physNODE: Fusion of data and expert knowledge for modeling dynamical systems
Supplements

Leon Lettermann, Alejandro Jurado, Timo Betz, Florentin Worgétter, and Sebastian Herzog|
Third Institute of Physics - Biophysics,
Georg-August Universitit Géttingen,
Gottingen, Deutschland 37077

(Dated: May 31, 2023)

I. IMPLEMENTATION DETAILS OF
PHYSNODE

PhysNODE aims to make the adjoint method easily
accessible for researchers who want to find parameters
describing some ODE system. Therefore, the goal is
to provide a software tool that requires only minimal
information to be entered, essentially the EOM of
the system under consideration. Consequently, the
Jacobians in the augmented system Eq. 11,12 have to be
derived internally and, additionally, this step needs to
be very performant, as it will be called many times while
solving the augmented system. Further aspects include
possibilities to run simulations in order to validate the
fitting accuracy and fitting multiple experiments with a
single model.

An important ingredient for achieving the aforemen-
tioned goals is the use of JAX [I] as a computational
framework. JAX is a python library developed for ma-
chine learning applications as an open-source project
with support from Google Research. It is built for just-in-
time compiling its functions using an Accelerated Linear
Algebra (XLA) compiler, a compiler for efficient com-
putation with backends for GPUs and TPUs developed
to speed up TensorFlow code, but JAX is built more
consequently than TensorFlow to suit and utilize XLA’s
capabilities. In particular, JAX employs a pure function
formalism and is described as a set of composable trans-
formations of functions, including

e jit: just-in-time compilation,
e grad: autodifferentiation,
e vmap: vectorization.

Combination of grad (or the lower level vjp) and jit
applied to the EOM yield the performant Jacobians we
need, while the vmap transformation is used to support
multi-experiment fitting. The restriction that the pro-
vided EOM has to be compatible with JAX is mitigated
by the JAX.numpy module, which rebuilds the popular
and well-documented NumPy API. A further advantage
is the concept of PyTrees, nested combinations of lists,

*

sherzog3Q@gwdg.de

tuples, dictionaries, and arrays, which are used as type
for parameters and system states, providing freedom
to organise these. Finally, JAX automatically detects
possibly present GPUs or even TPUs, and the code will
be compiled and executed using the best available option.

Apart from the data, the input has to be provided as
a define_system function, the details of which are given
in the physNODE Cookbook (see Fig. [IID]). Passed a
number of keywords (kwargs_sys) defining system prop-
erties, it returns four functions:

o gen_y0(): Generating an initial state.

e gen params (): Generating a set of parameters.
e com: The systems Equation of motion, above f.
e loss: The loss function, above L.

The state and parameters returned by the first two
functions can be any PyTree, usually a dictionary is
clearest.

The physNODE module includes the EquationNODE
class, wrapping the generation of the augmented system
Eq. 11,12, the PhysNodeDataset class to combine
this equations with data and the simple_simulation
function, which automatically simulated data and sets
up a PhysNodeDataset object.

The train physnode function takes the gradients
delivered by the augmented system to perform training
using the well-established ADAM optimizer [2]. The
hyperparameters of this optimizer are a learning rate, a
learning rate decay controlling exponential decay of the
learning rate as well as the ADAM internal constants by
and bs, all of which can be specified via kwargs_NODE.
Other optimizers can be submitted via respective
kwargs NODE. For each of params, iparams (cf. Section
and possibly yg that should be fitted a separate
ADAM optimizer is used, the hyperparameters of which
can independently be adjusted. The augmented method
is executed neglecting this dependence, only at the end
of each epoch are the gradient contributions generated
by the explicit derivative of the loss with respect to the
parameters added.

mailto:sherzog3@gwdg.de

In Section C. the idea to solve the system itself
backward alongside adjoint state and computed gradient
to avoid the necessity to save many intermediate states
was introduced. In practice, time asymmetric systems
may thwart this idea. One such bad, but unfortunately
common, example are diffusion systems. While quite
helpful in stabilizing the forward pass, solving a dif-
fusive system backward is equivalent to anti-diffusion,
enlarging initial inaccuracies exponentially and thereby
rendering the backward pass highly unstable. To handle
this, physNODEs is implemented in such a way that
the system state is stored at each observation time ¢;,
allowing backpropagation between observation times
without becoming too unstable. Further stabilization
can be achieved by storing additional back up states in
between two observation times, the number of which is
specified by the keyword ‘N_backups‘. In order not to
save all backup states simultaneously, they are created
by an additional forward pass only once their respective
time interval is concerned.

