

Cardiac AAV9:PKP2 Gene Therapy Reduces Ventricular Arrhythmias, Reverses Adverse Remodeling, and Reduces Mortality in a Mouse Model of ARVC

Iris Wu

Tenaya Therapeutics

Amara Greer-Short

Tenaya Therapeutics

Alex Aycinena

Tenaya Therapeutics

Anley Tefera

Tenaya Therapeutics

Reva Shenwai

Tenaya Therapeutics

Farshad Farshidfar

Tenaya Therapeutics

Melissa Van Pell

Tenaya Therapeutics

Emma Xu

Tenaya Therapeutics

Chris Reid

Tenaya Therapeutics

Neshel Getuiza

Tenaya Therapeutics

Beatriz Lim

Tenaya Therapeutics

Tae Won Chung

Tenaya Therapeutics

Renee Butler

Tenaya Therapeutics

Stephanie Steltzer

Tenaya Therapeutics

Jaclyn Ho

Tenaya Therapeutics <https://orcid.org/0000-0001-9166-5953>

Kristina Green

Tenaya Therapeutics

Kathryn Ivey

Tenaya Therapeutics

Timothy Hoey

Tenaya Therapeutics

Jin Yang

Tenaya Therapeutics

Aliya Zeng

Tenaya Therapeutics

Zhihong Yang

jane.yang@tenayathera.com

Tenaya Therapeutics

Article

Keywords:

Posted Date: May 24th, 2023

DOI: <https://doi.org/10.21203/rs.3.rs-2958419/v1>

License: This work is licensed under a Creative Commons Attribution 4.0 International License.

[Read Full License](#)

Additional Declarations: There is **NO** Competing Interest.

Version of Record: A version of this preprint was published at Communications Medicine on March 18th, 2024. See the published version at <https://doi.org/10.1038/s43856-024-00450-w>.

1 **Cardiac AAV9:PKP2 Gene Therapy Reduces Ventricular Arrhythmias,**
2 **Reverses Adverse Right Ventricular Remodeling, Improves Heart**
3 **Function, and Reduces Mortality in a *Pkp2*-deficient Mouse Model of**
4 **Arrhythmogenic Right Ventricular Cardiomyopathy**

5
6 Iris Wu^{1*}, Aliya Zeng^{1*}, Amara Greer-Short¹, J. Alex Aycinena¹, Anley E. Tefera¹, Reva
7 Shenwai¹, Farshad Farshidfar¹, Melissa Van Pell¹, Emma Xu¹, Chris Reid¹, Neshel Getuiza¹,
8 Beatriz Lim¹, Tae Won Chung¹, Renee Butler¹, Stephanie Steltzer¹, Jaclyn Ho¹, Kristina Green¹,
9 Kathryn N. Ivey¹, Timothy Hoey¹, Jin Yang¹, Zhihong Jane Yang^{1**}

10 ¹Tenaya Therapeutics, South San Francisco, CA 94080, USA

11 * These two authors contributed equally.

12 ** Senior correspondent, E-mail: jane.yang@tenayathera.com

13
14 **Abstract**

15 Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a familial cardiac disease
16 associated with ventricular arrhythmias and an increased risk of sudden cardiac death.
17 Currently, there are no approved treatments that address the underlying genetic cause
18 of this disease. Mutations in desmosome gene *Plakophilin-2 (PKP2)* account for 45% of
19 ARVC cases and result in reduced gene expression. Our goal is to examine the
20 feasibility and the efficacy of adeno-associated virus 9 (AAV9)-mediated restoration of
21 PKP2 expression in a cardiac specific knock-out mouse model of *Pkp2*. We
22 demonstrated that a single-dose cardiac AAV9:PKP2 gene delivery effectively
23 prevented disease development before overt cardiomyopathy and attenuated disease
24 progression after overt cardiomyopathy. Restoration of *PKP2* expression leads to
25 highly coordinated and durable correction of *PKP2*-associated transcriptional networks
26 beyond desmosomes, revealing a broad spectrum of biological perturbances behind
27 ARVC disease etiology. These results indicate that cardiac AAV9:PKP2 gene therapy
28 may be a promising therapeutic approach to treat ARVC patients with *PKP2* mutations.

29

30

31 **Main**

32 Arrhythmogenic right ventricular cardiomyopathy (ARVC) or arrhythmogenic
33 cardiomyopathy (ACM) is an inherited heart disease characterized by ventricular
34 arrhythmias and progressive cardiac dysfunction (Corrado et al., 2020; Gajdabakhch et
35 al., 2018; Gemayel et al., 2001; Sen-Chowdhry et al., 2004; Zipes, et al., 2006). Clinical
36 presentation of ARVC varies from a concealed early phase, a later manifestation of
37 lethal ventricular arrhythmias, and ultimately heart failure that requires heart transplant
38 (Basso et al., 2009; Corrado et al., 2017; Gemayel et al., 2001). ARVC has an
39 estimated prevalence in the general population of 1:1000 to 1:5000 with the mean age
40 of presentation before 40 years old (Basso et al., 2011; Groeneweg et al., 2015; Dalal et
41 al., 2005; Nava et al., 2000; Hulot et al., 2004). Arrhythmic sudden cardiac death (SCD)
42 could be the first symptom, often diagnosed postmortem, of mostly young and athletic
43 patients (Corrado et al., 2017; Finocchiaro et al., 2016;).

44 Mutations in the desmosome gene *Plakophilin-2*, *PKP2*, are the most frequent cause of
45 genetic ARVC and account for approximately 43% of ARVC cases (Choudhary et al.,
46 2016, Dries et al., 2021; Jacob et al., 2012; van Tintelen et al., 2006; Walsh et al.,
47 2017). Desmosomes are adhesive intercellular connections that play critical roles in
48 heart development and performance (Kowalczyk and Green, 2013; Vermij et al., 2017).
49 Interactions among desmosome proteins ensure proper structural anchoring and
50 organization of intermediate filaments, cardiac sarcomere, and other organelles (Delmar
51 and McKenna, 2010; Sheikh et al., 2009). Mutations in the *PKP2* gene are
52 heterozygous in patients and lead to haploinsufficiency in *PKP2* protein levels (Akdis et
53 al., 2016; Asimaki et al., 2009; Chen et al., 2014; Kohela et al., 2021; Rasmussen et al.,
54 2014). Reduction of *PKP2* protein at the intercalated discs (ID) disrupts desmosomes
55 and other ID structures such as gap junctions (GJs) (Basso et al., 2011; Delmar and
56 McKenna, 2010; Vermij et al., 2017). Reduction of Connexin 43 (Cx43), a critical
57 component of GJs, results in compromised electrical coupling and heterogeneous
58 conduction between cardiomyocytes (Oxford et al., 2007; Rodriguez-Sinovas et al.,
59 2021). These structural corruptions trigger cell death response, inflammatory infiltration,
60 and metabolic perturbation that underpin clinical manifestations of electrical instability,
61 cardiac structural deterioration, fibrofatty infiltration, and heart failure (Asatryan et al.

62 2021; Austin et al., 2019; Cerrone et al., 2017; Chen et al., 2014; Dubash et al., 2016;
63 Pérez-Hernández et al., 2022; Reichart et al., 2022; Song et al., 2020; Zhang et al.,
64 2021).

65 Clinical management of ARVC patients includes lifestyle modification, pharmacological
66 treatment, catheter ablation, ICDs, and heart transplantation (Calkins et al., 2017;
67 McKenna, 2022). So far, there is no approved treatment that addresses the underlying
68 genetic cause of this disease. It is technically challenging to apply conventional
69 therapeutic approaches to restore defective large cellular structures such as the
70 desmosome and manage their pleiotropic impact on complex signaling networks.
71 Therefore, a new treatment paradigm that targets the underlying genetic cause of the
72 disease is needed to manage the multiplicity of disease manifestations during disease
73 onset and progression.

74
75 In this study, both *PKP2*-deficient human induced pluripotent stem cell-derived
76 cardiomyocytes (iPSC-CMs) and a cardiac-specific knock-out, *Pkp2-cKO*, mouse model
77 were utilized to identify the molecular, structural, and functional signatures that
78 recapitulate human ARVC clinical phenotypes. Using the *in vivo* mouse model, we
79 examined the feasibility and the efficacy of gene replacement by AAV9-mediated
80 exogenous restoration of *PKP2*. This is the first study demonstrating that ARVC clinical
81 phenotypes, recapitulated by a mouse model, 1) were largely preventable before overt
82 cardiomyopathy and 2) can be attenuated to stop or slow down progression to heart
83 failure by exogenous restoration of *PKP2* expression. Restoration of *PKP2* expression
84 led to a highly coordinated and durable correction of structural genes encoding
85 desmosome, sarcomere, and Ca^{2+} -handling system, and corrections of multiple
86 signaling pathways of metabolism, inflammation, and apoptosis. Our studies reveal that
87 the desmosome is a fundamental molecular building block in maintaining cellular
88 integrity and functions of cardiomyocytes and heart. We propose that cardiac
89 AAV9:PKP2 could be a beneficial gene therapy approach to reduce ventricular
90 arrhythmias, reverse adverse right ventricular remodeling, improve heart function, and
91 reduce mortality in ARVC patients with *PKP2* mutations. TN-401, Tenaya's AAV9:PKP2

92 clinical drug candidate, is currently advancing in Investigational New Drug (IND)-
93 enabling studies.

94

95 **Results**

96 **AAV:PKP2 corrected disease phenotypes in a human iPSC-CM model**

97 To model ARVC disease and identify the molecular, structural, and functional signatures
98 that are fundamental to the disease mechanisms, we carried out RNA sequencing
99 analyses of iPSC-CMs after acute silencing of *PKP2* expression. These studies
100 revealed that the desmosome functions as a signaling hub connecting key structures
101 ([Agullo-Pascual et al., 2014](#)) in cardiomyocytes such that reduction in *PKP2* expression
102 led to down-regulation of structural and functional gene expression encoding
103 components of desmosomes, sarcomeres, intermediate filaments, and ion channels
104 (Figure 1a). Down-regulation of protein or mRNA was shown for desmoplakin (DSP),
105 plakoglobin (JUP), myosin-binding protein C3 (MyBPC3), desmin (DES), and sodium
106 voltage-gated channel α subunit 5 (SCN5A) (Figure 1b). *PKP2* deficiency resulted in
107 structural disappearance of *PKP2* and DSP from the cellular membrane and caused
108 cell-to-cell disarray of patterned iPSC-CMs (Figure 1c). In addition, *PKP2* deficiency
109 perturbed both contractile (Figure 1d) and electrophysiological properties of iPSC-CMs
110 (Figure 1e).

111 The 1st generation AAV expression cassette was used for iPSC-CM-based studies and
112 the 2nd generation for *in vivo* mouse efficacy studies (Figure 2a). Dose-dependent
113 protein expression was evident in iPSC-CMs driven by a cardiac-specific troponin T
114 promoter (Figure 2b). AAV:human *PKP2* (AAV:hPKP2), which is a AAV9 variant
115 engineered to have a higher transduction efficiency to iPSC-CMs than AAV9, restored
116 DSP expression post *PKP2* silencing when compared to the reduced DSP protein
117 without AAV rescue (Figure 2c). AAV:hPKP2 restored contractility as quantified by
118 contraction velocity when compared to the reduced contraction velocity without AAV
119 rescue (Figure 2d). Using human iPSC-CMs as a cell model for ARVC, AAV:hPKP2

120 restored desmosomes and rescued contractility in PKP2-deficient iPSC-CMs,
121 suggesting PKP2 governs intrinsic cellular properties of cardiomyocytes.

122

123 ***Pkp2-cKO* ARVC mouse model recapitulated the majority of human
124 ARVC clinical manifestations**

125 We used a mouse conditional knockout model to assess the feasibility and the efficacy
126 of AAV-mediated *PKP2* gene replacement. Consistent with the early observations of
127 this model ([Cerrone et al., 2017](#)), tamoxifen-induced cardiac deletion of both alleles of
128 *Pkp2* in adult mice at 1 week did not show overt structural and functional changes.
129 Weekly monitoring and tissue collection at the end of the study showed disruption of
130 desmosomes and GJs (Figure 3a), severe spontaneous premature ventricular
131 contractions (PVCs) (Figure 3b), biventricular dilatation (Figure 3c), and a sharp decline
132 in cardiac function (Figure 3d) and survival (Figure 3e) after 3-4 weeks of induced
133 cardiac knock-out of *Pkp2*. These phenotypes recapitulated human ARVC clinical
134 manifestations. However, unlike in humans, heterozygous disruption of *Pkp2* in mouse
135 hearts did not result in cardiac phenotypes that closely recapitulated human ARVC
136 symptoms ([Cerrone et al., 2012; van Opbergen et al., 2019](#)). Thus, homozygous *Pkp2-*
137 *cKO* mouse was used as a model of human ARVC.

