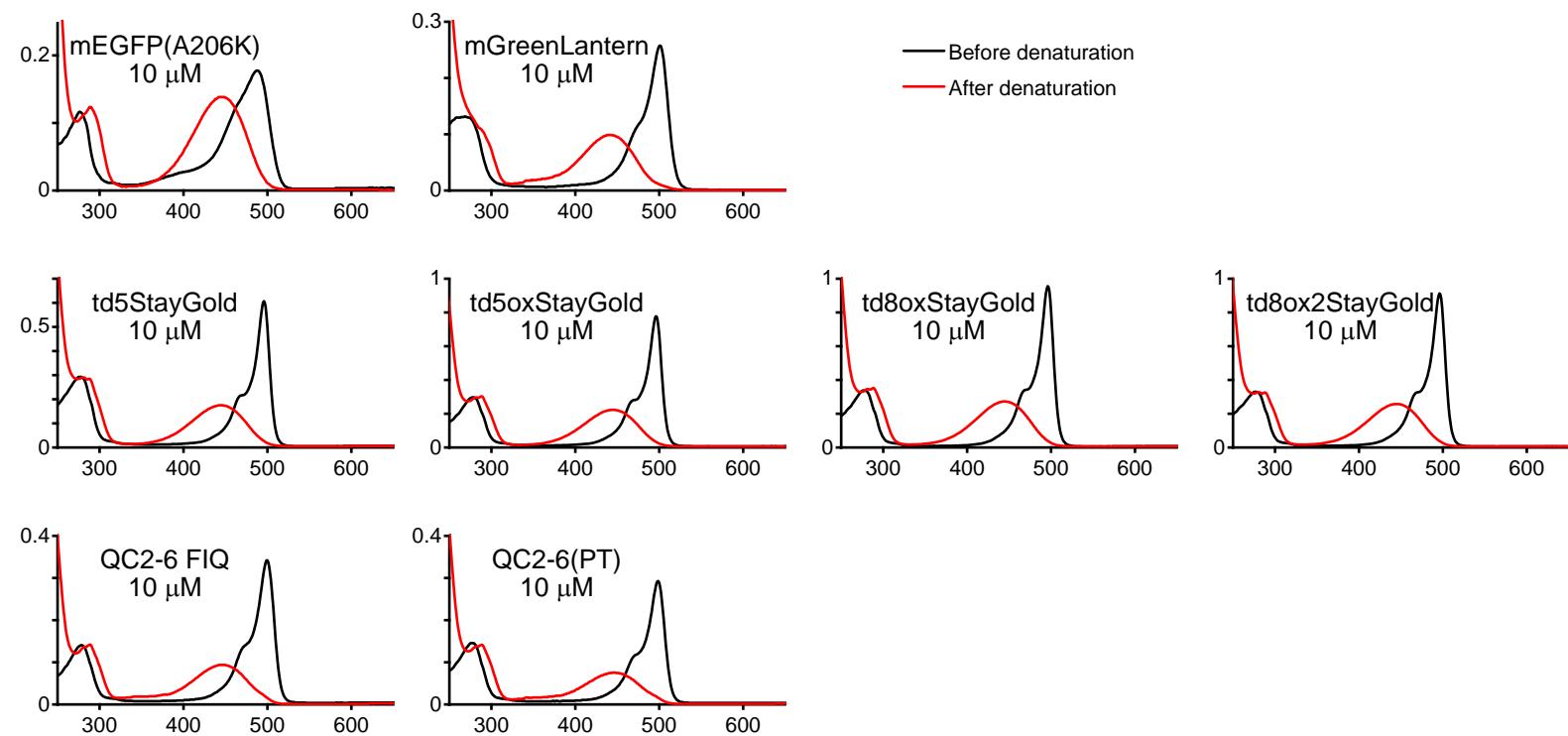

Supplementary Fig. 1

Supplementary Fig. 1 | Comparison between OSER and Fluoppi for the assessment of Venus monomericity/dispersibility.

a, OSER; three typical images of HeLa cells that showed whorls of CytERM-Venus signals.
b, Fluoppi; three typical images of HeLa cells that showed puncta of PB1-Venus signals. PB1-Venus appeared to yield more efficient signal concentration with less background than CytERM-Venus. Therefore, overall, Fluoppi is expected to provide a higher signal-to-noise ratio than OSER. Each gray scale indicates that the lowest and highest fluorescence intensities. Scale bars, 20 μ m.

