

1 Supplementary Material

2 Supplementary information regarding the article "Optimising global conservation, restoration,
3 and agriculture for people and nature",

4

5 **Authors:** Gabriela T. Duarte, Joana M. Krieger, Renata Capellão, Eduardo Lacerda, Sara
6 Mortara, Diogo Rocha, Luiz Gustavo Oliveira, Álvaro Iribarrem, Fernanda D. Gomes, Thomas
7 M. Brooks, Rebecca Chaplin-Kramer, Brian J. Enquist, Xiao Feng, Lee Hannah, Samantha L.
8 L. Hill, David Leclère, Cory Merow, Michael Obersteiner, Patrick R. Roehrdanz, Richard
9 Sharp, James E. M. Watson, Rafael Loyola, Bernardo B. N. Strassburg

10

11	Supplementary Material	1
12	1. Additional information on optimisation metrics	2
13	Intactness	2
14	Nature's Contributions to People	4
15	Variable uncertainties and sensitivities	5
16	2. Multicriteria optimisation algorithm	7
17	The algorithm	7
18	Weight definition	8
19	3. Additional discussions	9
20	Contribution of each ecosystem type	9
21	Limitations	10
22	References	13
23	Supplementary Tables	15
24	Supplementary Figures	23

25

26

27 1. Additional information on optimisation metrics

28 **Intactness**

29 Beyer et al.¹ define intactness (Q) (Equation 1) as:

$$Q = \frac{\sum_{i=1}^N \sum_{j=i}^N (w_i w_j)^z \exp(-\beta d_{ij})}{\sum_{i=1}^N \sum_{j=i}^N \exp(-\beta d_{ij})} \quad (1)$$

31

32 where d_{ij} is the distance between cells i and j (km), w is a measure of the quality of the cell in
33 the range [0-1], z is an exponent that scales the product of two quality values, and N is the
34 number of cells within a spatial unit such as an ecoregion. The parameter β determines how the
35 combined value of pairs of cells diminishes as a function of the distance between them. The
36 denominator standardised the metric such that the current state is relative to a hypothetical ideal
37 state in which no habitat loss or degradation has occurred (all habitat weights equal one).
38 Without standardisation, the metric would vary according to ecoregion area and shape, thereby
39 diminishing the ability to compare ecoregions.

40 To include intactness as an explicit objective in linear programming formulated optimisation
41 problem, we needed to quantify the expected change in intactness as a function of restoration
42 of habitat (or loss of habitat) within a cell. However, there is a complex relationship between
43 the change in the quality of a cell and its nearby neighbours to the change in intactness. We
44 adopted an approach whereby we estimate the expected change in the contribution of a cell to
45 intactness as the quality of that cell changes, assuming that the quality of neighbouring cells
46 remains constant. We then updated this estimate following each increment of habitat
47 restoration, thereby accounting for any changes in the quality of neighbouring cells.

48 Specifically, the contribution of a cell (i) to intactness (Equation 2) is defined as ref.¹:

49

50

$$Q'_i = \frac{\sum_{j \in M_i} (w_i w_j)^z \exp(-\beta d_{ij})}{\sum_{j \in M_i} \exp(-\beta d_{ij})} \quad (2)$$

51

52 where M_i is defined as the set of cells falling with a specified radius of cell i . The rate at which
53 that cells contribution to intactness (Q') increases as restoration occurs, thereby increasing the
54 habitat quality of that cell, is estimated using the equation for the slope of a line (m) (Equation
55 3):

$$m = (y_2 - y_1)/(x_2 - x_1) \quad (3)$$

56 where the numerator represents the change in Q' following restoration, and the denominator
57 represents the change in habitat quality within cell i (w_i). Thus, if δw is defined as a small value
58 representing the change in habitat quality and w_i represents the current habitat quality, then:

59

$$dQ'_i = \frac{\sum_{j \in M_i} ((w_i + \delta w) w_j)^z \exp(-\beta d_{ij}) - \sum_{j \in M_i} (w_i w_j)^z \exp(-\beta d_{ij})}{\delta w \sum_{j \in M_i} \exp(-\beta d_{ij})} \quad (4)$$

60

61 However, the rate of change in habitat quality differs depending on whether pasture or cropland
62 is restored, with the relative rate of increase in quality being $7/4$ times greater for cropland than
63 pasture. This arises because Beyer et al.¹ use a transformation of the human footprint index
64 (HFI)^{2,3} to estimate the habitat quality of cells. Specifically, $w_i = \exp(-\gamma H_i)$, where H is the
65 human footprint score and $\gamma = 0.402$. Pasture and agriculture land uses are two of the eight
66 components that constitute the HFI³, with their relative weights being 4 and 7, respectively,

67 based on estimates of their relative levels of human pressure following Sanderson et al.².
68 Hence, within the linear programming problem dQ' and $\exp(-7\gamma)/\exp(-4\gamma)dQ' = 3.34dQ'$ are
69 used to represent the expected relative rate of change in intactness following pasture or
70 cropland restoration respectively.

71 **Nature Contributions to People**

72 For water quality regulation, we followed Chaplin-Kramer et al.⁴ and modelled nitrogen export
73 via InVEST Nutrient Delivery Ratio model⁵. We then use these outputs along with data on
74 rural populations (which we assume to have lower access to water treatment) to determine
75 people's needs and nature's contributions as a realised service. The InVEST model maps
76 nutrient sources from watersheds and their transport to the stream. Nutrient loads (sources) are
77 determined based on the land-use/cover map and associated loads and were set accordingly
78 with the 2050 Shared Socioeconomic 3 scenario (SSP3). Each pixel's load is modified to
79 account for the local runoff potential, with SSP3 precipitation serving as a proxy for this runoff
80 potential. Last, the nitrogen retention capacity for a given vegetation type is expressed as a
81 proportion of the amount of nutrient retained from upstream sources by each land use/cover
82 class⁴.