138

139 **AAV9:PKP2 treatment largely attenuated disease development and
140 disease progression to mortality in *Pkp2-cKO* ARVC mouse**

141 To determine whether the AAV9 expression cassette (Figure 2a, the 2nd generation)
142 encoding either the human *PKP2* or the mouse ortholog could counteract the effects of
143 cardiac *Pkp2* gene deletion, *Pkp2-cKO* mice were given a single systemic dose of
144 TN-401 (AAV9: human PKP2) or AAV9:mPkp2 (AAV9:mouse Pkp2) 3 weeks prior to
145 tamoxifen induction of cardiac *Pkp2* gene deletion (Figure 4a). Hank's Balanced Salt
146 Solution (HBSS) was administered as vehicle control to WT control animals and to AAV-
147 untreated *Pkp2-cKO* animals. At 4 weeks post gene deletion and 7 weeks post AAV
148 delivery, both human and mouse orthologs prevented ventricular arrhythmia event

149 frequency and severity as summarized by a ventricular arrhythmia score (Figure 4b,
150 Suppl. Table 1), right ventricular remodeling (Figure 4c), and decline in left ventricular
151 function (Figure 4d), which were prominent features of *Pkp2-cKO* mice at this timepoint.
152 TN-401 demonstrated significant efficacy in preventing ARVC development and in
153 extending median lifespan by \geq 58 weeks, far beyond the 4.7 weeks observed in the
154 HBSS-treated *Pkp2-cKO* animals, with survival comparable to the natural lifespan of the
155 WT control animals as monitored up to 72 weeks (Figure 4e). In this same study, we
156 also evaluated efficacy of AAV9:mPkp2 in *Pkp2-cKO* mice at 3 intervention timepoints
157 and concluded that there were no significant differences in efficacy readouts of EF, RV
158 dilation, arrhythmias, and prolonged lifespan of more than 50% of the treated animals
159 by 50 weeks (Suppl. Figure 1). Overall, these results showed that either the human
160 PKP2 or the mouse ortholog was sufficient to prevent the detrimental cardiac and
161 survival phenotypes of *Pkp2-cKO* mice when delivered in the AAV9 vector.

162
163 To assess the dose response to TN-401, *Pkp2-cKO* mice were given single systemic
164 treatments one week after tamoxifen induction of cardiac *Pkp2* gene deletion
165 (Figure 5a) and sacrificed at 4 weeks post induction (3 weeks post AAV treatment) for
166 histological and expression analyses. TN-401 treatment of *Pkp2-cKO* mice showed
167 dose-dependent efficacy in reducing RV dilation as estimated by RV area normalized to
168 body weight, in preventing decline of LV ejection fraction, and a trending dose-
169 dependent reduction in arrhythmias (Figure 5b). At molecular level, left ventricle heart
170 tissue showed dose-dependent protein expression of human PKP2 (Figure 5c, top
171 panel) as well as dose-dependent restoration of DSP and JUP, two additional
172 desmosome proteins that were decreased in *Pkp2-cKO* mice (Figure 5c, bottom two
173 panels). Connexin 43 (Cx43), a gap junction protein present at intercalated discs, was
174 reduced in *Pkp2-cKO* mice, as shown by immunohistochemistry of heart tissue, and
175 was restored in *Pkp2-cKO* mice treated with TN-401 (Figure 5d, top row). TN-401
176 treatment also significantly reduced fibrosis development and collagen deposition in
177 both right ventricle and left ventricle (Figure 5d, bottom row and quantification shown in
178 the graph). In addition, quantitative analyses of molecular signatures supported that

179 TN-401 treatment reduced mRNA expression of heart failure markers, fibrosis, and
180 tissue remodeling genes in both left and right ventricles (Figure 5e, LV data not shown).

181

182 Overall, TN-401 treatment supported a dose-dependent improvement in ARVC
183 phenotypes and efficacy in the *Pkp2-cKO* mouse model of ARVC. TN-401 in this dose-
184 escalation study demonstrated efficacy at doses \geq 3E13 vg/kg in preventing adverse
185 right ventricular remodeling, and improving ventricular function, fibrosis, and
186 electrophysiological properties.

187

188 The preventive mode of treatment, dosing before overt structural changes,
189 demonstrated significant benefit of early intervention in largely preventing disease
190 development and extending lifespan. To further examine whether ARVC disease
191 progression could be slowed down or attenuated by restoration of PKP2 expression
192 after overt structural changes, the therapeutic mode of treatment, we dosed animals at
193 2.5 weeks after inducing cardiac knock-out of *Pkp2* (Figure 6a), when overt structural
194 changes, such as RV dilatation had occurred. AAV9:mPkp2 treatment reversed right
195 ventricle enlargement (Figure 6c), prevented further decline of the left ventricle function
196 (Figure 6d), and attenuated the progression of arrhythmias (Figure 6e). Significantly,
197 PKP2 gene therapy blunted early development of heart failure and reduced mortality of
198 this mouse model of ARVC throughout one year follow-up with a median lifespan by \geq
199 50 weeks (Figure 6b).

200

201

202 **Restoration of *PKP2* expression led to a highly coordinated and
203 durable correction of *PKP2*-associated transcriptional networks
204 beyond desmosomes**

205 It was rather surprising to observe that restoration of a single desmosome component,
206 PKP2, led to significant survival benefits, improved cardiac function, reversed adverse
207 RV remodeling, reduced ventricular arrhythmias, and prevented fibrosis. We asked
208 whether “on-target” PKP2 effects possibly extend beyond its effects on the desmosome
209 by evaluating PKP2 dose-dependent response, specifically at the transcriptional level.

210 To our knowledge, there is no reported study that reveals whether 1) PKP2 dynamically
211 coordinates its gene expression with other desmosome members, and 2) to what extent
212 PKP2 quantitatively dictates the state of disease progression. To obtain a deeper
213 understanding, two large-scale RNA sequencing analyses were conducted.

214

215 *Pkp2-cKO* mice were given a single systemic dose of TN-401 one week before
216 tamoxifen induction of cardiac *Pkp2* gene deletion (Figure 7a) and cardiac function and
217 arrhythmias were evaluated at 4 and 9 weeks post induction. Mice were sacrificed at 9
218 weeks post induction and heart tissues were collected for RNA sequencing and
219 quantification of PKP2 RNA and protein expression. At a 2-fold expression difference
220 between low, 3E13 vg/kg and high, 6E13 vg/kg doses at 9 weeks (Figure 7b), we did
221 not observe any significant dose-dependent difference in key readouts of EF%, RV
222 dilatation, and arrhythmia score, although the less critical readouts of LV mass to body
223 weight and QT intervals did show dose dependence and one out of six animals at the
224 high dose vs 5 out of nine animals at the low dose had arrhythmia scores ≥ 1 at 9 weeks
225 post induction (Figure 7c). We decided to evaluate specific gene classes including
226 desmosome, gap junctions (GJs), sarcomere, ion channels and Ca^{2+} handling systems,
227 heart failure markers, and fibrosis, that have been previously demonstrated to be
228 significant contributors to disease mechanisms (Figure 7d) ([Asatryan et al. 2021](#); [Austin et al., 2019](#); [Cerrone et al., 2017](#); [Chen et al., 2014](#); [Dubash et al., 2016](#); [Pérez-Hernández et al., 2022](#); [Reichart et al., 2022](#); [Song et al., 2020](#); [Zhang et al., 2021](#)).
229 Comparison between WT vs HBSS treated *Pkp2-cKO* animals showed significant
230 changes in gene expression in these classes and an extensive reversal of these
231 changes in response to TN-401 (Figure 7e, genes of interest marked in red).
232 Intriguingly, RNA sequencing analysis at the transcriptional level showed a positive
233 dose correlation to TN-401 among structural genes encoding desmosomes, Cx43,
234 sarcomeres, ion channels and Ca^{2+} handling proteins (Figure 7f). When examining
235 expression of heart failure markers and fibrosis genes, we noticed a negative dose
236 correlation to TN-401 (Figure 7f). Therefore, while key functional readouts of efficacy
237 could not be distinguished between dose levels of 3E13 and 6E13 vg/kg, the 2-fold
238 difference in PKP2 transcript levels achieved by these two doses did result in
239

240

241 quantitative and dose-dependent changes in transcriptional signatures described above.
242 Based on this observation, we believe that identification of key genes can be informative
243 in associating a transcriptional signature with a particular phase of ARVC disease
244 progression and therefore, may facilitate patient stratification in a more quantitative and
245 precise manner, particularly in early 'concealed' phase when structural changes are not
246 evident.

247

248 Previous transcriptome analysis showed that TN-401 restored expression of structural
249 genes and attenuated expression of genes encoding adverse remodeling factors in a
250 highly coordinated and quantitative fashion. We asked whether such transcriptional
251 response can be sustained to attenuate disease progression and therefore, extend
252 survival over a longer duration.

253

254 As shown earlier in Figure 6, a single dose of AAV9:mPkp2 treatment after overt
255 cardiomyopathy halted disease progression via reversed adverse right ventricular
256 remodeling, improved LV function, prevented arrhythmia from worsening, and extended
257 median lifespan by \geq 50 weeks post induction of *Pkp2* deletion. Heart tissues collected
258 at 51 weeks post induction of *Pkp2* deletion were analyzed by RNA sequencing (Figure
259 8a). Compared to intervention before overt structural changes (the preventive mode),
260 AAV9:mPkp2 intervention after overt structural change (the therapeutic mode) showed
261 comparable efficacy in extending life span at the same dose, 1E14 vg/kg (Figure 8b).
262 Principle Component Analysis (PCA) ([Jollife and Cadima, 2016](#)) showed that
263 transcriptional profiles of AAV9:mPkp2-treated *Pkp2*-cKO animals were clustered close
264 to WT and distant from non-treated animals, suggesting a normalization of
265 transcriptional landscape close to WT in response to the treatment (Figure 8c). While
266 the transcriptional profile of low-dose treated animals showed a partial recovery pattern,
267 the transcriptional profiles of the high-dose treated animals effectively overlapped with
268 that of WT samples (Figure 8c). In addition, when comparing the total number of
269 differentially up- or down-regulated genes relative to the WT animals, the preventive
270 mode and to a lesser degree, the therapeutic mode of intervention showed a significant
271 normalization compared to that between *Pkp2*-cKO and WT animals (Figure 8d). When

272 comparing HBSS-treated *Pkp2*-cKO animals vs WT, the significant negatively enriched
273 gene sets identified by Gene Set Enrichment Analysis (GSEA) (Subramanian et al.,
274 2005) were mitochondrial dysfunction, cardiac muscle contraction, and cardiac muscle
275 conduction. The top significant positively enriched gene sets were predominantly
276 fibrosis related. Both modes of intervention showed significant reversal of these
277 enriched gene sets with the preventive mode supporting the most complete reversal
278 (Figure 8e). To our surprise, the long-term survival benefit offered by either mode of
279 intervention was supported by a broad spectrum of sustained correction of gene
280 expression encoding components of the desmosomes, sarcomeres, ion channels and
281 calcium handling systems, and also multiple pathways that regulate metabolism,
282 fibrosis, inflammation, and apoptosis as shown (Figure 8f and 8g). Once again, both
283 modes of intervention showed significant reversal of these enriched gene sets with the
284 preventive mode effect being most complete (Figure 8g). Quantitative RT-PCR
285 validated that at the same dose, 1E14 vg/kg, each mode of intervention maintained a
286 similar level of *Pkp2* transgene expression at 51 weeks, suggesting the mode of
287 intervention does not change the durability of the transgene expression (Figure 8h).
288 Expression of heart failure genes (*Nppa* and *Nppb*) and fibrosis genes (*Timp1*, *Col1a1*,
289 and *Col3a1*) were significantly lowered by both modes of treatments at 1E14 vg/kg. In
290 agreement with the observation shown by RNA-seq analyses, these genes were
291 expressed higher in therapeutic mode than in the preventive mode among age-matched
292 animals.

293
294 We concluded that long-term restoration of PKP2 expression by gene replacement
295 approach was correlated with sustained restoration of a broad spectrum of structural
296 genes and pathways, supporting a notion that early intervention is the key to restore
297 PKP2-associated intrinsic transcriptional networks and their functions and therefore,
298 increase overall cardiomyocyte fitness to effectively mitigate adverse maladaptive
299 remodeling such as fibrosis as early as possible. These results strongly support that
300 PKP2-associated transcriptional networks can be used to quantitatively evaluate the
301 extent of disease progression and gene therapy efficacy at the molecular level.

302

303 **More than 10x of efficacious dose of TN-401 proved to be safe in WT
304 CD1 mice.**

305 Safety evaluation of TN-401 in WT mice for 6 weeks (Figure 9a) showed no adverse
306 effects at $\geq 10x$ efficacy dose on body weight (Figure 9b), heart weight and ventricular
307 functions (Figure 9c), neutrophil to lymphocyte ratio (Figure 9d), liver weight and
308 enzyme levels (Figure 9e), and platelet count and hemoglobin levels (Figure 9f).
309 Histological analyses showed no TN-401-related changes in heart, lung, liver, pancreas,
310 brain, kidneys, and skeletal muscle examined (data not shown).

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332 **Discussion**

333

334 Our preclinical results demonstrated that AAV9-based PKP2 gene replacement
335 approach can offer significant survival benefit in repairing cellular structures of
336 desmosome, GJs, and Ca^{2+} -handling system, improving cardiac function, reducing
337 ventricular arrhythmia event frequency and severity, and preventing adverse fibrotic
338 remodeling in a dose-dependent fashion in a cardiac-specific *Pkp2* knock-out mouse
339 model of ARVC.