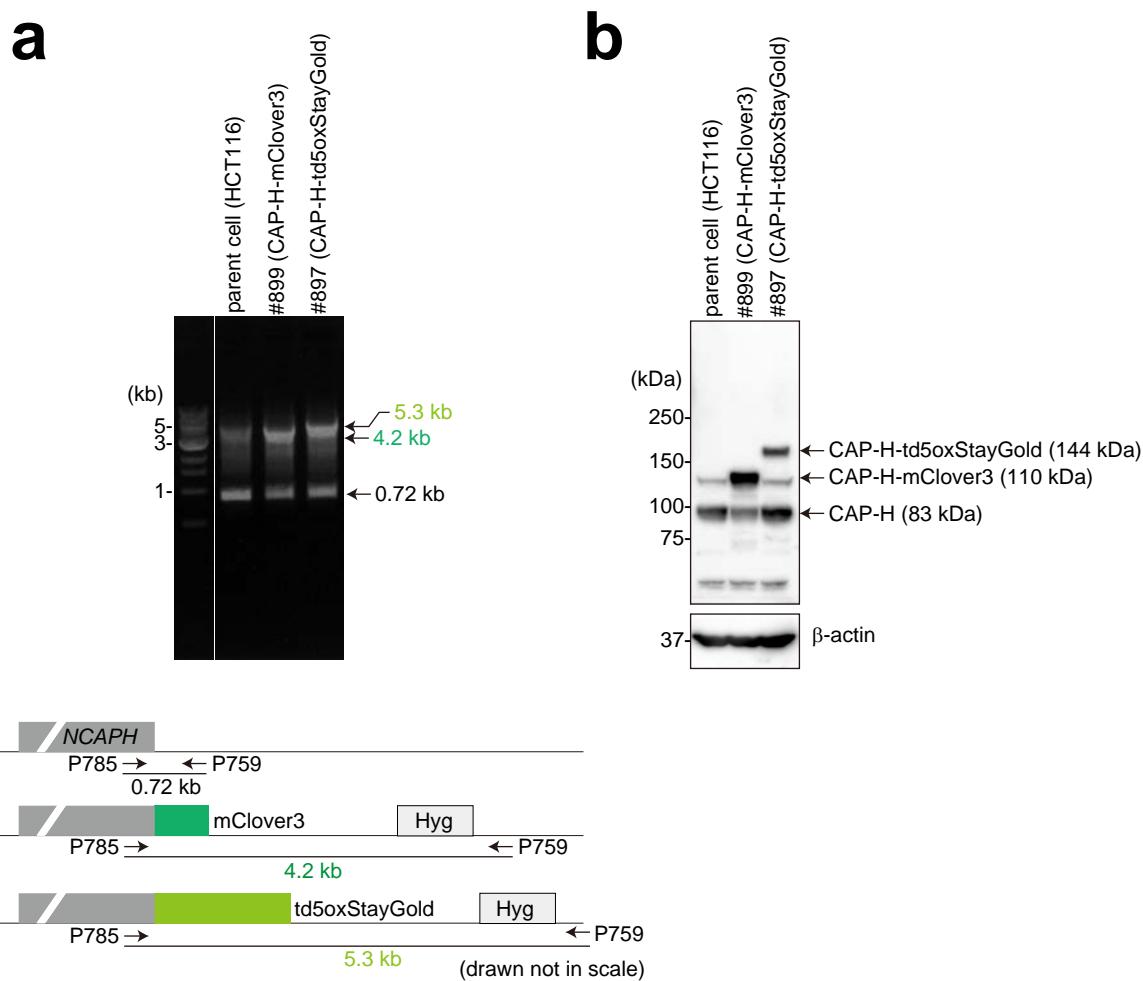
Supplementary Fig. 2



- 1) EGFP
- 2) StayGold
- 3) QC2-6
- 4) QC2-6 Y187F / R144I ran1
- 5) QC2-6 Y187F / R144I ran2
- 6) QC2-6 Y187F / R144I ran3
- 7) QC2-6 Y187F / R144I ran4
- 8) QC2-6 Y187F / R144I ran5
- 9) QC2-6 Y187F / R144I ran6
- 10) QC2-6 Y187F / R144I ran7
- 11) QC2-6 Y187F / R144I ran8
- 12) QC2-6 Y187F / R144I ran9
- 13) QC2-6 Y187F / R144I
- 14) QC2-6 Y187F / R144I / T155F
- 15) QC2-6 Y187F / R144I / T155H
- 16) QC2-6 Y187F / R144I / T155I
- 17) QC2-6 Y187F / R144I / T155K
- 18) QC2-6 Y187F / R144I / T155Q
- 19) QC2-6 Y187F / R144I / T155R
- 20) QC2-6 Y187F / R144I / T155V
- 21) QC2-6 Y187F / R144I / T155W
- 22) QC2-6 Y187F / R144I / T155Y
- 23) QC2-6 R144E
- 24) QC2-6 R144E / T155I
- 25) QC2-6 R144E / T155M
- 26) QC2-6 R144E / T155R
- 27) QC2-6 R144E / T155V
- 28) QC2-6 R144E / T155Y

Supplementary Fig. 2 | Pseudonative SDS-PAGE of purified bacterially expressed proteins.

A panel showing the final stage of the revolution reaching QC2-6 FIQ (lane 18). QC2-6 (lane 3) and its derivatives were analyzed in reference to EGFP (lane 1) and StayGold (lane 2). QC2-6 FIQ (= QC2-6 Y187F/R144I/T155Q) exhibited a slightly greater mobility than QC2-6. Lanes 4–12: nine bright colonies were selected from a mutant library on the basis of products of error-prone PCR on QC2-6 Y187F/R144I. ran: random mutagenesis.