Most often the loss function will work such that the
current solution is compared to a given solution, e.g. with
a mean squared error loss, and the direction of change for
optimization enters the augmented system Eq. 11,12 via
the Jacobian J, .

II. REMARKS AND SPECIFICS

Two potential problems currently exist:

1. There is currently no easy way to install JAX on
non-Linux systems, and even there it does not
have a built-in CUDA installation, as e.g. Py-
Torch or Tensorflow, meaning CUDA has to be
installed manually. For this reason, we provide
a Apptainer recipe to set up a container with
CUDA and JAX installed, see https://gitlab.
gwdg.de/sherzog3/physnode.gitl Alternatively,
one have to install JAX and its dependencies man-
ually: The installation instruction for JAX and de-
pendencies can be found at https://github.com/
google/jax#installation

2. Also, the standard ODE solver used is a mixed
fourth/fifth-order Runge-Kutta algorithm with
Dormand Prince stepsize adaption. Other solvers
can be used, but have to be compatible with JAX.

A. Working with physNODE

In the following we would like to provide a few tips
that might be helpful when implementing own cases
with physNODE:

The shapes of the PyTrees returned by gen_params ()
and gen_y0() have to match whatever loss and eom

expect, meaningful values are only required if simula-
tions should be generated. The gen_params() function
actually has to return three PyTrees, for three differ-
ent types of parameters called params, iparams and
exparams. The first two are the unknown parameters
that should be fitted and differ only in multi-experiment
situations, where params are universal parameters and
iparams are fitted individually for each experiment. The
external parameters exparams are assumed to be known,
but with individual values specified for each submitted
experiment, hence they cannot be built into the system’s
definition (which is universal for all experiments). For
more complicated systems, define_system may have
subroutines describing parts or steps of the EOM. Those
can be returned in an otherwise empty dictionary as a
fifth return value, such that they can be accessed later.

Usually EquationNODE should not be called directly,
but is automatically included in PhysNodeDataset. To
setup a PhysNodeDataset, the define_system function
and dedicated kwargs_sys, as well as data to be fitted
and t_evals, an array containing the times at which
the data was observed, have to be passed. Lastly,
a second keyword dictionary, kwargs NODE, contains
the settings for the NODE and optimization process.
Mandatory are the learning rate (‘Ir') and number
of epochs (‘epochs‘), but a number of properties and
behaviours can be controlled through other keywords.
The simple_simulation function requires the same
information, apart from data, which is generated by ran-
domly taken initial conditions and parameters according
to gen_y0 and gen params. Once a dataset has been
generated either with data or a simulation, training can
be performed by calling the train_physnode function
with the dataset as argument.

Often one might want to further restrict or influence
the training process. One possibility is to specify
boundaries, e.g. to avoid the system reaching unstable
parameter values. Another popular choice is weight
decay. To include it, in contrast to the above derivation
we allow parameter-dependent term in the loss function

L (y(fow---’y(fm’p)-

A typical weight decay would now be included by
adding a Ly-norm of the parameters to the loss function,
but it allows for arbitrary complex terms guiding the
training to follow specific requirements.

For long time series or very inaccurate initial param-
eters, eventually, the current solution will have diverged
so far from the target trajectory, that this comparison is
meaningless. This can especially be expected to happen
faster for chaotic systems. A very easy solution is only
to use a fraction of the data, cutting the time evolution
to a sufficiently stable regime.[3] A second possibility is
to specify an exponential decay of gradients and the ad-
joint state applied during backward solving, such that

https://gitlab.gwdg.de/sherzog3/physnode.git
https://gitlab.gwdg.de/sherzog3/physnode.git
 https://github.com/google/jax#installation
 https://github.com/google/jax#installation