340 About 50% of ARVC patients carry a genetic mutation in desmosome genes and half of
341 this patient population carries mutations in *PKP2*. The heterogeneity of clinical
342 symptoms of ARVC indicates genetic composition, maladaptive remodeling,
343 environmental factors, lifestyle, and other unknown factors of individuals that likely
344 affect disease onset and progression. Although mutations in desmosome genes have
345 been confirmed as an underlying genetic cause of ARVC by large-scale prevalence
346 studies ([Choudhary et al., 2016](#), [Dries et al., 2021](#); [Jacob et al., 2012](#); [Walsh et al., 2017](#)), current understanding of the genetic background of this disease is limited and
347 compounded by non-genetic factors and missing molecular links between defective
348 desmosomes and disease development. Using both iPSC-CM and cardiac-specific
349 *Pkp2-cKO* mouse models of ARVC and AAV9-mediated restoration of PKP2
350 expression, this is the first study to demonstrate that PKP2 is the essential genetic
351 determinant underpinning 1) intrinsic cellular properties of cardiomyocytes; 2) disease
352 onset based on the preventive mode of efficacy studies that proved AAV9:PKP2 effect
353 to be dose-dependent with significant prevention of multiple disease phenotypes
354 (Figures 4, 5, 7, and 8); 3) disease progression based on the therapeutic mode of
355 efficacy study that showed reversal of right ventricle enlargement, halted decline of left
356 ventricle function, attenuation of arrhythmia worsening, and most importantly, reduction
357 of mortality (Figures 6 and 8).

359

360 Heterozygous PKP2 mutations in humans are predominantly truncation mutations
361 resulting from nonsense, frameshift, or splice-site mutations ([Awad et al., 2008](#); [Gerull
362 et al., 2004](#); [Towbin et al., 2019](#)). *PKP2* mRNAs containing premature stop codons are

363 subjected to surveillance and degradation by nonsense-mediated decay (NMD)
364 machinery (Hug et al., 2016; Mura et al., 2013; Rasmussen et al., 2014). Degradation
365 of the mutated mRNA results in haploinsufficiency as shown by reductions of both
366 mRNA and protein in ARVC patients heart tissues from autopsy, endomyocardial biopsy
367 or explants (Akdis et al., 2016; Asimaki et al., 2009; Kohela et al., 2021; Rasmussen et
368 al., 2014). The preventive efficacy studies demonstrated that restoration of PKP2
369 expression correlated with restoration of function in a dose-dependent fashion,
370 suggesting that the cellular level of PKP2 precisely and quantitatively dictates a
371 relationship between the cellular input vs the functional outputs under the condition that
372 is minimally influenced by other undefined genetic and nongenetic factors. This precise
373 dose-function correlation of PKP2 possibly addresses the functional consequence of
374 haploinsufficiency in real human cases and further supports the rationale of an AAV-
375 based gene replacement approach. Furthermore, the RNA sequencing analyses
376 revealed a broad spectrum of functional impact by PKP2 deficiency and destruction of
377 desmosomes. These results strongly support a gene therapy-based intervention that
378 addresses the root cause and its associated pleiotropism. Mutations in other
379 desmosome genes also lead to destruction of the desmosome, suggesting mechanisms
380 we observed here are likely applied similarly to other desmosome genes in their role of
381 regulating dynamics of desmosome and other multi-united structures such as GJs,
382 sarcomere, and the Ca^{2+} -handling system.

383
384 It is significant that restoration of a single component of the desmosome, PKP2, led to
385 significant survival benefits of improved cardiac function, reversed adverse RV
386 remodeling, reduced ventricular arrhythmias, and prevented fibrosis. This study
387 demonstrated that “on-target” PKP2 effects extend beyond the desmosomes, at the
388 transcriptional level, to other larger structures or pathways. Considering these data, we
389 believe desmosomes dynamically tune and coordinate gene expression of all its
390 components and quantitatively dictate the state and extent of ARVC disease
391 progression as supported by dose dependency of PKP2. Our study showed that
392 restoration of PKP2 leads to a highly coordinated and durable restoration of structural
393 genes encoding desmosome, sarcomere, and Ca^{2+} -handling system components,

394 supporting the desmosome as a fundamental molecular regulatory hub in maintaining
395 cellular integrity and function of cardiomyocytes and the heart, overall. These data
396 further support that an early intervention by gene therapy before overt structural change
397 could project a better prognostic outcome by restoring molecular structures to maintain
398 overall fitness of cardiomyocytes and to prevent irreversible changes that could
399 compromise the efficacy of gene therapy. These irreversible changes were investigated
400 in our studies as both preventive and therapeutic modes of intervention showed
401 significant reduction of enriched fibrosis gene sets. However, reduction of fibrosis by
402 the therapeutic mode was to a lesser extent with concomitant expression of heart failure
403 genes, *Nppa* and *Nppb* (Figure 8e). The sustained expression of *Nppa* and *Nppb* in the
404 therapeutic mode of intervention might support observations that the natriuretic peptides
405 encoded by *Nppa* and *Nppb* were functionally implicated in cardiac antifibrotic effects
406 (Kerkela et al., 2015). Significantly, both modes of intervention showed comparable
407 survival benefit, dramatically extending lifespan.

408
409 We did not have age-matched animals that were 51 weeks old and were induced for 2.5
410 weeks of gene deletion. It would be informative to understand the extent of secondary
411 maladaptive remodeling that occurred after overt cardiomyopathy at 2.5 weeks post
412 induction of gene deletion as the baseline for our therapeutic mode of intervention. This
413 would allow us to determine whether the secondary maladaptive effects responded to
414 the long-term treatment or to evaluate disease regression with pre-existing overt
415 structural changes.

416
417 Cardiomyocyte loss due to atrophy or apoptosis puts unique challenges on what might
418 or might not be responsive to therapeutic interventions in adult heart tissue. However, it
419 is intriguing to see proposed reversibility of secondary maladaptive remodeling due to
420 an overall long-term improvement of cardiac performance (Edelberg et al., 2022). The
421 long-term effects by gene replacement targeting cardiomyopathy remain unknown in
422 terms of its potential for disease reversibility. Surprisingly, in our studies, long-term
423 AAV9:PKP2 treatment after overt RV dilatation showed an increased expression of
424 genes underlying sarcomere organization (Figure 8g, middle panel). This transcriptional

425 signature could suggest a mechanism of partial regression of adverse structural
426 remodeling due to enhanced sarcomere function in surviving cardiomyocytes. We are
427 currently investigating this possibility.

428

429 Using a cardiac KO mouse model of ARVC, we identified fundamental mechanisms
430 behind disruption of PKP2-associated desmosome function and revealed its broad
431 impact at the transcriptional level on GJs, sarcomere, ion channels and Ca^{2+} handling
432 systems, and multiple pathways that critically regulate metabolism, inflammation,
433 apoptosis, and fibrosis. These studies highlight the importance of identifying key
434 transcripts in characterizing ARVC disease state and disease progression in a more
435 quantitative and precise manner. Our efficacy data with PKP2 gene therapy and
436 mechanistic analyses shed more light on understanding ARVC etiology and in practice,
437 may help patients and physicians to make decisions regarding disease management
438 and treatment.

439

440 **Methods**

441 **Animal studies**

442 Animal studies were performed according to Tenaya Therapeutics' animal use guidelines. The
443 animal protocols were approved by the Institutional Animal Care and Use Committee and
444 accredited by the Association for Assessment and Accreditation of Laboratory Animal Care
445 (IACUC number: 2020.007).

446 **Mouse model**

447 Tenaya licensed a novel cardiomyocyte-specific, tamoxifen-activated *Pkp2-cKO* (α MHC-Cre-
448 *ER*(T2)/*Pkp2*^{fl/fl}) mouse line in the C57BL/6 background from Dr. Mario Delmar, NYU Grossman
449 School of Medicine (Ref). The *Pkp2-cKO* animals were induced with tamoxifen at 0.1mg/g for 3
450 consecutive days. TN-401 or AAv9:mPkp2 was given as a single dose via retro-orbital injection
451 before or after animals were induced with tamoxifen. HBSS, as vehicle control, was injected to
452 WT or non-AAV treated *Pkp2-cKO* animals. Tamoxifen injection activates Cre recombinase in
453 Cre-positive animals and induces homozygous deletion of *Pkp2* gene. *Pkp2*^{fl/fl} Cre-negative
454 littermates were used as controls.

455 **AAV virus production**

456 AAV production was carried out as previously described (Reid et al., 2017). Briefly, HEK293T
457 cells were seeded in a Corning HyperFlask (New York, NY) and triple transfected using a 2:1
458 PEI:DNA ratio (PEI Max) with a helper plasmid containing adenoviral elements (pHelper), a
459 plasmid containing the Rep2 and Cap genes from the respective AAV serotype, and finally an
460 ITR containing plasmid to be packaged. Three days following transfection cells were harvested
461 and lysed. Virus was purified using iodixanol ultracentrifugation and cleaned and concentrated
462 in Hank's Balanced Salt Solution (HBSS) + 0.014% Tween-20 using a 100-kDa centrifuge
463 column (Amicon, Darmstadt, Germany). AAV was titered using either a PicoGreen or ddPCR
464 assay.

465 **iPSC-CM culture**

466 iCell Cardiomyocytes2 were thawed according to the manufacturer's instructions (FUJIFILM
467 Cellular Dynamics) and seeded onto Matrigel-coated plates at a density of 20,000 cells per well
468 of 96-well plates or at a seeding density proportional to the well size. A total of 5 million iPSC-
469 CM flooded 3X patterned 4Dcell 35 mm dish. Seeded cells were maintained in CDI
470 maintenance media (FUJIFILM Cellular Dynamics) for 7-10 days until the days of treatments.

471 siRNA knockdown and AAV transduction

472 To knock down endogenous *PKP2* expression, four independent siRNAs were tested to confirm
473 silencing at both mRNA and protein level at time points of 2, 4, 6, and 8 days (Silencer Select
474 Pre-Designed siRNA, Invitrogen). A pool of two independent siRNAs were selected to transfect
475 iPSC-CMs at a final concentration of 1.25 or 5 nM using Lipofectamine RNAiMAX (Thermo
476 Fisher Scientific) in CDI maintenance media. Forty-eight hours after transfection, medium was
477 removed and replaced with fresh CDI maintenance media. AAV transduction at a MOI,
478 multiplicity of infection, often occurred at the time of media change. After overnight incubation
479 with AAV, media was replaced next day.

480 Evaluation of contractility and electrical signals of iPSC-CMs

481 Contraction of iPSC-CM was recorded in bright field by SONY S18000 imaging system and
482 acquired videos were analyzed by DANA Solutions Pulse analysis software (now Curi Bio).
483 Contraction was recorded daily from day 3 to day 8 post AAV transduction and day 5 to day 10
484 post siRNA treatment. Each siRNA treatment included 6 to 9 wells on three independent 96-
485 well plates. Contraction velocity was an average of all wells from the same treatment from the
486 same plate. Averaged numbers of contraction velocity were plotted for each of the three plates
487 from day 3 to day 8 post AAV transduction. Beat period, amplitude, and propagation of
488 electrical signal were detected as extracellular field potential signals from the cardiac
489 monolayers using Axion Biosystems Microelectrode array (MEA) plates ([Navarrete et al., 2013](#)).
490 Cell seeding and maintenance on 12, 24, or 96-well plates followed the manufacturer's
491 recommendation. Data were collected at the time points and analyzed the same way as the
492 contraction velocity.

493 Immunofluorescence imaging of iPSC-CMs

494 Cells were fixed in 4% paraformaldehyde for 15 min and permeabilized with PBS + 0.1% Triton-
495 X100 (PBST) at room temperature for 15 min. Cells were washed with PBS three times
496 followed by blocking with PBST + 4% bovine serum albumin (BSA) for 1 h. Cells then were
497 incubated with antibodies against anti-PKP2 (Invitrogen, rabbit polyclonal PA5-53144) at 1:200
498 dilutions or anti-DSP (Invitrogen, rabbit polyclonal 25318-1-AP; Sigma, mouse monoclonal
499 MABT1492) at 1:100 dilutions or anti-JUP (Sigma, mouse monoclonal P8087) at 1:200 dilutions
500 in PBS + 4% BSA for overnight. After washing with PBS three times, cells were then incubated
501 with donkey anti-mouse or anti-rabbit Alexa Fluor 488, 594 or 647 (Invitrogen) at 1:500 dilutions
502 in PBS + 4% BSA for 2 h. Cells were imaged on Molecular Devices ImageXpress Micro

503 Confocal High-Content Imaging System and quantified using MetaXpress imaging analysis
504 software.

505 Echocardiography

506 Transthoracic echocardiography was performed using high resolution micro-imaging systems
507 (Vevo 3100 Systems, Fujifilm VisualSonics) equipped with a 25-55 MHz linear array transducer
508 for mouse heart images acquisition. Briefly, lightly anesthetized spontaneously breathing mice
509 (1-1.5% isoflurane and 98.5-99% O₂) were placed in the supine position on a temperature-
510 controlled heating platform to maintain their body temperature at ~37°C. Parasternal long-axis
511 B-mode tracings of right ventricular outflow track (RVOT) were recorded for RV area
512 measurement, parasternal short-axis M-mode tracings of left ventricle (LV) were recorded for
513 left ventricle internal diameter in end diastole (LVIDd) and LV ejection fraction (EF) calculation.