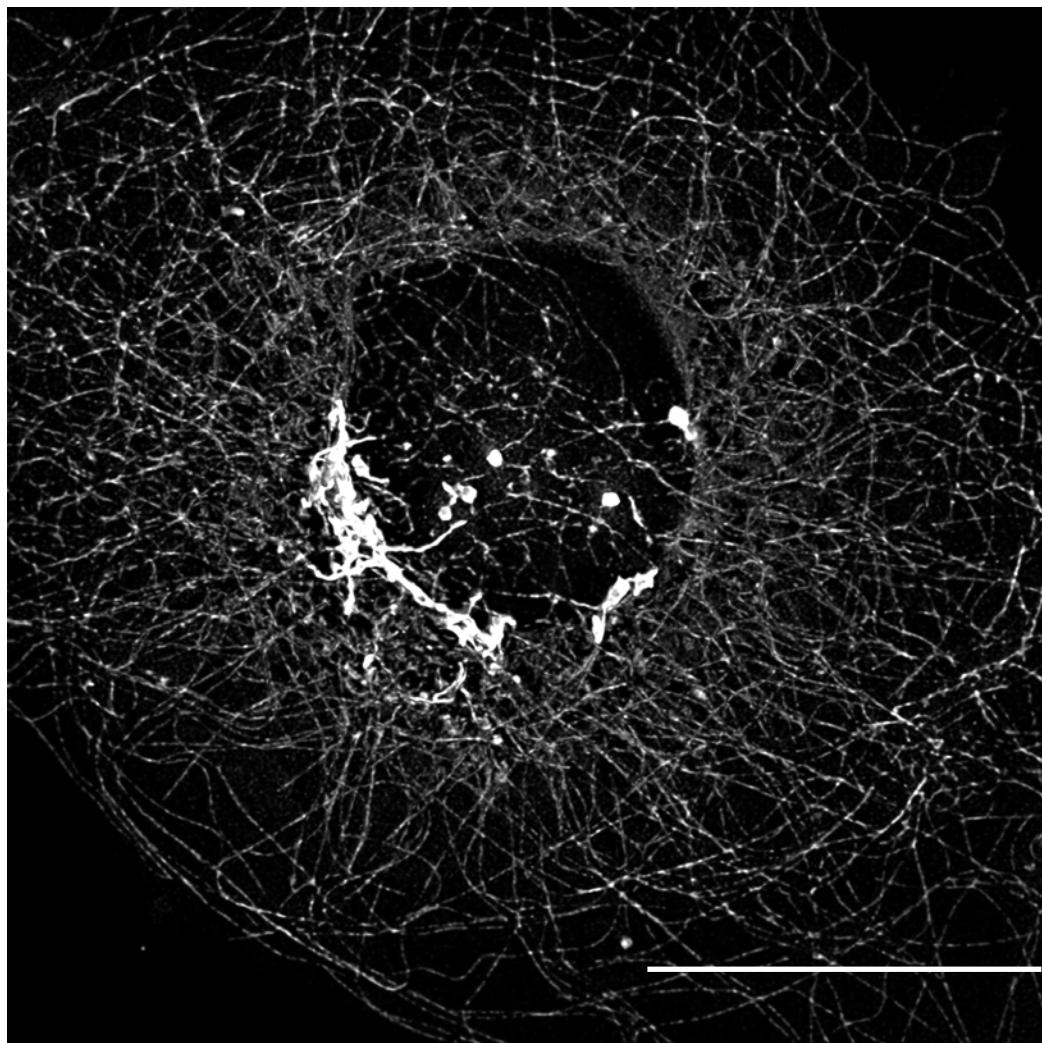

Supplementary Fig. 3

Supplementary Fig. 3 | Spectral assessment of inherent qualities of FP chromophores.

Absorption spectra of FPs before (black line) and after (red line) denaturation with 0.1 M NaOH. The FP concentration was 10 μ M, and the path length was 1 cm. All these FPs carry X-Tyr-Gly, a chromophore-forming tripeptide, and their alkali-denatured chromophores contain a dehydrotyrosine residue conjugated to the imidazolone group and absorb light maximally at 447 nm with a molar extinction coefficient of $44,000 \text{ M}^{-1} \text{ cm}^{-1}$. This value was used for the determination of their absolute molar extinction coefficients.