contributions at later times have lesser influence.[d] The
most powerful approach is to divide the time series into
many short segments and reload a new initial condition at
the beginning of each segment disregarding at what state
the previous segment ended up. To conveniently use this,
the ‘t_reset_idcs' keyword in kwargs _NODE can be passed
a tuple of integers, which are understood as indices of ob-
servation times in t_evals. At each indicated time the
system is reset to the estimated state, taken from the
target trajectory. The initial state is enlarged by an ad-
ditional axis running overall initial conditions at different
times, such that if training of initial conditions is active
all different initial conditions are trained simultaneously.
The simple_simulation function is helpful for easy test-
ing, playing around, and having fun, but serves an im-
portant purpose in using physNODE to gain information
of data. As with any tool from the realm of machine and
deep learning, interpretation of the results needs care and
vigilance. In this setting, the question to be answered is if
found parameters, which yield a good fit of observed and
reproduced system behaviour, are necessarily the true
parameters. The main purpose of the simulation feature
is to generate several systems with plausible trajectories.
After the same fitting procedure as for actual data is ap-
plied, the found parameters can be compared to those of
the simulation to validate the method. The other way
round simulations can also be used before fitting data
to establish a protocol and hyperparameters. If param-
eters do not agree even though the final loss was very
small, probably some parameters are redundant allowing
for different parameters describing the same dynamics,
or the loss function doesn’t capture all relevant parts of
the system.

III. SUPPLEMENTARY FIGURES AND
VIDEOS

A. Performance benchmark

The only model presented, in this work, that offers

a natural way to increase the size of the system is the
repulsive N-body interaction (Sec. I B Hence this system
is used for comparison.
Results: The presented framework performs well for all
system sizes tested, converging faster or comparable to
alternatives (Fig.[I)). Although physNODE was designed
with large systems and many parameters in mind, and
Ma et al. [6] found that for smaller systems direct auto-
differentiation can be faster, physNODE provides excel-
lent performance and can be applied to many systems
out of the box.

B. Figure SF1: Initial conditions for AP Model

In Figure [2 the different initial field for BOCF and AP
model are detailed.

BOCF D k‘s kso Tfi Tsi Tsol 91; Us Uso Uy
Rec. 0.2 2.102 2.017 0.111 2.96 43.2 0.299 0.909 0.66 1.583
Truth 0.2 2.099 2.000 0.110 2.87 43.0 0.300 0.909 0.65 1.580

TABLE I. The recovered and true values for the parameters
for the BOCF model. Units are as in the original publications
(BOCEF: [3]).

wn

8

A BPEY }
g 10* 3 08 *

5 18 ¥.3 +

2 10°3§ §

Q 3 e * % physNODE Nelder-Mead

o) , |18 * Diff. Evol. ¥V Direct Autodiff.
g 10— —————
=

10! 102
Number of Bodies

FIG. 1. Performance comparison based on Sec. I B.

C. Video V1: BOCF and AP Models

Results of BOCF model. a-d: Excitation field u, value
given by colour bar on the right. a: Recovered BOCF
field after 1.5s. b: Difference between recovery in a and
target. c: Truth after 0.5s. d: Recovery using the Aliev-
Panfilov model. e: Mean absolute error of recovery using
BOCF and AP models. f: Error in peak occurrence time
averaged over all pixels.

D. Video V2: Rayleigh Bénard Convection

Results for 2D Rayleigh-Bénard Convection. a-c: Tem-
perature perturbation. a: Truth, b: Recovery, c: Differ-
ence. d: Mean absolute error between recovered and true
temperature perturbation. e: Pixelvalue of center pixel.

C)

w d) s

e) u f) v (cut off) g) v (full range)
‘ T 15 100 [g (« oA
5.0 2
1.0 . 2.0
b —_
T W0
0.5 :
05
0.0 0.0

FIG. 2. a)-d): The fixed initial conditions used for generating the BOCF trajectories, u (a) being the excitation field and
v,w, and s (b-d) the different gating variables. e)-g): The resulting optimized initial conditions for the AP model in order to
reproduce the BOCF model. Excitation field u (e) and the single gating field v, displayed once (f) with the common color
scheme used for a)-f) and once with a separate one to show the full range (g).

[1] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, [4] kwargs_NODE keyword: ‘time_decay‘.

C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. Vander- [5] A. Bueno-Orovio, E. M. Cherry, and F. H. Fenton, Mini-
Plas, S. Wanderman-Milne, and Q. Zhang, JAX: compos- mal model for human ventricular action potentials in tis-
able transformations of Python+NumPy programs| (2018). sue, Journal of theoretical biology 253, 544 (2008).