514 Electrocardiogram recordings

515 Mice were anesthetized with 1-1.5% isoflurane and 98.5-99% O₂ via a nose cone (following
516 induction in a chamber containing isoflurane 4–5% in oxygen). Rectal temperature was
517 monitored continuously and maintained at 37–38 °C using a heat pad. Two lead ECG (leads II)
518 were recorded from sterile electrode needles (29-gauge) inserted subcutaneously into the right
519 upper chest with the negative electrode needle and into the left bottom chest with the positive
520 electrode needle. The signal was then acquired and analyzed using a digital acquisition and
521 analysis system (Power Lab; AD Instruments; LabChart 7 Pro software version). ECG
522 parameters (QT interval) were quantified after 1–2 min from the stabilized trace. For
523 spontaneous arrhythmias monitoring, mice were monitored for 30 min after anesthesia
524 induction.

525 Mouse Histology

526 Mice were anesthetized with ketamine xylazine cocktail. First, mice were perfused
527 transcardially with PBS. A scalpel was used to cut hearts into two along the coronal plane and
528 drop-fixed overnight in 10% formalin. Fixed heart tissues were sent to Histowiz for trichrome
529 staining and quantification of fibrosis and immunohistochemical staining of PKP2 and Cx43
530 using rabbit anit-PKP2 and rabbit anti-Cx43 (PA5-53144 and 71-0700).

531 Cardiac transduction, mRNA, protein analysis

532 For cardiac vector genomes analysis, DNA was extracted using the DNeasy Blood and Tissue
533 Kit (Qiagen Sciences, 69506). Absolute quantification of cardiac viral genomes per microgram
534 of genomic DNA was assessed by qPCR using a WPRE gBlock (IDT) as a DNA standard
535 across six orders of magnitude. WPRE gBlock sequence is CCTGGTTGCTGTCTCTTATG
536 AGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTGCTGACGCAA
537 CCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTCCGGGACTTCGCTTCC
538 CCCTCCCTATTGCCACGGC. Corresponding primers and probes for qPCR are WPREqpcr_
539 F1: 5' CCG TTG TCA GCC AAC GTG 3'; WPREqpcr_R1: 5' AGC TGA CAG GTG GTG GCA
540 AT 3'; and Probe: FAM/TGC TGA CGC AAC CCC CAC TGG T/TAMSp.

541 Total RNA was extracted from iPSC-CMs or cardiac RV and LV tissue using the RNeasy Mini or
542 Universal Mini Kit (Qiagen Sciences, 74106 and 73404), cDNA synthesized (Invitrogen
543 SuperScript III First-Strand Synthesis SuperMix for qRT-PCR) and analyzed by qRT-PCR using
544 Taqman probes to human *PKP2* or mouse *Pkp2* gene, heart failure genes (*Nppa*, *Nppb*), and
545 fibrosis genes (*Col1a1*, *Col3a1*, and *Timp1*). Mouse *Gapdh* served as an internal housekeeping
546 gene control. Absolute transgene mRNA copy number was determined by RT-qPCR using a
547 WPRE-specific RNA standard (GenScript) across six orders of magnitude. WPRE RNA
548 standard sequence is mG*UAUAAAUCGUUGGUUGCUGUCUCUUUAUGAGGAGUUGUG
549 GCCCGUUGUCAGGCAACGUGGCGUGGUGUGCACUGUGUUUG*mC. Corresponding
550 primers and probe for RT-qPCR are WPREqpcr_F3: 5' GGT TGC TGT CTC TTT ATG AGG
551 AGT T 3'; WPREqpcr_R3: 5' GCA CAC CAC GCC ACG TT 3'; and Probe: FAM/TGG CCC
552 GTT GTC AGG/TAMSp.

553 Cardiac LV lysates in RIPA lysis buffer were analyzed by immunoblotting with mouse anti-
554 PKP2, rabbit anti-DSP, rabbit anti-JUP, rabbit anti-Cx43, and mouse anti-GAPDH (SC-393711,
555 25318-1-AP, SAB4501616, 71-0700, and MA5-15738, respectively).

556 Statistical Guidelines

557 The number of technical and biological replicates and animals for each experiment are indicated
558 in the figure legends. Statistical analyses were performed using Prism 9. Student's t test was
559 used to analyze two unpaired groups. Significant differences were defined as P < 0.05. Error
560 bars in all *in vivo* studies represent SEM (Standard Error of the Mean).

561 Transcriptional analysis by RNA sequencing

562

563 From each replicate, 100 ng total RNA was extracted via the polyA-tail-specific protocol
564 according to Illumina Inc.. RNA quality control was performed before library prep using Agilent
565 TapeStation instrument. The RNA libraries were prepared using a Stranded Total RNA Library
566 Prep with Ribo-Zero Plus kit (Illumina), which also removes ribosomal RNA. The libraries were
567 sequenced as 2x50 base pair paired-end reads using Illumina NovaSeq 6000 using V1.5
568 reagent kit on S1 flow cell with an average of 25.66 million reads per each read file (51.32M
569 reads per sample). Raw RNA-seq reads from mouse hearts in fastq format were aligned with
570 Salmon (version 1.8.0) to the GENCODE (version M30, July 2022) reference transcript
571 assembly (GRCm39 and Ensembl 107) using best practice parameters to ensure mapping
572 validity and reproducibility (--seqBias --gcBias --posBias --useVBOpt --rangeFactorizationBins 4
573 --validateMappings --mimicStrictBT2). Next, a script using R package *tximport* was used to
574 generate an expression matrix normalized to transcripts per million (TPM). In this analysis, we
575 only used genes detected in at least 10% of all samples. Protein-coding genes were
576 determined using Ensembl release *mus musculus* annotations (GRCm39, July 2022) and
577 extracted by *biomaRt* (version 2.52.0). Mitochondrial genes were also omitted, followed by
578 renormalization to TPM. These gene expression values were then log2-transformed after
579 addition of 1 as pseudo-count. Expression patterns of key genes associated with functions of
580 interest were visualized across treatment groups with boxplots (Fig. 7f) generated using the
581 *ggplot2* R package. Expression values from both left and right ventricles were included in the
582 boxplots. Relative gene expression levels across groups and two ventricles are also presented
583 in scaled values per gene in the heatmaps (Fig. 7d, 8f). Heatmaps were generated in R using
584 *ComplexHeatmap* package.

585
586 For initial assessment and identifying presence of cluster patterns in the transcriptome, Principal
587 Component Analysis (PCA) models were generated in R using the `prcomp` function from the
588 *stats* package. The first two principal components were used to visualize group level
589 differences across samples in a PCA plot (Fig. 8c) generated using *ggplot2* and *ggfortify*
590 packages with the `autoplot` function. Differential gene expression analysis was then performed
591 by comparing each two groups of interest using Welch's *t*-test on pseudo-log normalized TPM
592 values. The obtained *t* statistics values were used to rank-order the genes for the downstream
593 functional analyses. Volcano plots (Fig 7e, 8d) were then generated to visualize the top positive
594 and negative differentially expressed genes (DEGs) using the *ggplot2* R package. The top
595 DEGs are the set of genes with the highest and lowest *t*-statistics values. To evaluate
596 functional effects, we performed Gene Set Enrichment Analysis (GSEA) ([Subramanian et al.](#),

597 2005) on the gene list pre-ranked by t-statistics obtained from differential gene expression
598 analysis, using the *clusterProfiler* R package. GSEA assesses whether differences in
599 expression of predefined gene sets between two phenotypes are concordant and statistically
600 significant. Gene sets were obtained from positional, curated canonical pathways, transcription
601 factor targets, Gene Ontology, cell type signatures and Hallmark collections in Human MSigDB
602 (v2023.1.Hs).[\(Subramanian et al., 2005; Liberzon et al., 2011, Liberzon et al., 2015\)](#). Upon
603 performing GSEA, these gene sets were only considered statistically significant if the false
604 discovery rate (Q value) was less than 0.25 as determined with multiple hypothesis testing
605 correction using the BH-correction method [\(Glickman et al., 2014\)](#). The normalized enrichment
606 score, which reflects the degree to which a gene set is overrepresented in the ranked list and
607 normalized for gene set size, was used to select significantly altered gene sets. Trends in
608 normalized enrichment scores for some gene sets of interest were shown in heatmaps (Fig. 8g),
609 which were generated in R using *ComplexHeatmap*.

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626 **Reference**

627 Agullo-Pascual E, Cerrone M, and Delmar M. (2014) Arrhythmogenic cardiomyopathy and
628 Brugada Syndrome: diseases of the connexome. *FEBS Lett.* 588(8): 1322-1330.

629 Akdis D, Medeiros-Domingo A, Gaertner-Rommel A et al. (2015) Myocardial expression profiles
630 of candidate molecules in patients with arrhythmogenic right ventricular cardiomyopathy/
631 dysplasia compared to those with dilated cardiomyopathy and healthy controls. *Heart Rhythm*
632 13(3):731-741.

633 Asimaki A, Tandri H, Huang H, et al. (2009) A new diagnostic test for arrhythmogenic right
634 ventricular cardiomyopathy. *N. Engl. J. Med.* 360:1075-1084.

635 Austin KM, Trembley MA, Chandler SF et al. (2019) Molecular mechanism of arrhythmogenic
636 cardiomyopathy. *Nat. Rev. Cardiol.* 16(9):519-537.

637 Awad M, Calkins H, and Judge, DP. (2008) Mechanisms of disease: molecular genetics of
638 arrhythmogenic right ventricular dysplasia cardiomyopathy. *Nat. Clin. Pract. Cardiovasc. Med.*
639 5(5): 258-267.

640 Basso C, Baucé B, Corrado D, Thiene G. (2011) Pathophysiology of arrhythmogenic
641 cardiomyopathy. *Nat. Rev. Cardiol.* 9:223-33.

642 Benjamini Y and Hochberg Y. (1995) Controlling the false discovery rate: a practical and
643 powerful approach to multiple testing. *J. R. Stat. Soc. Series B Stat. Methodol.* 57(1):289-300.

644 Cerrone M, Noorman M, Lin X et al. (2012) Sodium current deficit and arrhythmogenesis in a
645 murine model of plakophilin-2 haploinsufficiency. *Cardiovasc Res.* 95(4):460-468.

646 Cerrone M, Montrach J, Lin X et al. (2017) Plakophilin-2 is required for transcription of genes
647 that control calcium cycling and cardiac rhythm. *Nat. Commun.* 8, 106.

648 Chen SN, Gurha P, Lombardi R, Ruggiero A, Willerson JT, and Marian AJ. (2014) The Hippo
649 pathway is activated and is a causal mechanism for adipogenesis in arrhythmogenic
650 cardiomyopathy. *Circ. Res.* 114(3): 454-468.

651 Choudhary N, Tompkins C, Polonsky B, Mcnitt S, Calkins H, Estes, III, NAM, Krahn AD, Link
652 MS, Marcus FI, Towbin JA, and Zareba W, M.D., et al. (2016) Clinical presentation and
653 outcomes by sex in arrhythmogenic right ventricular cardiomyopathy: findings from the north
654 American ARVC Registry. *J. Cardiovasc. Electrophysiol.* 27(5): 555-562.

655 Delmar M and McKenna WJ. (2010) The cardiac desmosome and arrhythmogenic
656 cardiomyopathies: from gene to disease. *Cir. Res.* 107(6):700-714.

657 Dries AM, Kirillova A, Reuter CM, Garcia J, Zouk H, Hawley M, Murray B, Tichnell C, et al..
658 (2021) The genetic architecture of Plakophilin 2 cardiomyopathy. *Genet. Med.* 23(10): 1961–
659 1968.

660 Dubash AD, Kam CY, Aguado BA, Patel DM, Delmar M, Shea LD, and Green KJ. (2016)
661 Plakophilin-2 loss promotes TGF- β 1/p38 MAPK-dependent fibrotic gene expression in
662 cardiomyocytes. *J. Cell Biol.* 212(4): 425-438.

663 Edelberg, J.M., Sehnert, A.J., Mealiffe, M.E. *et al.* (2022) The Impact of Mavacamten on the
664 Pathophysiology of Hypertrophic Cardiomyopathy: A Narrative Review. *Am. J. Cardiovasc*
665 *Drugs* 22, 497–510.

666 Finocchiaro G, Papadakis M, Robertus JL, Dhutia H, Steriotis AK, Tome M, Mellor G, Merghani
667 A, Malhotra A, Behr E, *et al.* (2016) Etiology of sudden death in sports: insights from a United
668 Kingdom Regional Registry. *J. Am. Coll. Cardiol.* 67:2108–2115.

669 Gerull B, Heuser A, Wichter T, *et al.* (2004) Mutations in the desmosomal protein plakophilin-2
670 are common in arrhythmogenic right ventricular cardiomyopathy. *Nat. Genet.* 36(11):1162–
671 1164.

