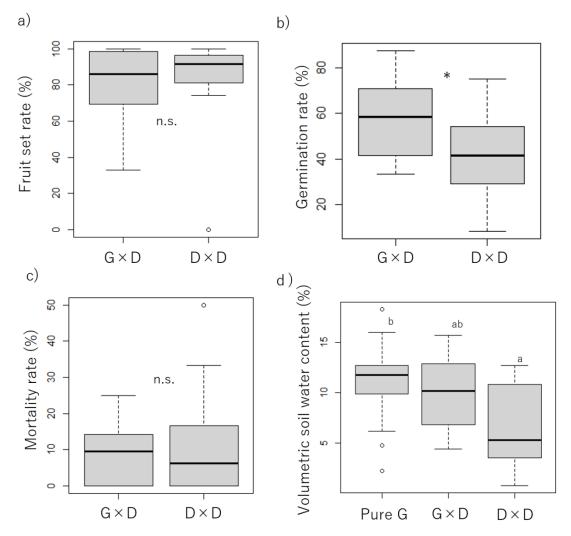



Fig. S7 The results of artificial inter-cross pollination between ecotypes G and D (i.e.,  $G \times D$ ), and intra-cross pollination within ecotype D (i.e.,  $D \times D$ ). Shown are: a) Fruit set rate, b) germination rate, and c) mortality rate of one-year old seedlings of each cross type as well as d) volumetric soil water content when seedlings begin to wilt for each cross type and pure ecotype G. For panels a-c \* indicates a significant difference (p < 0.05), n.s. indicates no significant difference. For panel d: different letters indicate significant differences (p < 0.05, pairwise t-test with Bonferroni correction).