83 Based on the InVEST Coastal Vulnerability Model⁵, and modifications made by Chaplin-
84 Kramer et al.⁴, we modelled the contribution of coastal natural habitats to mitigating coastal
85 risk in terms of the difference in this risk with and without that habitat present. The risk is
86 assessed through a ranked index based on bio-geophysical variables such as wind exposure,
87 wave exposure, natural habitats, and sea level change. For the latter, we use the sea level rise
88 projected by IPCC for the period 1986–2005 to 2081–2100 for RCP 6.0 of the SSP3 scenario.
89 In addition, we used information on populations along coastlines and living less than 10 metres
90 above sea level to determine the realised benefit. We presented the relative values between

91 optimised scenarios and SSP3 impacts for coastal protection and water quality regulation
92 because lack of calibration precludes an interpretation of absolute values.

93 Nutrition provided by wild pollinators on each planning unit (pixel of the maps) of agricultural
94 land is calculated according to pollinator habitat sufficiency and the pollination-dependent
95 nutrient production⁴. Pollination sufficiency is based on the pollinator habitat area around the
96 farmland (using a 2km radius). We account for different levels of pollination-dependency of
97 each crop, that is, the percent by which yields are reduced for each crop with inadequate
98 pollination. We assumed the current crop mix in the optimised scenarios, even though the full
99 restoration land cover scenario contained no agriculture (lacking a fully dynamic optimisation).
100 Also, crop content of critical macro and micronutrients (KJ energy/10g, IU Vitamin A/100g
101 and mcg Folate/100g) is used to derive pollination-dependent nutrient production. We
102 normalised these nutrient production values dividing each layer of pollination-dependent
103 nutrient production by the recommended weighted-averaged annual dietary intake for each
104 nutrient calculated using global demographics data. Then, we averaged their normalised values
105 per pixel to calculate the equivalent number of people fed through pollination⁴.

106 **Variable uncertainties and sensitivities**

107 In this work, we used systematic uncertainties, as the solution of a linear programming
108 optimisation problem is a set of exact numbers estimating the amount of restoration and
109 agriculture expansion in each planning unit (pixel). The systematic uncertainties of the carbon
110 and opportunity cost layers are described in Strassburg et al.⁶ work.

111 For the extinction risk layer, we derived the uncertainty (δ_{BD} - Equation 5) assuming a variation
112 of ± 0.1 on the power parameter z^6 . Hence, the uncertainty on the aggregated final value of total
113 extinction risk is computed using a quadratic propagation of individual (j) uncertainties of
114 extinction risk (e):

$$\delta_{BD} = \sqrt{\sum_j \left(\frac{\partial e_j}{\partial z} \right)^2 \delta_z^2} \quad (5)$$

115 The ecosystem's collapse risk definition is similar to the species extinction risk, therefore its
 116 uncertainty (δ_{EC} - Equation 6) is determined analogously:

$$\delta_{EC} = \sqrt{\sum_j \left(\frac{\partial c_j}{\partial z} \right)^2 \delta_z^2} \quad (6)$$

117 As described in the Intactness section of this document, there are three relevant parameters for
 118 the intactness index: z , γ and β . The value of each one is chosen to meet the criteria described
 119 in Beyer et al.¹. We assumed as a systematic uncertainty of the intactness index (δ_{IT} - Equation
 120 7) the difference of its aggregated value when all these three parameters vary within 10% of its
 121 original values:

$$\delta_{IT} = \sqrt{\left(\frac{\partial IT}{\partial z} \right)^2 \delta_z^2 + \left(\frac{\partial IT}{\partial \gamma} \right)^2 \delta_\gamma^2 + \left(\frac{\partial IT}{\partial \beta} \right)^2 \delta_\beta^2} \quad (7)$$

122 In the case of water quality regulation, the InVEST NDR model has been shown to be fairly
 123 robust, even when not calibrated, when evaluating relative values⁴. At this coarse scale, the
 124 greatest sensitivity of the model is to land use/cover data sets (and their corresponding nutrient
 125 loads/retention values). The modelled absolute values could show increasing error when using
 126 these coarse resolution inputs. However, the relative magnitude of differences between
 127 catchments and scenarios, which we chose to present in this work, is more consistent. For
 128 pollination and coastal protection, our models had the same uncertainties and sensitivities that
 129 Chaplin-Kramer et al.⁴ work.

130

131 2. Multicriteria optimisation algorithm

132 **The algorithm**

133 We performed spatially explicit multi criteria optimisation based on linear programming⁷ when
134 selecting areas for restoration and agriculture expansion. Conservation actions are also being
135 optimised by selecting natural ecosystems not to be converted to agriculture. For each planning
136 unit, the algorithm first calculates the cost-effectiveness of restoration or agriculture expansion
137 actions, using a subset or all metrics depending on the scenario's set-up. We then compute the
138 area to be restored to natural ecosystems or converted to agriculture, based on an objective
139 function (Equation 8) and respective scenario constraints (Equations 9-13) following the
140 equations:

$$\max \sum_i^{Np} x_i \left(\frac{w^{b1}b_i^1 + \dots + w^{bn}b_i^n}{w^{c1}c_i^1 + w^{c2}c_i^2} \right) \quad (8)$$

subject to

$$\sum_i^{Np} x_i a_i \leq T \quad (9)$$

$$\sum_{ik}^{Npk} x_{ik} d_{ik} a_{ik} \leq D_k \quad (10)$$

$$\sum_{ik}^{Npk} x_{ik} g_{ik} a_{ik} \leq G_k \quad (11)$$

$$\begin{aligned} -lb_{ik} \leq x_{ik} \leq 0 \\ (\text{if } D_k + G_k \leq 0) \end{aligned} \quad (12)$$

$$\begin{aligned} 0 < x_{ik} \leq ub_{ik} \\ (\text{if } D_k + G_k > 0) \end{aligned} \quad (13)$$

141 where x is the decision variable indicating the proportion of the planning unit i that should be
142 restored to natural ecosystems (positive values of x) or converted to agriculture (negative

143 values of x). The components of the fraction in the objective function (equation 8) represent
144 the metrics being optimised, b for benefits or c for costs, and their respective weight (w). Np is
145 the total number of planning units. The global constraint (equation 9) limits the total net area
146 to be restored (T, in km²), in which a_i is the planning unit area (in km²). The following two
147 constraints (equations 10 and 11) limit the total amount (km²) of agricultural area (D for
148 croplands and G for cultivated grasslands) in country k that can be restored to natural
149 ecosystems (positive values of D and/or G) or need to be converted to agriculture (negative
150 values of D and/or G). The parameters d and g represent the proportion of the decision variable
151 x corresponding to croplands or cultivated grasslands, respectively, being restored to natural
152 ecosystems or converted to agriculture. The value of x can vary between zero and the
153 proportion of natural area of a planning unit (lb), in countries that need agriculture expansion
154 (equation 12), or the proportion of agricultural areas of a planning unit (ub) in countries that
155 can restore (equation 13). Hence, the algorithm indicates optimal areas for restoration - the
156 planning units with the highest gains for benefits and lower costs - and optimal areas for
157 agricultural expansion - the planning units with the lowest losses for benefits and higher
158 opportunity cost.