672 Hayes, H.B., Nicolini, A.M., Arrowood, C.A. *et al.* (2019) Novel method for action potential
673 measurements from intact cardiac monolayers with multiwell microelectrode array
674 technology. *Sci. Rep.* 9, 11893.

675 Hug N, Longman D, and Cáceres JF. (2016) Mechanism and regulation of the nonsense-
676 mediated decay pathway. *Nucleic Acids Res.* 44(4):1483–1495.

677 Jacob KA, Noorman M, Cox MG, Groeneweg JA, Hauer RN, van der Heyden MA. (2012)
678 Geographical distribution of plakophilin-2 mutation prevalence in patients with arrhythmogenic
679 cardiomyopathy. *Neth. Heart J.* 20(5):234–9.

680 Jolliffe Ian T. and Cadima Jorge. (2016) Principal component analysis: a review and recent
681 developments. *Phil. Trans. R. Soc. A.* 374 20150202.

682 Kohela A, Van Kampen SJ, Moens T, *et al.* (2021) Epicardial differentiation drives fibro-fatty
683 remodeling in arrhythmogenic cardiomyopathy. *Sci. Transl. Med.* 13(612): eabf2750.

684 Kowalczyk AP and Green KJ. (2013) Structure, function and regulation of desmosomes. *Prog.*
685 *Mol. Biol. Transl. Sci.* 2013; 116: 95–118.

686 Larosche I, Lettéron P, Fromenty B, Vadrot N, Abbey-Toby A, Feldmann G, Pessaire
687 D, Mansouri A. (2007) Tamoxifen inhibits topoisomerases, depletes mitochondrial DNA, and
688 triggers steatosis in mouse liver. *J. Pharmacol. Exp. Ther.* 321(2):526–35.

689 Liberzon, A. *et al.*, Stecyna, J. *et al.* (2011) Molecular signatures database (MSigDB) 3.0.
690 *Bioinformatics*, 27(12), 1739–1740.

691 Liberzon, A. *et al.* (2015) The molecular signatures database hallmark gene set collection. *Cell*
692 *systems*, 1(6), 417–425.

693 Maddah M., Heidmann J. D., Mandegar M. A., Walker C. D., Bolouki S., Conklin B. R., *et al.*
694 (2015) A non-invasive platform for functional characterization of stem-cell-derived
695 cardiomyocytes with applications in cardiotoxicity testing. *Stem. Cell. Rep.* 4 621–631.

696 Mura IEAL, Bauce B, Nava A *et al.* (2013) Identification of a PKP2 gene deletion in a family with
697 arrhythmogenic right ventricular cardiomyopathy. *Eur. J. Hum. Genet.* 11 :1226–1231.

698 Nava A, Bauce B, Basso C, Muriago M, Rampazzo A, Villanova C, Daliento L, Buja G, Corrado
699 D, Danieli GA, Thiene G. (2000) Clinical profile and long-term follow-up of 37 families with
700 arrhythmogenic right ventricular cardiomyopathy. *J. Am. Coll. Cardiol.* 36:2226–33.

701 Navarrete EG, Liang P, Lan F, Sanchez-Freire V, Simmons C, Gong T, Sharma A, Burridge
702 PW, Patlolla B, Lee AS, Wu H, Beygui RE, Wu SM, Robbins RC, Bers DM and Wu JC. (2013)
703 Screening drug-induced arrhythmia [corrected] using human induced pluripotent stem cell-
704 derived cardiomyocytes and low-impedance microelectrode arrays. *Cir.* 128:S3–13.

705 Navarro KL, Huss M, Smith JC, Sharp, Marx JO, Pacharinsak C. (2021) Mouse Anesthesia: The
706 Art and Science. *ILAR Journal* 62(1-2): 238-273.

707 Oxford EM, Musa H, Maass K *et al.* (2007) Connexin43 remodeling caused by inhibition of
708 Plakophilin-2 expression in cardiac cells. *Cir. Res.* 101:703-711.

709 Rasmussen TB, Nissen PH, Palmfeldt J *et al.* (2014) Truncating Plakophilin-2 mutations in
710 arrhythmogenic cardiomyopathy are associated with protein haploinsufficiency in both
711 myocardium and epidermis. *Circ: Cardiovascular Genetics* 7:230-240.

712 Reichart D, Lindberg EL, Maatz H, *et al.* (2022) Pathogenic variants damage cell composition
713 and single-cell transcription in cardiomyopathies. *Science* 377:619.

714 Reid CA, Boye SL, Hauswirth WW, Lipinski DM. (2017) miRNA-mediated post-transcriptional
715 silencing of transgene leads to increased adeno-associated viral vector yield and targeting
716 specificity. *Gene Ther.* 24:462-469

717 Ribeiro MPC, Santos, AE, Custódio, JBA. (2014) Mitochondria: the gateway for tamoxifen-
718 induced liver injury. *Toxicology* 323:10-8.

719 Rodríguez-Sinovas A; Sánchez, JA, Valls-Lacalle L, Consegal M and Ferreira-González I.
720 (2021) Connexins in the heart: regulation, function and involvement in cardiac disease. *Int. J.*
721 *Mol. Sci.* 22: 4413.

722 Sheikh F, Ross RS, and Chen J. (2009) Cell-cell connection to cardiac disease. *Trends*
723 *Cardiovasc. Med.* 19(6):182-190.

724 Song J-P, Chen L, Chen X *et al.* (2020) Elevated plasma β -hydroxybutyrate predicts adverse
725 outcomes and disease progression in patients with arrhythmogenic cardiomyopathy. *Sci. Transl.*
726 *Med.* 12(530): eaay8329.

727 Subramanian, A. *et al.* (2005) Gene set enrichment analysis: a knowledge-based approach for
728 interpreting genome-wide expression profiles. *Proc. Natl. Acad. Sci. USA* 102(43), 15545-
729 15550.

730 Towbin JA, McKenna WJ, Abrams DJ, *et al.* (2019) HRS expert consensus statement on
731 evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. *Heart*
732 *Rhythm* 2019; 16:e301.

733 van Opbergen CJ, Noorman M, Pfenniger A *et al.* (2019) Plakophilin-2 haploinsufficiency
734 causes calcium handling deficits and modulates the cardiac response towards stress. *Int. J.*
735 *Mol. Sci.* 20: 4076.

736 Vermij SH, Abriel H, van Veen TA. (2017) Refining the molecular organization of the cardiac
737 intercalated disc. *Cardiovasc Res.* 113(3):259-275.

738 Walsh R, Thomson KL, Ware JS, *et al.* (2017) Reassessment of mendelian gene pathogenicity
739 using 7,855 cardiomyopathy cases and 60,706 reference samples. *Genetics in Med.* 19
740 (2):192-203.

741 Zhang J., Liang Y, Bradford WH, and Sheikh F. (2021) Desmosomes: emerging pathways and
742 non-canonical functions in cardiac arrhythmias and disease. *Biophys. Rev.* 13:697-706.

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762 **Acknowledgement**

763 We thank Dr. Mario Delmar and NYU for licensing *Pkp2-cKO* mouse.

764 We thank our vivarium team for taking care of animals, Xiaomei Song, Cristina Dee-
765 Hoskins, Carolina Gomez Gutierrez, Jessie Madariaga, Kevin Robinson, Yolanda
766 Hatter.

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

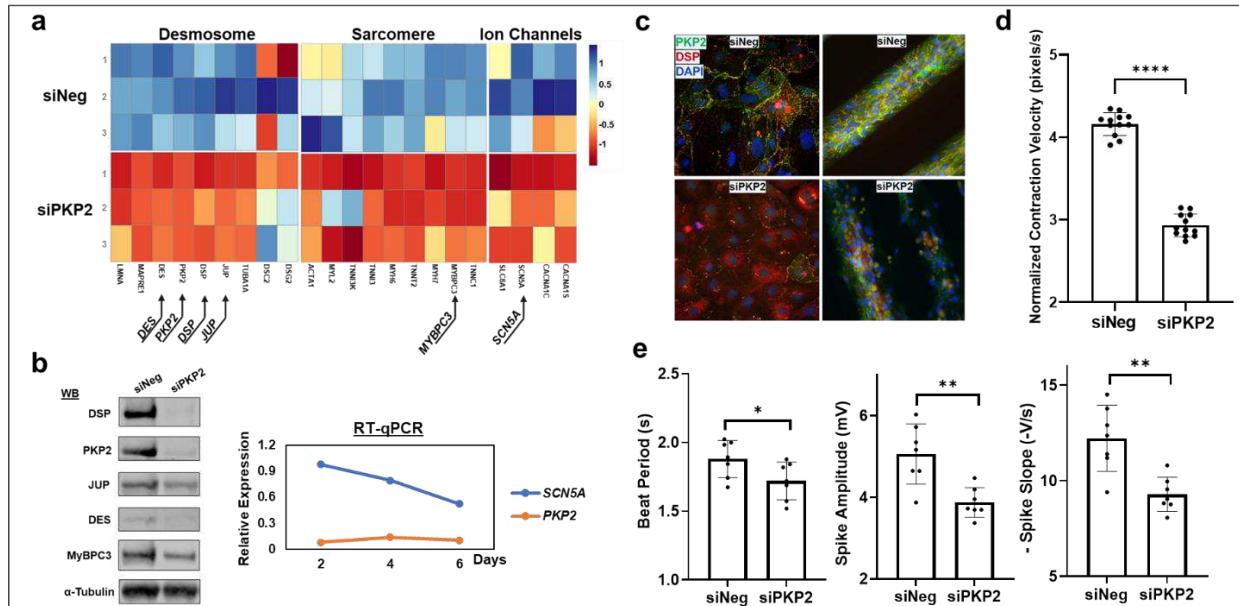
784

785

786

787

788

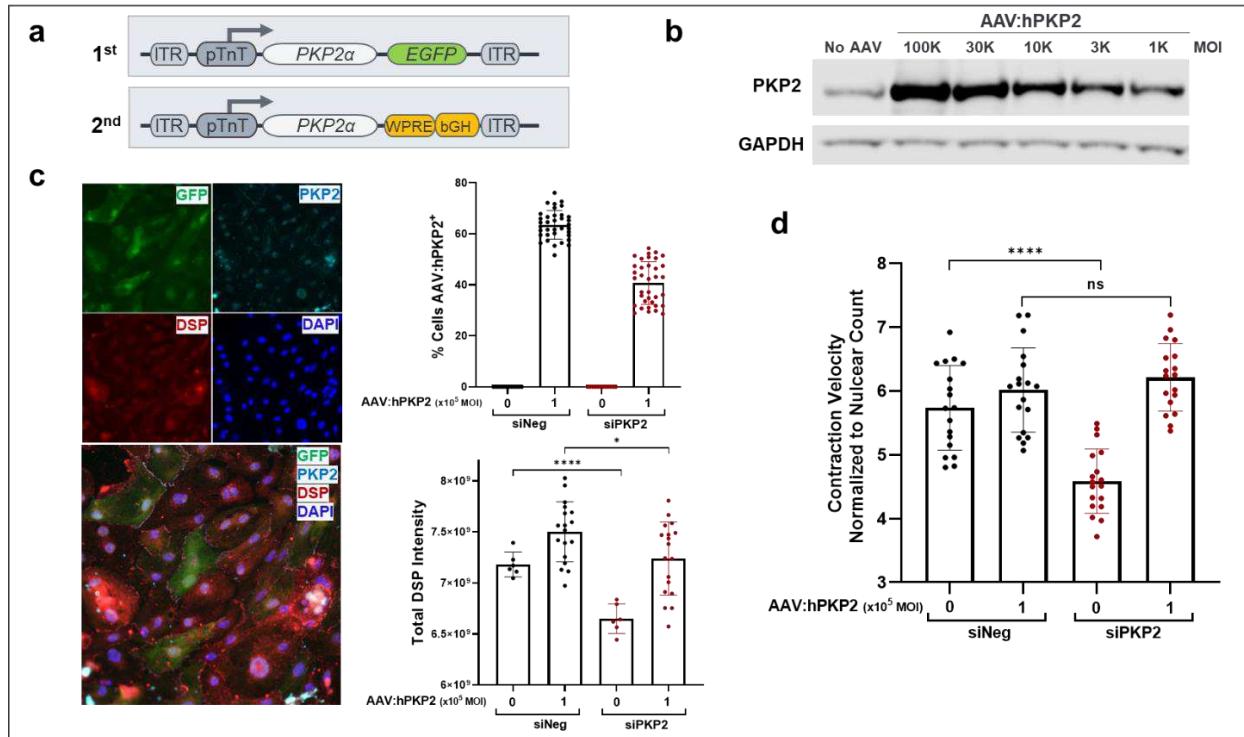

789

790

791

792 Main Figures-Legends

793 **Figure 1. siRNA-mediated PKP2 acute silencing impacted both cellular structure**
794 **and functions of human iPSC-CMs.**