Supplementary Fig. 4

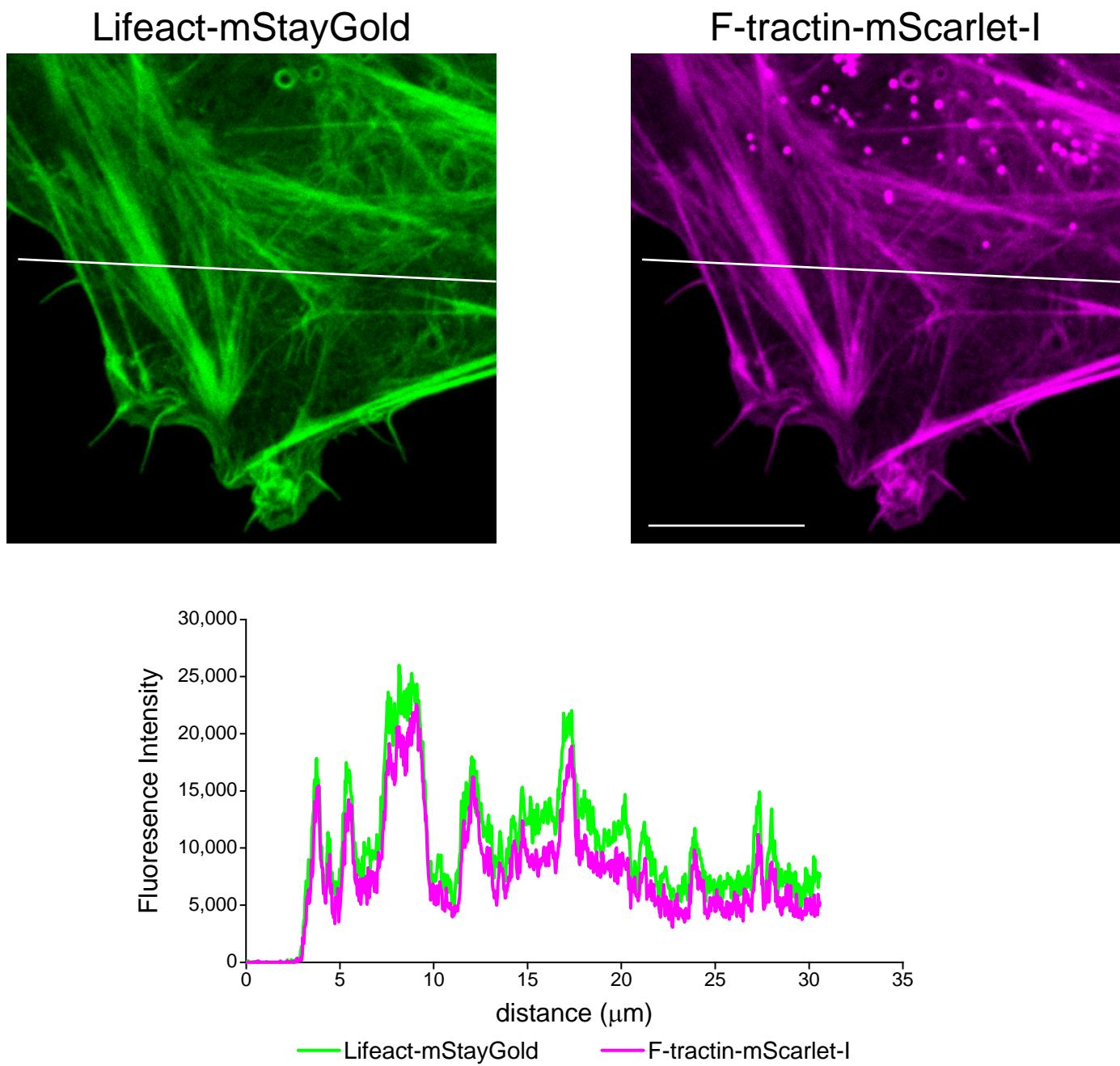
Supplementary Fig. 4 | Validation of knock-in cell lines.


Cell lines #899 and #897 were characterized in parallel with their parent (HCT116) by junction PCR (a) and western blotting (b). HCT116 cell line is a chromosomally stable human colorectal cancer cell line and has two alleles of the CAP-H gene (*NCAPH*). The following results indicate that the CAP-H gene was heterozygously tagged in both cell lines.

a, Primers located outside of the left (P785) and right (P759) homology arms were used. A 0.72-kb fragment derived from untagged CAP-H was detected for both cell lines #899 and #897 in addition to the fragments from mClover3-CAP-H (4.2 kb) and td5oxStayGold-tagged CAP-H (5.3 kb), respectively. Hyg: hygromycin resistance gene.