159 **Weight definition**

160 The metrics' nature and database could represent different responses in the optimisation
161 process. In the case of optimising multiple variables at once, this characteristic could generate
162 an ambalancing between the metrics results. Therefore, we analysed the response of each
163 variable to avoid biases caused by differences between the distribution of the considered
164 criteria. This analysis showed that only the species' extinction risk had poor performance when
165 evaluated along with the other two biodiversity metrics. To balance the response to the species'
166 extinction risk, we defined a higher weight for this metric than the others.

167 3. Additional discussions

168 **Contribution of each ecosystem type**

169 When comparing the area proportions of each natural ecosystem type between their current
170 (2015) distribution and the area restored in each optimised scenario, we found that wetlands
171 and forests are of the highest relative importance for biodiversity and NCPs metrics,
172 respectively, while forests are of the highest absolute importance for both (Figure S3).
173 Similarly to previous studies⁶, a higher proportion of wetlands was restored when the
174 optimisations included the biodiversity metrics than expected if this restoration followed the
175 proportions of original natural land covers (Figure S3), reinforcing the importance of wetland
176 ecosystems in reducing species extinction risks⁶. When optimisation focused on maximising
177 outcomes for NCPs metrics, restoration actions were concentrated in landscapes that originally
178 were forest ecosystems (Figure S3), primarily reflecting their role in sequestering carbon and
179 providing other contributions to human livelihoods.

180 Accordingly, when the goal is to maximise biodiversity and NCP outcomes, optimal areas for
181 restoration concentrate on both wetland and forest classes, located mainly in Southeast Asia,
182 Africa and Central and South America, as well as in temperate climates such as eastern regions
183 of Europe, United States and Canada (Figure 3 in the manuscript). On the other hand, arid
184 ecosystems had less area selected than expected if restoration were planned following current
185 land cover proportions in all scenarios. This is explained not only because these systems have
186 fewer threatened species⁸ and lower outcomes for other benefit metrics but also because, in our
187 scenarios, several countries that have large arid regions converted these natural ecosystems into
188 agricultural land to guarantee food security.

189 **Limitations**

190 Some limitations were presented throughout the main text and are complemented in this
191 section:

192 - We fully acknowledge that effective and equitable conservation and restoration actions must
193 be rooted in participatory and inclusive processes at local scales. Still, global spatial
194 optimisation provides relevant inputs and contributions to conservation-related decisions^{9,10}.

195 This study has limitations in representing specific local contexts, mainly because it requires
196 inadequate assumptions at the global level scale related to social aspects, relational values, and
197 stakeholder preferences⁹. For instance, we based our discussions on scenarios with local
198 constraints, accounting for reconciling food production with restoration actions at the local
199 level, even though this premise does not avoid the real risk of displacing people.

200 - Although we recognise that restoring partially degraded lands can also provide substantial
201 benefits to biodiversity and people¹¹, our approach only considers restoration of fully
202 agricultural land to entirely natural vegetation, because the costs and benefits of restoring
203 degraded natural ecosystems are poorly quantified⁶.

204 - Due to the challenges in implementing a dynamic approach, we did not consider the positive
205 feedback of carbon sequestration from restoration actions on the other benefit metrics,
206 especially those that incorporate climate change impacts.

207 - We do not consider the impacts of different agricultural intensification practices on
208 biodiversity and NCP metrics. Depending on the approach and starting point, there are likely
209 negative externalities on biodiversity and NCP, especially due to increases in fertilisers,
210 pesticides, and other chemical inputs. However, we reinforce the necessity to advocate for the
211 best intensification practices in the international agendas, public policies, and implementation
212 actions.

213 - Carbon stock was estimated using the current land-use maps that Strassburg et al¹² updated.
214 However, as in Strassburg et al.⁶, we assumed a constant value for aboveground carbon stock
215 (6 tC ha⁻¹) for all agricultural land. This stock can vary considerably across land uses, e.g., up
216 to 97 tC ha⁻¹ in Indonesian agricultural lands with high tree cover^{13,14}. However, as Strassburg
217 et al.¹² showed, different values of carbon stock have an impact of less than 8.6% on carbon
218 sequestration results when applied in planning units containing mosaic and agroforestry
219 landscapes.

220 - We recognise that our opportunity cost metric considers only one dimension of the loss of
221 potential gains from other alternatives. We have not considered some aspects that might change
222 these costs, such as the reliability of a diversity of crops and land uses, subsistence production
223 not accounted for in commodity prices, political and economic forces, and effects on cultural
224 identities associated with agricultural landscapes, among others^{9,15}. For instance, the
225 opportunity costs for cultivated grasslands only account for cattle to produce beef and,
226 therefore, miss other products (e.g., milk) and other ruminants (e.g., sheep and goats). On the
227 other hand, we have also not considered a variety of benefits that people derive from natural
228 areas that, if lost, can have disproportionate impacts on local communities, including relational
229 values.

230 - We do not account for subsistence farming due to a lack of spatially explicit data at global
231 level. Hence, our approach only considers agricultural areas used for commodities production.
232 For instance, this limitation impacts the restoration actions allocated in India, overestimating
233 them. Although global spatial optimisations are important inputs to conservation-related
234 decisions, this limitation reinforces that effective and equitable conservation and restoration
235 actions must be based on participatory and inclusive processes at local scales¹⁶.