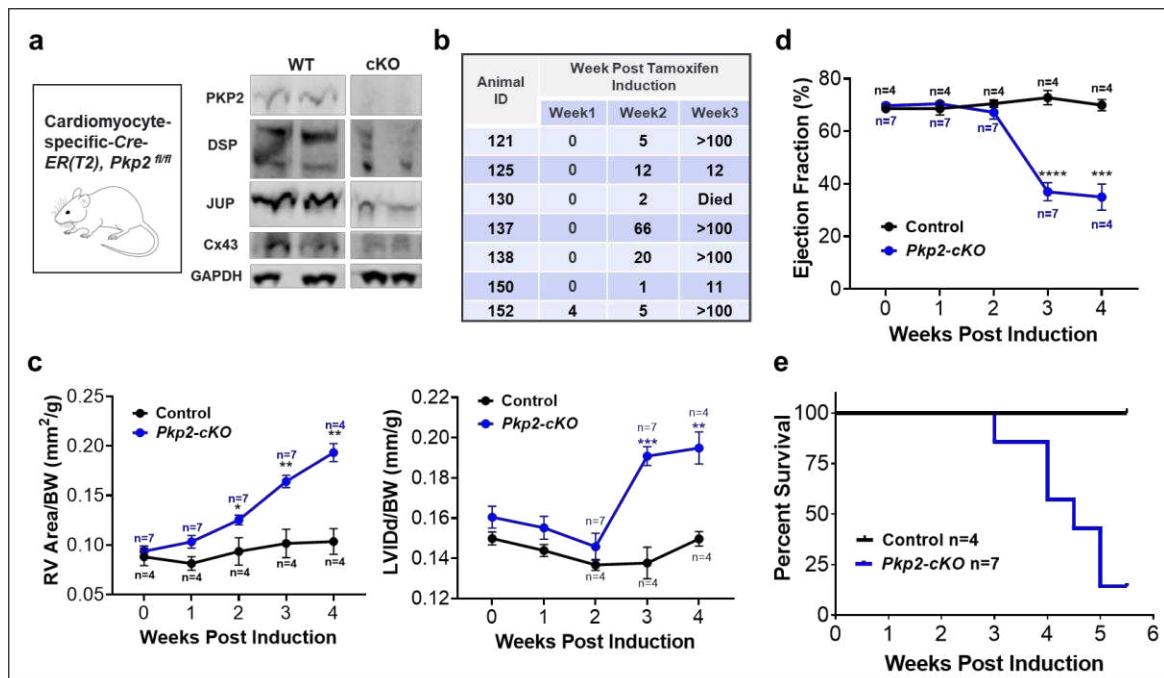


795

a, Heatmap of RNA sequencing analyses (n = 3) from iPSC-CMs (n=3) harvested 6 days after treatment with siRNAs against PKP2 (siPKP2) or negative control siRNAs (siNeg) highlighting effects on genes encoding components of the desmosome, sarcomere, and ion channels. **b**, PKP2 silencing led to reduction in protein expression of DSP, JUP, DES, and MyBPC3 in response to reduced PKP2 protein (Western blot on the left panel) and reduction in *SCN5A* mRNA in response to reduced *PKP2* mRNA (RT-qPCR on the right panel). **c**, PKP2 silencing resulted in disappearance of PKP2 and DSP protein from the cellular membrane (left two panels) and cell-to-cell disarray in patterned iPSC-CMs (right two panels). Immunofluorescent staining: PKP2 in green, DSP in red, and nuclei in blue. **d**, PKP2 silencing led to defective contraction as quantified by contraction velocity using Pulse video analysis (Maddah et al., 2015) (Curi Bio). Average nuclear counts from live cells were used to normalize contraction velocity. **e**, PKP2 silencing led to depressed beat period, amplitude, and rate of propagation of electrical signal detected as extracellular field potential signals from the cardiac monolayers using Microelectrode array (MEA) plates (Hayes, et al., 2019) (Axion Biosystems).

810

811 **Figure 2. AAV:hPKP2 transgene restored the expression level of DSP protein and**
 812 **rescued contraction velocity post PKP2 silencing in human iPSC-CMs.**



813 **a**, Schematic representation of the 1st generation and the 2nd generation AAV expression
 814 cassette of PKP2α. Key 3' elements in AAV expression cassette include Woodchuck hepatitis
 815 virus post-transcriptional regulatory element (WPRE), and bovine growth hormone
 816 polyadenylation signal (bGH). **b**, Western blot analysis showed that the second generation of
 817 AAV:hPKP2 is expressed in iPSC-CMs in a dose-dependent fashion by applying viruses at
 818 different multiplicity of infection (MOI). **c**, GFP expression in the first generation of PKP2
 819 expression cassette was used to label AAV transduced iPSC-CMs. The immunofluorescent
 820 mini panels show cells were stained for GFP, PKP2, DSP and nuclei, respectively, with the
 821 bottom large panel showing merged channels. The top bar graph summarized the percentage
 822 of cells expressing GFP. The bottom graph showed restored DSP protein expression quantified
 823 by DSP immunofluorescent signal post PKP2 silencing in the absence or the presence of
 824 AAV:hPKP2 transgene, which was not silenced by siRNAs. Intensity of DSP immune-
 825 fluorescent signal was quantified at day 10 of PKP2 silencing and day 8 of AAV transduction. **d**,
 826 AAV:hPKP2 showed a rescue of contraction velocity post PKP2 silencing in iPSC-CMs. Cell
 827 contractility was recorded from day 3 to 8 post AAV transduction and analyzed by Pulse video
 828 analysis. Average nuclear counts from live cells were used to normalize contraction velocity.
 829 For each treatment, contraction velocity was an average of 6 to 9 wells on three independent
 830 96-well plates from day 3 to day 8 post AAV transduction. Statistical significance is estimated
 831 by Student t-test with p-value at ****p<0.001, ***p<0.01, *p<0.05, and not significant (ns).

832

833

834 **Figure 3. *Pkp2-cKO* ARVC mouse model recapitulated the majority of human**
 835 **ARVC clinical manifestations.**

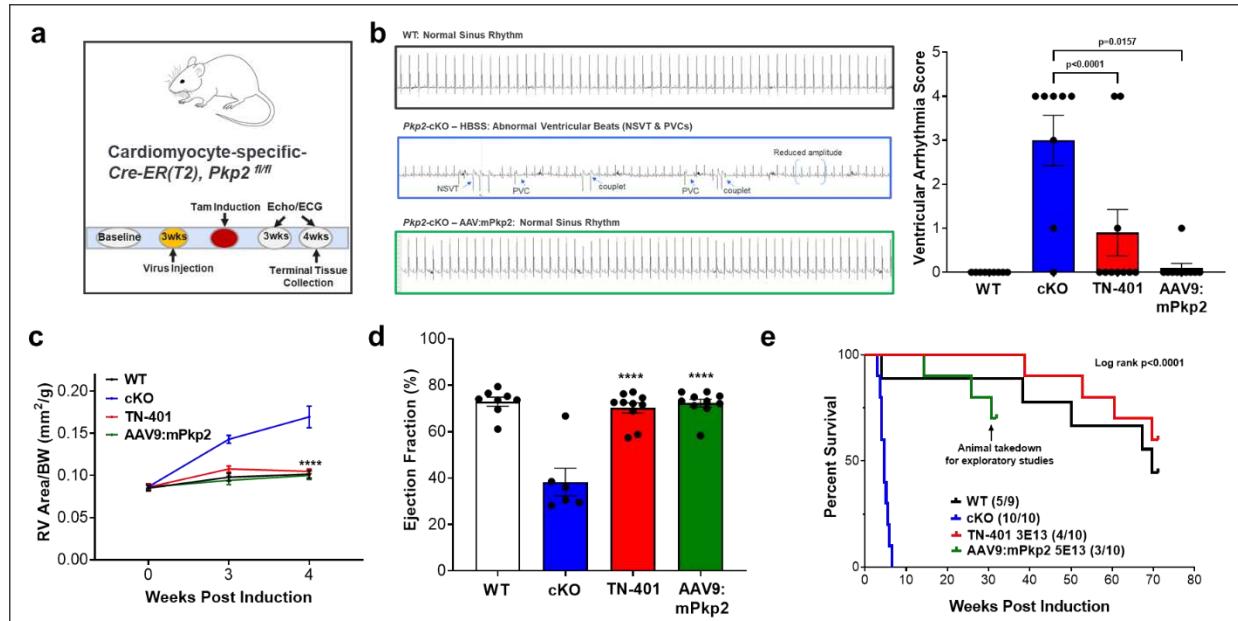
836

837 **a**, *Pkp2-cKO* ARVC mice (*aMyHC-Cre-ER(T2)*, *Pkp2*^{fl/fl}) at ~3 months of age were injected with
 838 tamoxifen to induce cardiac knock-out of the *Pkp2* gene. Representative immunoblots showed
 839 reduction of desmosome proteins PKP2, DSP, PKG, and GJ protein Cx43. **b**, *Pkp2-cKO* mice
 840 developed spontaneous PVCs as observed during 30 minutes of continuous recording of EKG.
 841 **c**, *Pkp2-cKO* mice started to develop biventricular dilatation at 2 weeks post tamoxifen
 842 induction. RV area (left panel) and LV internal diameter end diastole (LVIDd, right panel) were
 843 normalized to body weight. **d**, LV performance measured by % ejection fraction sharply
 844 declined at 2 weeks post tamoxifen induction. **e**, Kaplan-Meier survival curve showed a sharp
 845 decline of survival of *Pkp2-cKO* mice beginning 3 weeks post tamoxifen induction. Animals
 846 showed severe symptoms including sudden death, edema, reduced activity, and reduced
 847 tolerance to isoflurane beginning 3 weeks post induction. P value: Student's t-test. Error bar:
 848 s.e.m.; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 vs. WT.