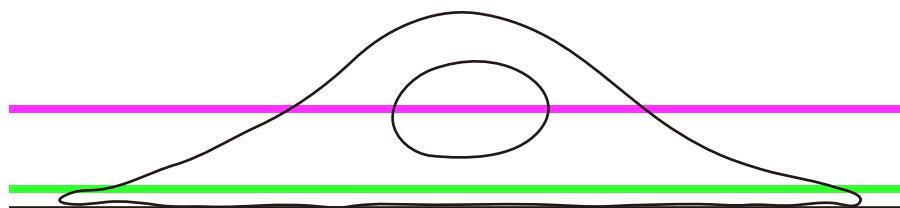
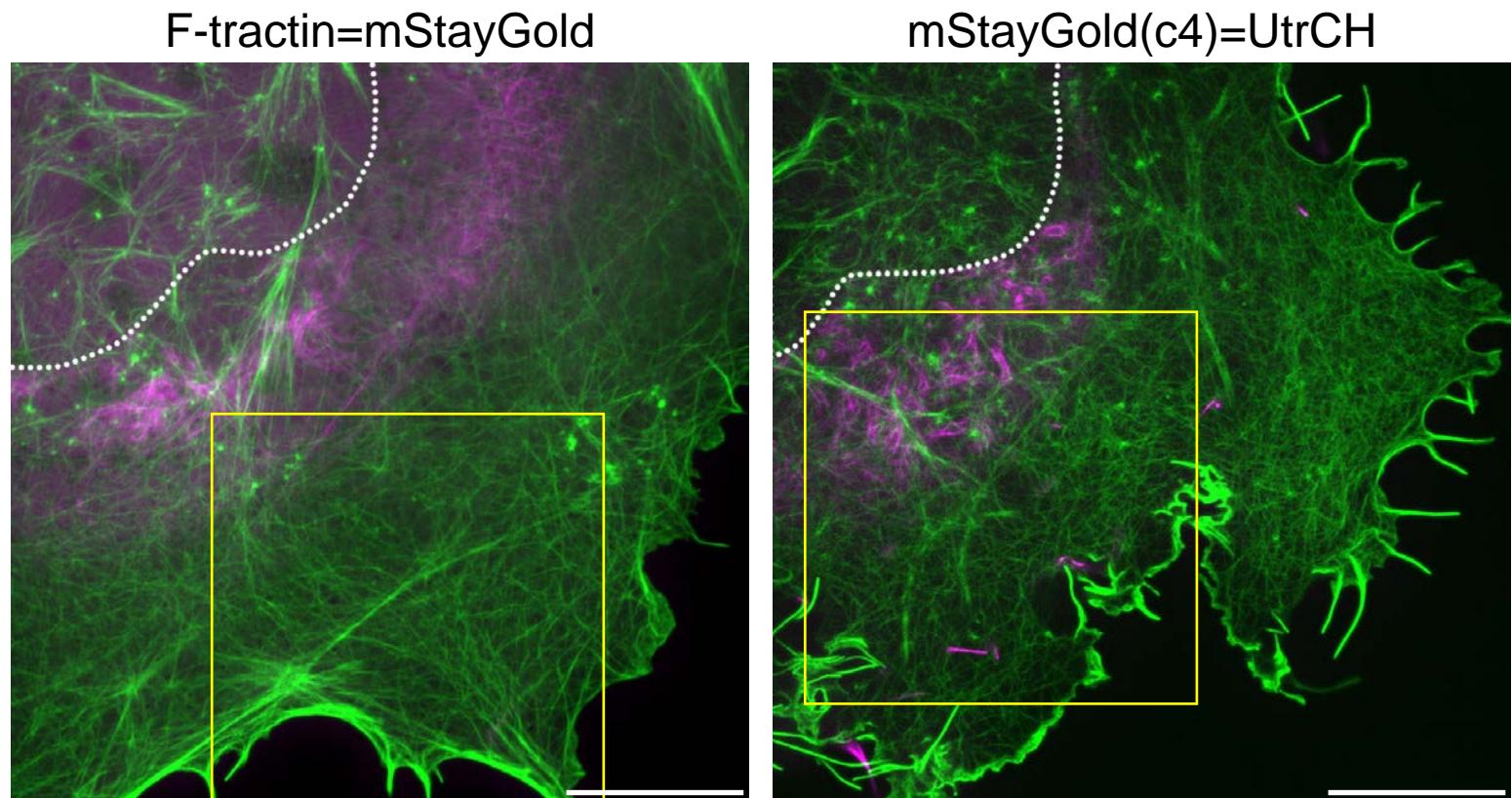
b, Anti-CAP-H antibody (Proteintech, #11515-1-AP) was used to characterize the size of CAP-H proteins. An 83-kDa band for untagged CAP-H was detected for both cell lines #899 and #897 in addition to those for mClover3-tagged (110 kDa) and td5oxStayGold-tagged (144 kDa) CAP-H proteins, respectively. Anti-β-actin monoclonal antibody (AC-15) was used as a loading control.