236 - The highest increases in pasture and cropland production across the five SSPs scenarios are
237 observed in SSP3¹⁷. To meet these high agricultural demands, the fractions of yield gap closure

238 proposed in this study should be in addition to the yield intensification already projected in the
239 SSP3 scenario. A limitation of this work is that we do not directly project the yield gap for the
240 2050 SSP3 scenario due to a lack of data. Nonetheless, the projected agricultural intensification
241 in the SSP3 scenario is low compared to other SSPs¹⁷. Also, we considered conservative the
242 assumption of meeting 2050 agricultural production only with yield gap closure, as by 2050,
243 people will see more food production technologies emerging, which will have a much smaller
244 land footprint.

245 - The modeling of ‘unidirectional’ objectives in each country, i.e., restore natural ecosystems
246 or convert to agriculture, but not a mix of the two, was a necessary simplification within our
247 approach to identifying where each country would meet its 2050 agriculture production.
248 However, it misses national complexities, especially for large and heterogeneous countries,
249 with potential impacts on our results, especially for the NCPs with local/regional benefits and
250 to small-range species.

251 - Our results are only illustrative of the potential of spatial optimisation. Since many land
252 parcels entering the optimisation are nearly identical, countless alternative solutions are very
253 similar in their optimality, which is also true for the spatial allocation of agricultural
254 productions¹⁸. Therefore, we are not suggesting that the spatial solutions coming out of our
255 analysis should be the only guidance on implementation. We use linear programming and
256 present only one solution for each scenario constellation: the upper bound of efficiency gain
257 given SSP3 baseline conditions. This has important policy implications as there is much more
258 flexibility to implement spatial solutions in landscapes, countries, and globally. When it comes
259 to implementing restoration and conservation planning, it is important to take a scientific co-
260 creation approach, where stakeholders will be able to negotiate over many alternative
261 implementation scenarios, which are more or less outcome neutral but very different in political
262 acceptability^{19,20}. Such flexibility will allow for efficient implementation mechanisms,

263 compensating coalitions of the willing for their environmental performance using a bottom-up
264 approach that top-down optimisation models support. The main purpose of these models is to
265 suggest numerous implementation options that allow stakeholders to negotiate.

266 **References**

267 1. Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in
268 ecoregion intactness highlight urgency of globally coordinated action. *Conserv. Lett.* **13**,
269 1–9 (2020).

270 2. Sanderson, E. W. *et al.* The Human Footprint and the Last of the Wild. *BioScience* **52**,
271 891 (2002).

272 3. Venter, O. *et al.* Sixteen years of change in the global terrestrial human footprint and
273 implications for biodiversity conservation. *Nat. Commun.* **7**, 12558 (2016).

274 4. Chaplin-Kramer, R. *et al.* Global modeling of nature's contributions to people. *Science*
275 **366**, 255–258 (2019).

276 5. Sharp, R. *et al.* InVEST 3.10.2 User Guide. (2020).

277 6. Strassburg, B. B. N. *et al.* Global priority areas for ecosystem restoration. *Nature* **586**,
278 724–729 (2020).

279 7. Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation
280 planning problems with integer linear programming. *Ecol. Model.* **328**, 14–22 (2016).

281 8. Cox, N. *et al.* A global reptile assessment highlights shared conservation needs of
282 tetrapods. *Nature* **605**, 285–290 (2022).

283 9. Strassburg, B. B. N. *et al.* Reply to: Restoration prioritization must be informed by
284 marginalized people. *Nature* **607**, E7–E9 (2022).

285 10. Chaplin-Kramer, R. *et al.* Conservation needs to integrate knowledge across scales. *Nat.*
286 *Ecol. Evol.* 3–5 (2021) doi:10.1038/s41559-021-01605-x.

287 11. Chabay, I. *Land degradation and restoration. Companion to Environmental Studies*
288 (2018). doi:10.4324/9781315640051-105.

289 12. Strassburg, B. B. N. *et al.* Reply to: The risks of overstating the climate benefits of
290 ecosystem restoration. *Nature* **609**, E4–E6 (2022).

291 13. Doelman, J. C. & Stehfest, E. The risks of overstating the climate benefits of ecosystem
292 restoration. *Nature* **609**, E1–E3 (2022).

293 14. Zomer, R. J. *et al.* Global Tree Cover and Biomass Carbon on Agricultural Land: The
294 contribution of agroforestry to global and national carbon budgets. *Sci. Rep.* **6**, 29987
295 (2016).

296 15. Fleischman, F. *et al.* Restoration prioritization must be informed by marginalized people.
297 *Nature* **607**, E5–E6 (2022).

298 16. Choksi, P. *et al.* Combining socioeconomic and biophysical data to identify people-
299 centric restoration opportunities. *Npj Biodivers.* **2**, 1–5 (2023).

300 17. Popp, A. *et al.* Land-use futures in the shared socio-economic pathways. *Glob. Environ.*
301 *Change* **42**, 331–345 (2017).

302 18. Vittis, Y., Folberth, C., Bundle, S.-C. & Obersteiner, M. Restoring Nature at Lower Food
303 Production Costs. *Front. Environ. Sci.* **9**, (2021).

304 19. Metzger, J. P. *et al.* Best practice for the use of scenarios for restoration planning. *Curr.*
305 *Opin. Environ. Sustain.* **29**, 14–25 (2017).

306 20. Posner, S. M., Mckenzie, E. & Ricketts, T. H. Policy impacts of ecosystem services
307 knowledge. *Proc. Natl. Acad. Sci.* **113**, 1760–1765 (2016).

Supplementary Tables

Table S1 - The performance of the biodiversity metrics and carbon after optimal spatial allocation of restoration, conservation and agriculture. It considers low, intermediate and high efforts to increase the world's natural areas, closing yield gaps and without local constraints. Scenarios vary depending on the combination of optimisation metrics used: biodiversity (optimisation using all biodiversity metrics simultaneously), NCPs (optimisation using all NCPs metrics simultaneously), benefits (optimisation using all biodiversity and NCPs metrics simultaneously), and costs (optimisation using opportunity and implementation costs). We did not show values for the other NCPs as we could not ensure that every landscape subjected to restoration actions would have some agricultural land serving as sources of fertilisers (for water quality regulation) and/or receiving pollination service.