[2] D. P. Kingma and J. Ba, Adam: A method for stochastic [6] Y. Ma, V. Dixit, M. J. Innes, X. Guo, and C. Rackauckas,
optimization, in |3rd International Conference on Learn- A comparison of automatic differentiation and continuous
ing Representations, ICLR 2015, San Diego, CA, USA, sensitivity analysis for derivatives of differential equation
May 7-9, 2015, Conference Track Proceedingsl edited by solutions, in 2021 IEEFE High Performance Extreme Com-
Y. Bengio and Y. LeCun (2015). puting Conference (HPEC) (IEEE, 2021) pp. 1-9.

[3] kwargs_NODE keyword: ‘t_stop-idx‘.

http://github.com/google/jax
http://github.com/google/jax
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

The physNODE Cookbook

0. Install physNODE and JAX

Make sure JAX and if you want to use GPUs a sup-
ported CUDA driver is installed, as well as physNODE
and its dependencies. An installation guide is pro-
vided in the git-repository, https://gitlab.gwdg.de/
sherzog3/physnode.git.

1. Define your System

Our example system is %pop = a - pop + b, where pop is
some scalar population and a and b are the parameters
we want to find. We assume the initial population, a
and b to be bounded below by zero and above by some
maximum specified in kwargs_sys.

import numpy as np

import jax.numpy as jnp

from jax import jit

def define_system(**kwargs_sys):

p_max = kwargs_sys[’p_max’]
a_max = kwargs_sys[’a_max’]
b_max = kwargs_sys[’b_max’]

def gen_y0():
ini_pop = np.random.rand()*p_max
return {’population’:ini_popl}

def gen_params():
a = np.random.rand () *a_max
b = np.random.rand () *b_max
return {’a’:a, ’b’:b}, {}, {}
Qjit
def eom(y, t, params, iparams, exparams):
pop = y[’population’]
a, b = params[’a’], params[’b’]
return {’population’:a*pop+b}
Qjit
def loss(ys, params, iparams,
exparams , targets):
pop = ys[’population’]
t_pop = targets[’population’]

return jnp.mean((pop-t_pop) **2)

return eom, loss, gen_params, gen_yO0, {}

The second and third dictionary of gen_params are
iparams and exparams we do not have in this simple
example. The first two functions can be arbitrary, the
eom and loss functions have to be implemented using
the jax libraries.

2. Set up a simulation

To set up a simulation we define the dictionaries
kwargs_sys and kwargs_ NODE as well as the times
t_evals at which we assume to observe our system. The
keyword ‘N_sys‘ gives the number of copies in terms of
multi-experiment fitting, here we consider only one sys-
tem.

from physNODE.Framework import
simple_simulation, train_physNode

kwargs_sys = {’p_max’: 2,’a_max’: 1,
’b_max’: 3, ’N_sys’: 1}
kwargs_NODE = {’1lr’:1e-2, ’epochs’:50}

t_evals =
dataset =

np.linspace(0,50,10)
simple_simulation(define_system,
kwargs_sys,
t_evals,
kwargs_NODE)

3. Train a simulation

The easy following command trains our simulation and
prints the true params in comparison to the found ones:

_ = train_physNode (dataset)
print (’True params: ’, dataset.params)
print (’Found params: ’, dataset.params_train)

4. Including Data

To include data, we bring it in the same form as the
shape of the state given by gen_y0(), but with two ad-
ditional leading axes. The first counts the different ex-
periments, and has length one here, the second runs over
time points and has the same length as t_evals.

from physNODE.Framework import PhysNodeDataset
data # Observation of population, shape (10,)

targets = {’population’:data.reshape((1,10))}

dataset2 = PhysNodeDataset(define_system,
kwargs_sys,
t_evals,
targets,

kwargs_NODE)

This new dataset can be trained just the same, although
we can not print the true parameters in comparison as
we do not know them.

	physNODE: Fusion of data and expert knowledge for modeling dynamical systems Supplements
	 Implementation Details of physNODE
	 Remarks and Specifics
	Working with physNODE

	Supplementary Figures and Videos
	Performance benchmark
	Figure SF1: Initial conditions for AP Model
	Video V1: BOCF and AP Models
	Video V2: Rayleigh Bénard Convection

	References