849

850

851


852

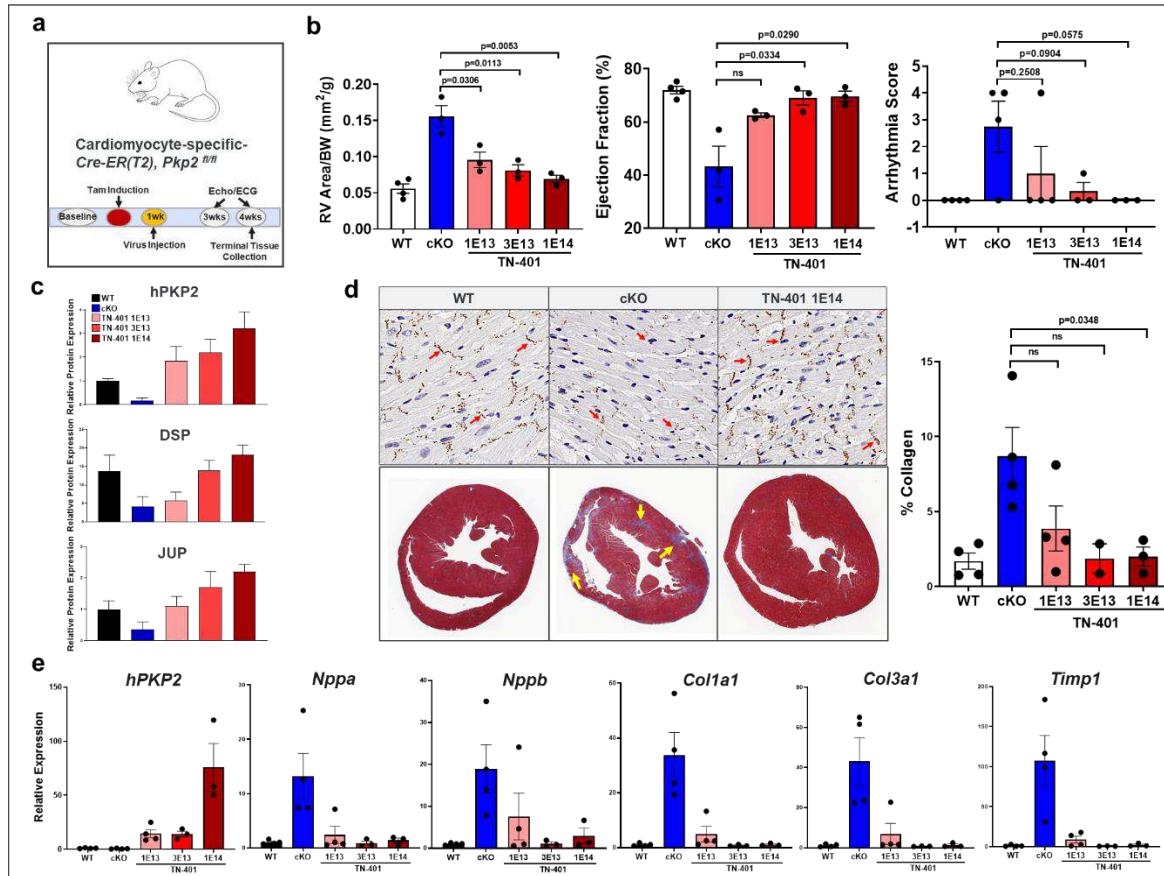
853

854

855

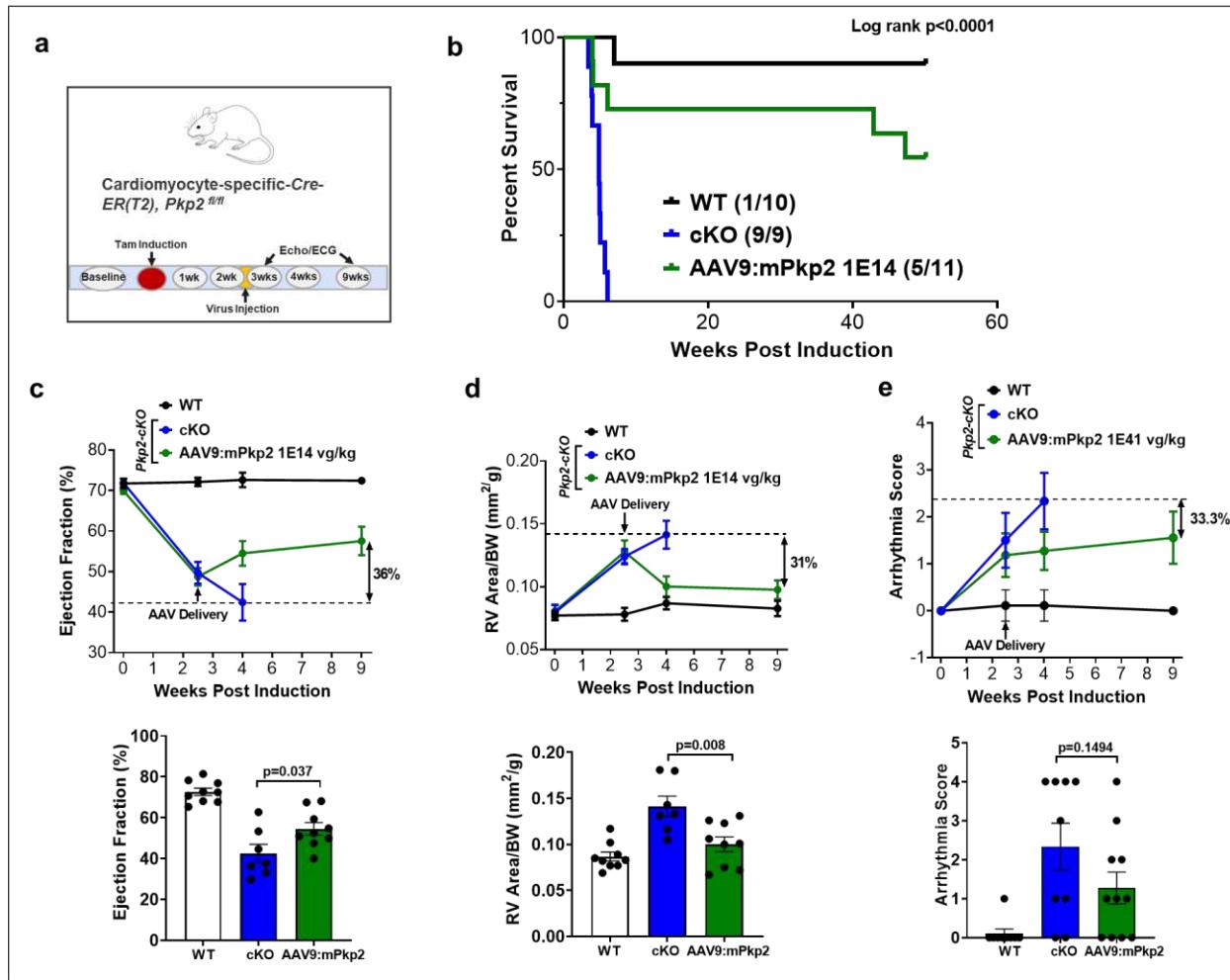
856 **Figure 4. An early and single dose of AAV9:PKP2 significantly reduced**
 857 **arrhythmias, improved cardiac function, and prolonged median lifespan to ≥ 58**
 858 **weeks post AAV administration.**

859
 860 **a**, Study design to evaluate TN-401 or AAV9:mPkp2 efficacy using *Pkp2-cKO* ARVC mouse
 861 model. AAV9 was injected three weeks before gene deletion, TN-401 at 3E13 vector genomes
 862 per kilogram bodyweight (vg/kg) and AAV9:mPkp2 at 5E13 vg/kg. Echocardiograph (Echo) and
 863 electrocardiogram (EKG) data were collected at week 3 and week 4 post gene deletion. **b**, Raw
 864 EKG traces showed a significant contrast in spontaneous arrhythmias in *Pkp2-cKO* mice in the
 865 absence and the presence of AAV9:mPkp2 treatment. PVCs, premature ventricular
 866 contractions; NSVT, non-sustained ventricular tachycardia. The right graph summarized
 867 averaged arrhythmia scores representing frequency, duration, and severity of ventricular
 868 arrhythmias. AAV9:PKP2 treatment resulted in significantly improved arrhythmia scores. **c**,
 869 AAV9:PKP2 treatment of *Pkp2-cKO* mice showed efficacy in reducing RV dilation as estimated
 870 by RV area normalized to body weight (mm²/g) and **d**, maintaining left ventricular ejection
 871 fraction at 4 weeks post gene deletion. **e**, Kaplan-Meier survival curve showed that TN-401
 872 extended median lifespan of *Pkp2-cKO* mice by ≥ 58 weeks post gene deletion. Numbers in
 873 parentheses showed dead vs live animals by the time of takedown. Animals treated by
 874 AAV9:mPkp2 (in green line) were taken down early for exploratory studies. P value: Student's t-
 875 test. Error bar: s.e.m.; ****, p < 0.0001.


876

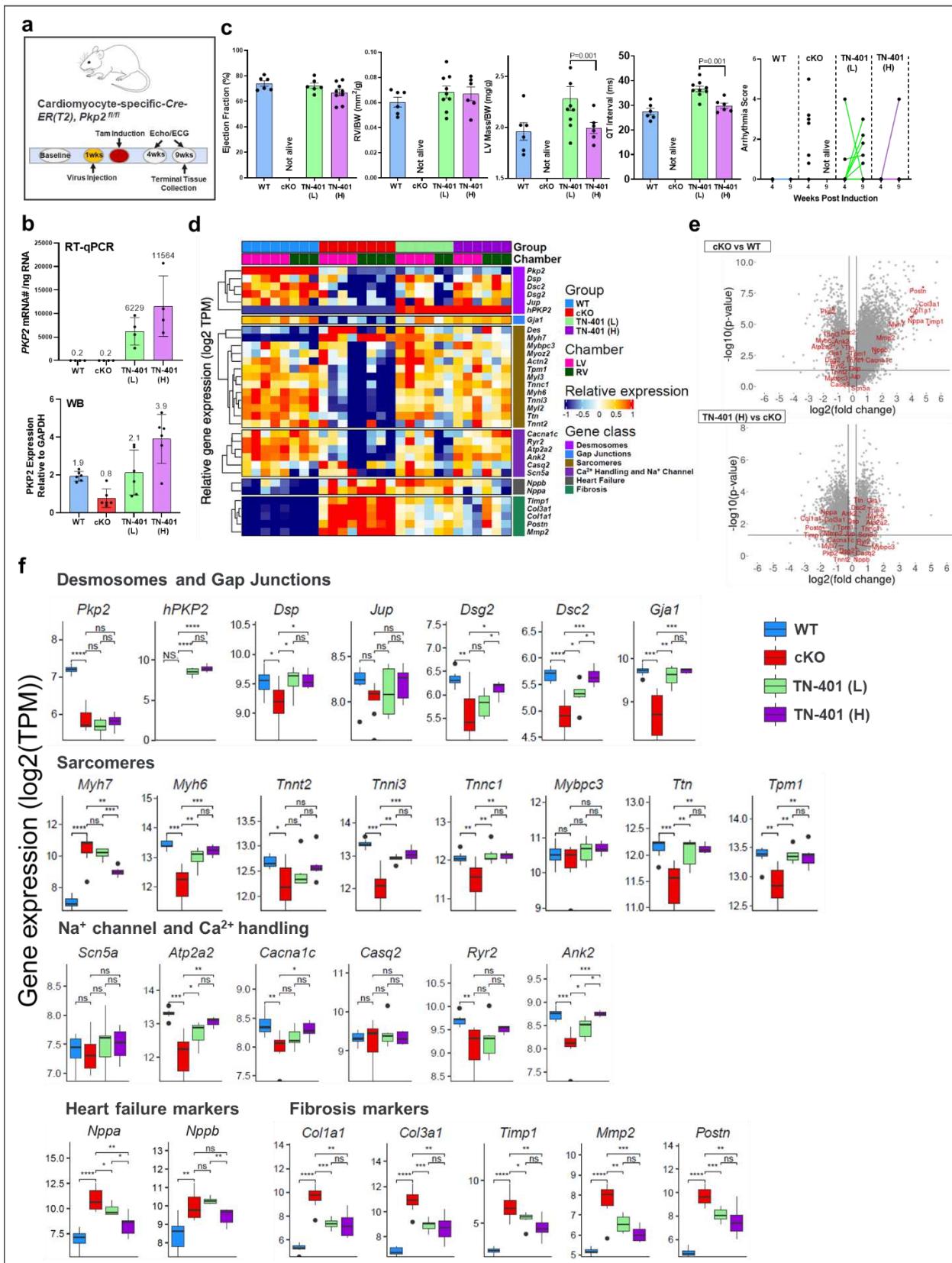
877

878


879

880 **Figure 5. TN-401 dose-dependently reduced arrhythmias, improved heart**
 881 **structure and cardiac function, restored expression of desmosome proteins and**
 882 **Cx43 and prevented development of fibrosis in *Pkp2*-cKO mouse.**

883 **a**, Study design to evaluate dose-dependent efficacy of TN-401 using *Pkp2*-cKO ARVC mouse
 884 model. Mice were injected with TN-401 at 1E13, 3E13, or 1E14 vg/kg at one week after
 885 tamoxifen induction of cardiac *Pkp2* gene deletion. At 4 weeks post tamoxifen induction (3
 886 weeks post AAV9 injection), animals were sacrificed for expression and histological evaluation.
 887 **b**, TN-401 showed dose-dependent efficacy at 3 weeks in preventing RV dilation (mm²/g),
 888 preventing decline of % LV ejection fraction, and trending improvement in arrhythmia scores. **c**,
 889 Semi-quantitative Western blot analyses showed restoration of PKP2, JUP, and DSP protein at
 890 3 weeks post AAV treatment. **d**, Immunohistochemistry for the gap junction protein, connexin
 891 43 (Cx43), in heart tissue sections showed restoration of Cx43 expression at intercalated discs
 892 (ID) at 3 weeks post AAV treatment (top panels). Red arrows indicate ID. Trichrome staining
 893 showed a significant reduction of fibrosis, muscle (red) and fibrosis (blue), in heart sections at 3
 894 weeks post AAV treatment (bottom panel). Yellow arrows highlight areas with fibrosis in *Pkp2*-
 895 cKO mouse heart. The percentage of collagen-positive tissue was quantified and shown in the
 896 right graph. **e**, RT-qPCR analyses of RV tissue at 3 weeks post AAV treatment showed a dose-
 897 dependent expression of *hPKP2* transgene and a dose-dependent suppression of heart failure
 898 markers (*Nppa*, *Nppb*) and fibrosis genes (*Col1a1*, *Col3a1*, *Timp1*). *Gapdh* was used as
 899 internal control. P value: Student's t-test. Error bar: s.e.m..


901 **Figure 6. A single dose of AAV9:PKP2 after overt cardiomyopathy halted disease**
902 **progression via reversed adverse right ventricular remodeling, improved LV**
903 **function, prevented arrhythmia worsening, and reduced mortality.**

904
905 **a**, Study design to evaluate AAV9:mPkp2 efficacy using *Pkp2*-cKO ARVC mouse model with
906 delivery at 2.5 weeks after *Pkp2* cardiac gene deletion by tamoxifen induction. **b**, HBSS-treated
907 *Pkp2*-cKO ARVC mice died within 6 weeks of cardiac *Pkp2* gene deletion, in contrast,
908 AAV9:mPkp2 treatment significantly reduced mortality and extended median lifespan of *Pkp2*-
909 cKO mice by ≥ 50 weeks. Numbers in parentheses show dead vs live animals by the time of
910 takedown. AAV9:mPkp2 at 9 weeks post gene deletion and 6.5 weeks post treatment **c**,
911 improved left ventricle ejection fraction by 36%; **d**, reversed right ventricle enlargement by 31%
912 and restored RV size similar to that of WT animals (mm²/g); **e**, prevented further worsening of
913 arrhythmias by 33.3%, all three readouts relative to HBSS treated *Pkp2*-cKO ARVC mice. The
914 bottom bar graphs show EF%, RV size, and arrhythmia score at 4 weeks post gene deletion
915 and 1.5 weeks post treatment. P value: Student's t-test. Error bar: s.e.m..