Global effort	Scenario	Net CO ₂ sequestration after SSP3 2015-2050 impacts being mitigated and/or compensated (GtCO ₂)	Reduction in ecoregions' vulnerability after SSP3 2015-2050 impacts being mitigated and/or compensated (%)	Reduction in the SSP3 2015-2050 impacts on ecosystems structural integrity (%)	Reduction in the SSP3 2015-2050 impacts on species' extinction risk (%)
Low	Benefits	226	34	25	78
Low	Benefits and Costs	198	27	28	65
Low	NCPs	240	28	19	58
Low	NCPs and Costs	205	23	24	49
Low	Biodiversity	135	37	35	87
Low	Biodiversity and Costs	115	30	36	72
Low	Costs	87	21	31	40

Intermediate	Benefits	286	41	27	86
Intermediate	Benefits and Costs	252	34	32	73
Intermediate	NCPs	300	36	20	67
Intermediate	NCPs and Costs	257	30	27	58
Intermediate	Biodiversity	184	44	38	97
Intermediate	Biodiversity and Costs	159	36	39	80
Intermediate	Costs	131	26	34	49
High	Benefits	368	51	32	97
High	Benefits and Costs	320	43	37	84
High	NCPs	378	47	24	81
High	NCPs and Costs	327	40	32	69
High	Biodiversity	260	53	43	100
High	Biodiversity and Costs	221	44	42	90
High	Costs	200	38	37	64

Table S2 - Percentage increase of species' extinction risk under the SSP3 RCP7.0 scenario, considering 9 different global climate models. The results were divided by the percentage of increase due to the projected climate and land use changes. These estimates were obtained using the intersection between IUCN RedList data and the climate models ("with intersection") and using only the climate models ("without intersection") when generating species' ranges (see Methods for more details). Global climate models: bc = BCC-CSM2-MR; ca = CanESM5; cm = CNRM-CM6-1; cn = CNRM-ESM2-1; gf = GFDL-ESM4; ip = IPSL-CM6A-LR, ms = MIROC-ES2L; mi = MIROC6; mr = MRI-ESM2-0.

Intersection	GCM	bc	ca	cm	cn	gf	ip	mi	mr	ms
with intersection	Total increase (%)	59	152	59	59	60	67	35	44	47
	Increase due to projected climate change (%)	44	138	45	45	46	53	21	30	32
	Increase due to projected land use change (%)	15	14	15	14	14	14	15	14	15
without intersection	Total increase (%)	21	95	23	23	23	27	3	8	12
	Increase due to projected climate change (%)	9	84	11	11	11	16	-9*	-3*	0
	Increase due to projected land use change (%)	12	11	12	12	12	11	12	11	12

* These values represent the reduction of species extinction risk compared to the current situation due to climate change, as in the "without intersection" scenarios species would be able to migrate to any future suitable habitat.

Table S3 - Percent reduction in the SSP3 2015-2050 impacts on species' extinction risk, considering 9 different global climate models. The results are per global effort of increasing the world's natural areas through restoration actions and closing yield gaps, per scenario with different combinations of benefits and costs metrics, and with or without restrictions of restoration at the local level (see main text for more details). Global climate models: bc = BCC-CSM2-MR; ca = CanESM5; cm = CNRM-CM6-1; cn = CNRM-ESM2-1; gf = GFDL-ESM4; ip = IPSL-CM6A-LR, ms = MIROC-ES2L; mi = MIROC6; mr = MRI-ESM2-0.

Global effort	Scenario	Local constraints	bc	ca	cm	cn	gf	ip	mi	mr	ms
Low	Benefits	no	78%	28%	78%	77%	77%	67%	100% (+11%)*	100% (+2%)*	99%
Low	Benefits and Costs	no	65%	23%	65%	65%	64%	56%	100% (+4%)*	87%	82%
Low	NCPs	no	58%	20%	58%	58%	57%	49%	99%	78%	74%
Low	NCPs and Costs	no	50%	17%	49%	49%	48%	42%	84%	66%	63%
Low	Biodiversity	no	88%	31%	87%	87%	86%	75%	100% (+17%)*	100% (+8%)*	100% (+5%)*
Low	Biodiversity and Costs	no	73%	26%	72%	72%	71%	62%	100% (+8%)*	97%	92%
Low	Costs	no	41%	15%	40%	40%	41%	35%	70%	55%	52%
Low	Benefits	yes	64%	23%	64%	64%	63%	55%	100% (+3%)*	86%	82%
Low	Benefits and Costs	yes	55%	19%	54%	54%	54%	47%	93%	73%	70%
Low	NCPs	yes	57%	20%	57%	57%	56%	49%	97%	76%	73%
Low	NCPs and Costs	yes	48%	17%	48%	48%	47%	41%	82%	64%	61%
Low	Biodiversity	yes	68%	24%	68%	68%	67%	58%	100% (+6%)*	91%	87%
Low	Biodiversity and Costs	yes	56%	20%	56%	56%	55%	48%	96%	75%	71%
Low	Costs	yes	46%	16%	45%	45%	45%	38%	78%	61%	58%
Intermediate	Benefits	no	87%	31%	86%	86%	85%	74%	100% (+16%)*	100% (+7%)*	100% (+4%)*
Intermediate	Benefits and Costs	no	74%	26%	73%	73%	72%	63%	100% (+9%)*	98%	93%
Intermediate	NCPs	no	68%	24%	67%	67%	66%	57%	100% (+5%)*	91%	86%
Intermediate	NCPs and Costs	no	59%	21%	58%	58%	58%	50%	100%	78%	75%
Intermediate	Biodiversity	no	97%	35%	97%	97%	96%	83%	100% (+23%)*	100% (+13%)*	100% (+11%)*

Intermediate	Biodiversity and Costs	no	81%	29%	80%	80%	79%	69%	100% (+13%)*	100% (+3%)*	100% (+1%)*
Intermediate	Costs	no	50%	17%	49%	49%	49%	42%	84%	66%	63%
Intermediate	Benefits	yes	75%	26%	74%	74%	73%	64%	100% (+9%)*	100%	94%
Intermediate	Benefits and Costs	yes	64%	22%	63%	63%	62%	54%	100% (+3%)*	84%	80%
Intermediate	NCPs	yes	66%	23%	66%	65%	65%	56%	100% (+4%)*	88%	83%
Intermediate	NCPs and Costs	yes	57%	20%	56%	56%	55%	48%	96%	75%	72%
Intermediate	Biodiversity	yes	79%	28%	79%	79%	78%	67%	100% (+12%)*	100% (+3%)*	100%
Intermediate	Biodiversity and Costs	yes	65%	23%	65%	65%	64%	55%	100% (+4%)*	87%	83%
Intermediate	Costs	yes	50%	18%	49%	49%	49%	42%	86%	67%	64%
High	Benefits	no	98%	35%	97%	97%	96%	84%	100% (+23%)*	100% (+14%)*	100% (+11%)*
High	Benefits and Costs	no	84%	30%	84%	84%	82%	72%	100% (+15%)*	100% (+5%)*	100% (+3%)*
High	NCPs	no	82%	29%	81%	81%	80%	69%	100% (+13%)*	100% (+4%)*	100% (+1%)*
High	NCPs and Costs	no	70%	25%	69%	69%	68%	59%	100% (+6%)*	92%	88%
High	Biodiversity	no	100% (+3%)*	38%	100% (+3%)*	100% (+3%)*	100% (+3%)*	91%	100% (+28%)*	100% (+18%)*	100% (+16%)*
High	Biodiversity and Costs	no	91%	32%	90%	90%	89%	77%	100% (+19%)*	100% (+9%)*	100% (+7%)*
High	Costs	no	64%	23%	64%	63%	63%	55%	100% (+3%)*	86%	82%
High	Benefits	yes	85%	30%	85%	85%	84%	73%	100% (+16%)*	100% (+6%)*	100% (+4%)*
High	Benefits and Costs	yes	77%	27%	76%	76%	75%	65%	100% (+11%)*	100% (+1%)*	97%
High	NCPs	yes	79%	28%	79%	79%	78%	67%	100% (+12%)*	100% (+3%)*	100%
High	NCPs and Costs	yes	70%	25%	70%	69%	69%	59%	100% (+7%)*	93%	88%
High	Biodiversity	yes	88%	31%	88%	88%	87%	75%	100% (+18%)*	100% (+8%)*	100% (+5%)*
High	Biodiversity and Costs	yes	79%	28%	79%	79%	78%	68%	100% (+12%)*	100% (+3%)*	100%
High	Costs	yes	68%	24%	67%	67%	67%	58%	100% (+5%)*	90%	86%

* The value in parenthesis represents the reduction of species extinction risk compared to the current situation, after the impacts of the SSP3 scenario were mitigated and/or compensated.

Table S4 - Area (km²) of ecosystems whose structural integrity was reduced to a low/very low level (< 0.33 on a scale of 0 to 1) or increased to a medium/high level (> 0.33 on a scale of 0 to 1) in the SSP3 scenario compared to the current situation. We divided the results by the area whose structural integrity changed only because of projected population change and only due to land use changes. Note that their sum does not equal the total change line, as there are ecosystems that are under the influence of both population and land use changes.

	Area where ecosystem structural integrity decreased to low/very low levels (km²)	Area where ecosystem structural integrity increased to medium/high levels (km²)
Due to land use change only	139,795	6,917
Due to human population change only	2,065,589	139,647
Total	4,286,825	240,130

Table S5 - Total CO₂ sequestration and emissions compared to the current situation due to the projected land use change in SSP3 and optimised scenarios. The results are per global effort of increasing the world's natural areas and closing yield gaps, per scenario with different combinations of benefits and costs metrics and with restrictions of restoration at the local level. The sequestration values correspond to the long-term potential of carbon stocks after restoration.