916

917 **Figure 7. TN-401 restored expression of genes encoding desmosome,**
918 **sarcomere, and Ca^{2+} handling system and attenuated expression of genes**
919 **encoding adverse remodeling factors in a highly coordinated and quantitative**
920 **fashion.**

922 **a**, Study design to evaluate TN-401 dose-dependent efficacy at week 4 and 9 post tamoxifen
923 induction of *Pkp2* gene deletion in *Pkp2-cKO* ARVC mouse model. Animals were dosed by TN-
924 401 at 1 week before induction. **b**, Human *PKP2* transgene mRNA levels at two doses (Low
925 (L), 3E13 vg/kg; High (H), 6E13 vg/kg) were quantified in copy number per ng of total LV RNA
926 (top panel). Human *PKP2* transgene protein levels at two doses were compared to the levels of
927 endogenous mouse *Pkp2* in WT and in *Pkp2-cKO* mouse post cardiac gene deletion by semi-
928 quantitative Western blot (WB) (bottom panel). **c**, TN-401 treatment at the low (L, 3E13 vg/kg)
929 and high (H, 6E13 vg/kg) dose at week 9 post gene deletion showed comparable efficacy in
930 EF% and RV area (mm²/g, normalized to body weight) and showed differences in LV mass
931 (mg/g, normalized to body weight), QT intervals, and numbers of animals with arrhythmias. **d**,
932 Heatmap of gene expression was sorted by treatment groups, heart chambers (LV vs RV), and
933 gene classes. Values were presented in scaled log2-transformed. **e**, Volcano plots from
934 differential gene expression (DGE) analysis showed changes between cKO vs WT (WT as
935 reference) (top graph) and TN-401 high dose vs cKO (cKO as reference) (bottom graph). The
936 X-axis represented log2 of fold change in gene expression, and Y-axis showed the negative
937 log10 p-values obtained from DGE analysis for each gene. Genes highlighted in red were
938 selected from each gene class shown in panel d. **f**, Boxplots showed group-wise gene
939 expression for each representative gene of the selected gene classes. Each box showed the
940 distribution of expression values in the following manner: the midline represented the median
941 expression value, the box indicated the interquartile range where the middle 50% of values lie,
942 and the whiskers at the top and bottom of each box represented the range of values outside the
943 interquartile range. Values were in log2 transformed TPM and were aggregated from LV and
944 RV. Comparison p values were calculated by Student's t-test, **** 0 - 0.0001; *** 0.0001 -
945 0.001; ** 0.001 - 0.01; * 0.01 - 0.05; ns 0.05-1.

946

947

948

949

950

951

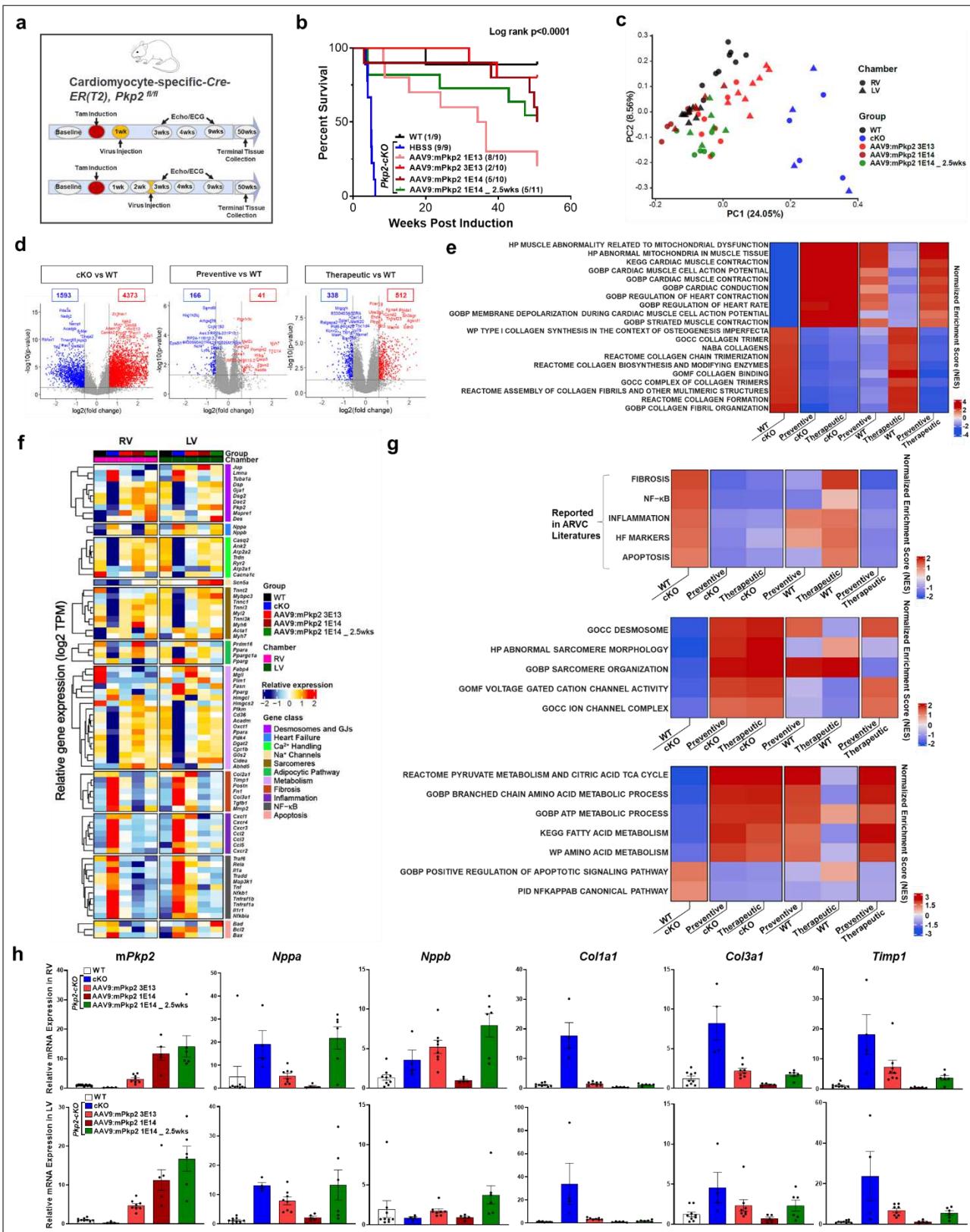
952

953

954

955

956


957

958

959

960

961 **Figure 8. Long-term durable expression of AAV9:mPkp2 significantly reduced**
962 **mortality after disease onset and sustained a broad spectrum of pathways that**
963 **were perturbed in *Pkp2-cKO* ARVC mouse and restored by the gene therapy.**

966 **a**, Study design to evaluate AAV9:mPkp2 efficacy in reducing mortality at 51 weeks post
967 tamoxifen induction of *Pkp2* deletion in *Pkp2-cKO* ARVC mouse model. AAV9:mPkp2 was
968 dosed at 1E13, 3E13, and 1E14 vg/kg either 1 week before the induction (the preventive mode
969 of treatment) or at 1E14 vg/kg at 2.5 weeks after induction (the therapeutic mode of treatment).
970 **b**, Kaplan-Meier curve showed percent survival for each mode of treatment for 51 weeks post
971 *Pkp2* deletion. Numbers in paratheses show dead vs live animals by the time of takedown. **c**,
972 Principal Component Analysis (PCA) showed clusters of gene transcripts from WT (animals
973 taken down at 51 weeks post induction), untreated *Pkp2-cKO* animals (animals taken down at 4
974 weeks post induction), and AAV9:mPkp2 treated animals (animals taken down at 51 weeks post
975 induction). Principal components 1 and 2 were visualized in X and Y axes. Numbers in
976 brackets represented variation in the data explained by each PC. **d**, Volcano plots from
977 differential gene expression analysis showed changes between cKO vs WT, preventive vs WT,
978 and therapeutic vs WT. Numbers in boxes represented down-regulated and up-regulated genes
979 in blue and red, respectively. **e**, Top 10 positively and top 10 negatively enriched cardiac gene
980 sets were shown with FDR Q value less than 0.25 in Gene Set Enrichment Analysis (GSEA) of
981 *Pkp2-cKO* vs WT (far left column). These enriched gene sets were used to compare preventive
982 vs *Pkp2-cKO*, therapeutic vs *Pkp2-cKO*, preventive vs WT, therapeutic vs WT, and preventive
983 vs therapeutic. **f**, Relative gene expression of selected genes were measured by RNA-seq.
984 Samples were sorted by treatment groups and RV and LV chambers. Genes were categorized
985 by gene classes. Each column depicted a scaled average across samples of each treatment
986 group. Number of animals in each treatment group used for RNA sequencing were 9 WT, 4
987 cKO, 2 at 1E13 vg/kg (not included on the Heatmap), 8 at 3E13 vg/kg, 5 at 1E14 vg/kg, and 6 at
988 1E14 vg/kg (the therapeutic mode) with both RV and LV collected. **g**, GSEA heatmap
989 presented positively and negatively enriched cardiac gene sets in *Pkp2-cKO* vs WT. These
990 enriched gene sets were used to compare preventive vs *Pkp2-cKO*, therapeutic vs *Pkp2-cKO*,
991 preventive vs WT, therapeutic vs WT, and preventive vs therapeutic. The top heatmap showed
992 known gene sets reported in ARVC literature (Figure 7d); middle and bottom heatmaps showed
993 annotated gene sets of Canonical Pathways and Gene Ontology groups from Human MSigDB
994 database (v2023.1.Hs) and had Q value < 0.25 (See Methods). **h**, RT-qPCR analyses showed
995 expression of a total of mouse *Pkp2* mRNA (including transgene mRNA), heart failure marker
996 genes, *Nppa*, *Nppb*, and fibrosis genes, *Timp1*, *Col1a1*, and *Col3a1*, in RV (top row) and LV
997 (bottom row) at 51 weeks post *Pkp2* deletion.

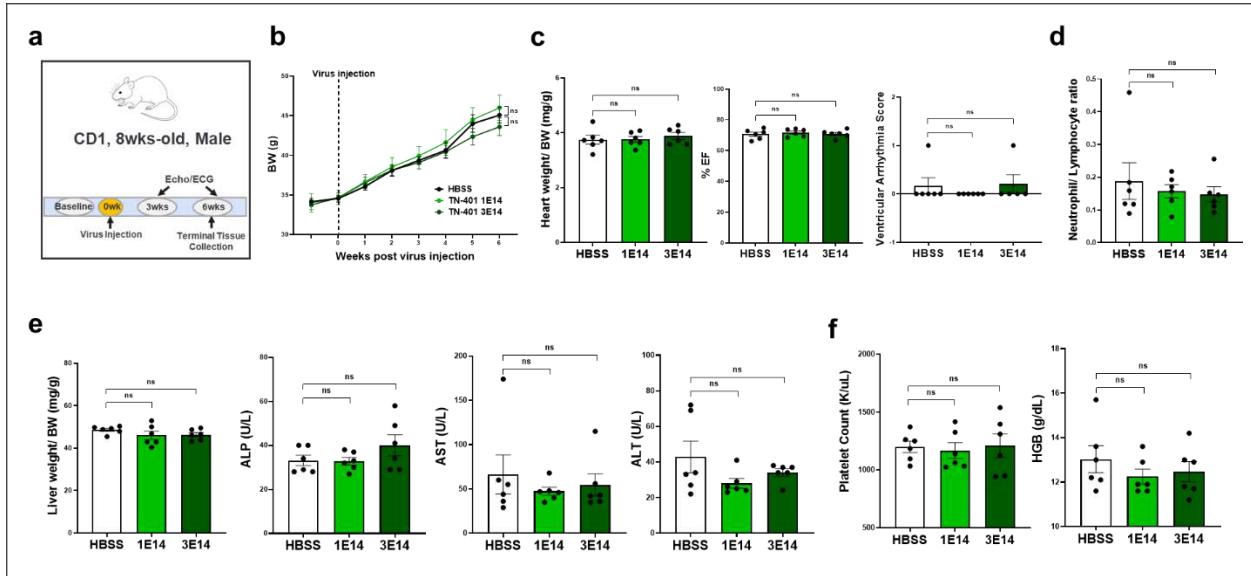
998

999

1000

1001

1002


1003

1004

1005

1006

1007 **Figure 9. TN-401 safety study in WT mouse showed no adverse effects at $\leq 10X$ of**
 1008 **efficacious dose.**

1009 **a**, Study design to evaluate TN-401 safety in WT CD1 mice. Mice were injected with TN-401 at
 1010 1E14 and 3E14 vg/kg, respectively, after baseline readings of body weight, echocardiography,
 1011 and EKG. Readings post virus injection were recorded at 3 and 6 weeks, respectively, including
 1012 echocardiography of B-mode, M-Mode (RV, LV), structure (LV internal diameters) and 30-min
 1013 ECG for quantifying arrhythmias and evaluating electrophysiological parameters. Mice were
 1014 sacrificed in week 6 and tissues and blood samples were collected. **b**, Body weight progression
 1015 for 6 weeks. **c**, Heart weight normalized to body weight, % ejection fraction (%EF) and
 1016 ventricular arrhythmia score at 6 wks. **d**, Neutrophil to lymphocyte ratio at 6 wks. **e**, Liver
 1017 weight normalized to body weight and live function tests, alkaline phosphatase (ALP), aspartate
 1018 transaminase (AST), alanine transaminase (ALT) at 6 wks. **f**, Platelet counts and hemoglobin
 1019 (HGB) amount. P value: Student's t-test. Error bar: s.e.m..

1021

1022

1023

1024

1025

1026

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [SupplementalFigures05192023.pdf](#)