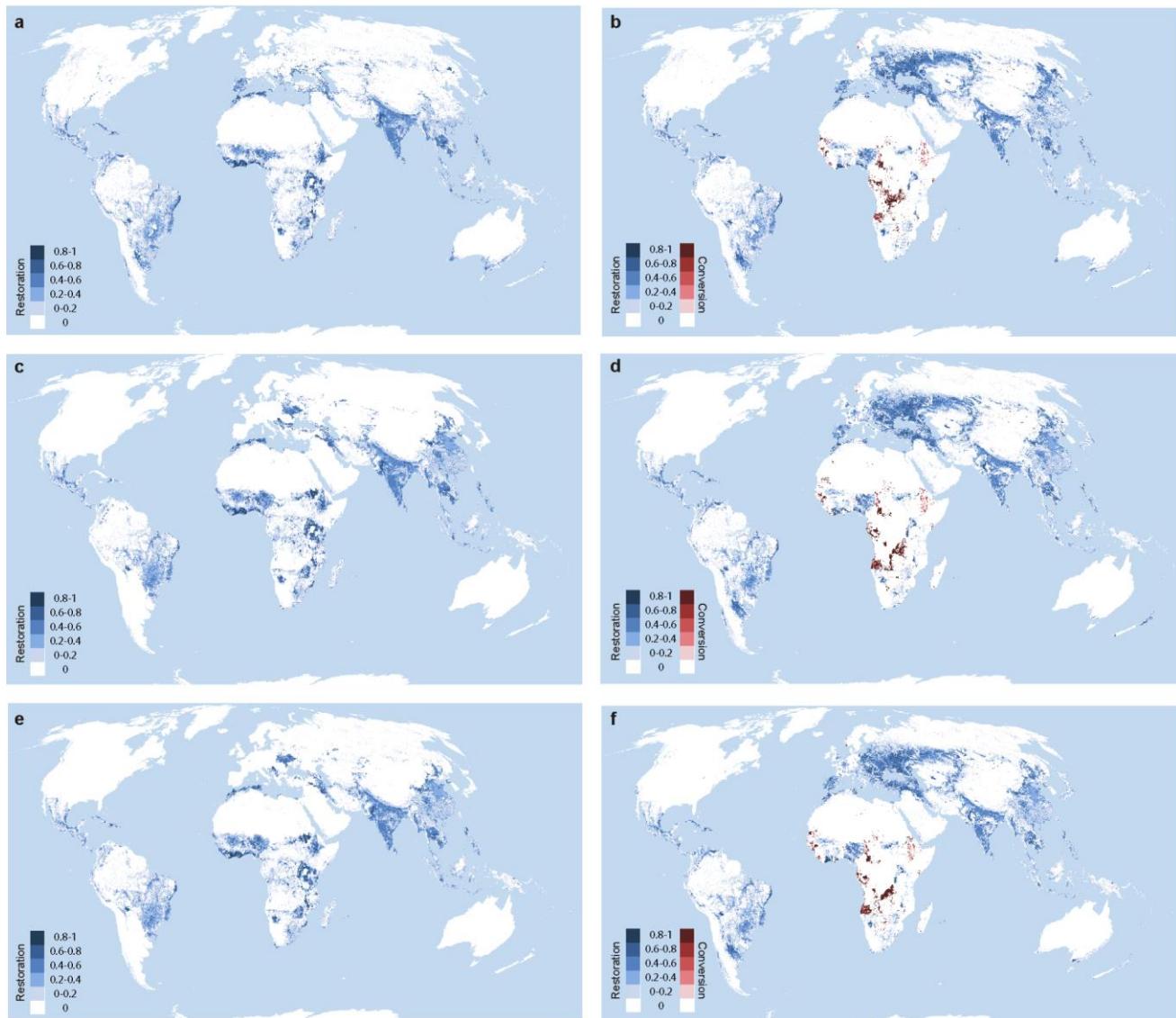
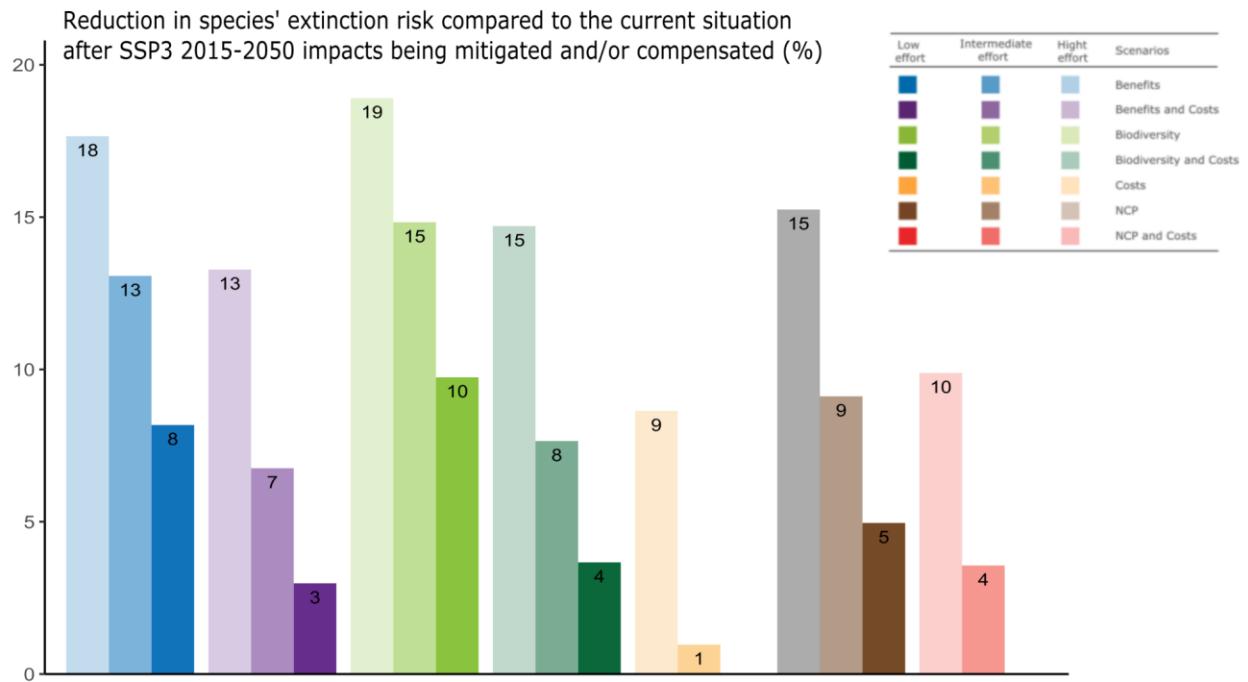

Global effort	Scenario	Sequestration (GtCO ₂)	Emission (GtCO ₂)
-	SSP3	19.95	109.04
Low	Benefits	210.43	28.84
Low	Benefits and costs	181.52	33.59
Low	NCP	212.54	26.97
Low	NCP and costs	181.97	32.60
Low	Biodiversity	178.35	47.42
Low	Biodiversity and costs	162.59	49.53
Low	Costs	159.77	50.35
Intermediate	Benefits	264.58	25.67
Intermediate	Benefits and costs	227.12	30.56
Intermediate	NCP	268.37	23.98
Intermediate	NCP and costs	227.99	29.61
Intermediate	Biodiversity	219.19	43.82
Intermediate	Biodiversity and costs	200.63	45.57
Intermediate	Costs	193.63	45.41
High	Benefits	324.39	24.79
High	Benefits and costs	290.08	29.25
High	NCP	326.05	23.17
High	NCP and costs	290.90	28.34
High	Biodiversity	285.12	42.41
High	Biodiversity and costs	271.33	43.79
High	Costs	269.12	43.00

Table S6 - Results for seven scenarios that consider different metrics with a high level of global efforts to net increase natural areas and intensity agriculture productivity. The simulations that generated these estimates did not constraint the global efforts at the country level.


Global effort	Local constraints	Scenario	Net CO2 sequestration after SSP3 2015-2050 impacts being mitigated and/or compensated (GtCO2)	Reduction in ecoregions' vulnerability after SSP3 2015-2050 impacts being mitigated and/or compensated (%)	Reduction in the SSP3 2015-2050 impacts on ecosystems' structural integrity (%)	Reduction in the SSP3 2015-2050 impacts on water quality regulation (%)	Increase in coastal protection after the SSP3 2015-2050 impacts being mitigated and/or compensated (%)	Additional number of equivalent people fed through pollination (Billions)	Reduction in the SSP3 2015-2050 impacts on species' extinction risk (%)
High	yes	Benefits	425	61%	99%	-	0.11116%	-	104%
High	yes	Benefits and Costs	366	53%	97%	-	0.11106%	-	93%
High	yes	NCPs	433	54%	98%	-	0.11115%	-	86%
High	yes	NCPs and Costs	372	47%	96%	-	0.11106%	-	82%
High	yes	Biodiversity	282	66%	100% (*+39)	-	0.11113%	-	100%(**+14%)
High	yes	Biodiversity and Costs	309	61%	100% (*+38)	-	0.11108%	-	100%(**+7%)
High	yes	Costs	236	42%	98%	-	0.11106%	-	72%
High	no	Benefits	343	56%	96%	20%	0.11115%	3.5	92%
High	no	Benefits and Costs	290	48%	98%	17%	0.11106%	2.5	84%
High	no	NCPs	348	53%	94%	20%	0.11115%	3.5	82%
High	no	NCPs and Costs	289	44%	97%	17%	0.11107%	2.6	79%
High	no	Biodiversity	278	57%	100% (*+7)	14%	0.11112%	1.6	100%
High	no	Biodiversity and Costs	274	55%	100%(*+10)	12%	0.11109%	1.5	97%
High	no	Costs	249	44%	99%	12%	0.11106%	1.4	75%

* The value in parenthesis represents the net area (Mha) of natural lands whose structural integrity has been increased compared to the current situation, after the impacts of the SSP3 scenario were mitigated and/or compensated. ** The value in parenthesis represents the reduction of species extinction risk compared to the current situation, after the impacts of the SSP3 scenario were mitigated and/or compensated

Supplementary Figures

Figure S1 - Global areas selected for land use change. They consider the restoration of natural ecosystems (blue) and the conversion to agriculture (red), without (a, c, and e) and with (b, d, f) country-level restrictions, in a situation where high efforts are being made to increase the world's natural areas and close yield gaps. Conservation actions are not illustrated separately but located within the zones where no land use change was projected (0 values). The shades of blue/red represent proportions of each planning unit that were selected to be restored/converted. The optimisations focused on all biodiversity and costs metrics (a and b), all nature's contributions to people and costs metrics (c and d) and all benefits and costs metrics (e and f). All maps consider continuation of local agricultural production, with constraints to restoration actions at the local level

Figure S2 - Reduction in species' extinction risk, compared to the current (2015) situation. This result assumes that species can reach all habitats with suitable climate conditions within their current or neighbouring ecoregions until 2050. The results are per global effort of increasing the world's natural areas through restoration actions and closing yield gaps, per scenario with different combinations of benefits and costs metrics, and with restrictions for restoration at the local level (see main text for more details).

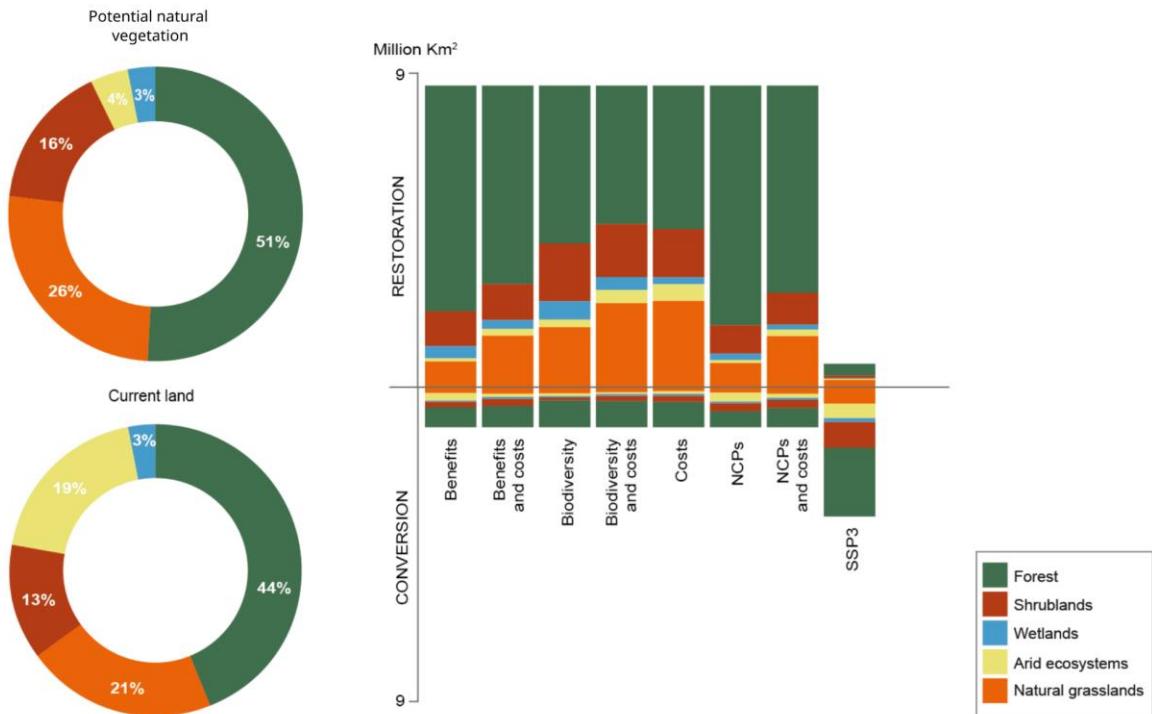


Figure S3 - Percentage of a) the area of each natural land cover type that could be potentially restored and b) the area currently occupied by each natural land cover type: forest (green); shrublands (red); wetlands (blue); arid ecosystems (yellow); and natural grasslands (orange). c) The bars show the proportion of area per natural land cover type to be restored or converted to agriculture in different scenarios: benefits (using all biodiversity and NCPs metrics); benefits and costs (all metrics combined); biodiversity (the three biodiversity metrics); biodiversity and costs; NCPs (all four NCPs metrics); NCPs and costs; costs (opportunity and implementation costs) and the Shared Socioeconomic Pathway 3 (SSP3).