Supplementary Fig. 5


td5StayGold(c4)=GianCreg
td8oxStayGold(c4)= β -tubulin

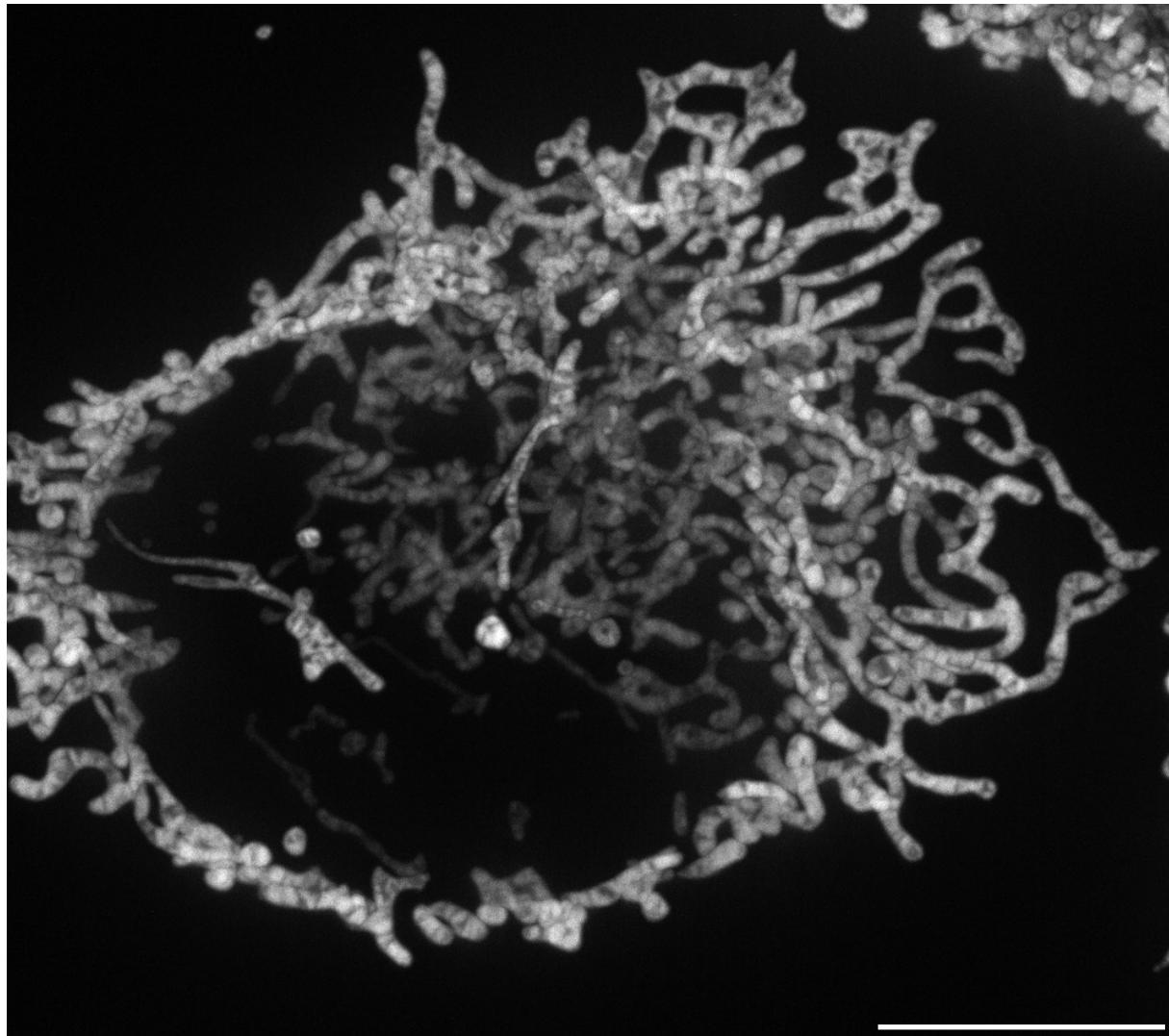
Supplementary Fig. 5 | Dual-targeting of StayGold variants to the Golgi apparatus and microtubule network.

COS-7 cells were cotransfected with td5StayGold(c4)=GianCreg and td8ox2StayGold(c4)= β -tubulin. A fine 3D reconstruction of the whole Golgi apparatus with a microtubule network was generated by volumetric imaging (z-step, 0.216 μ m; z-range, 1.94 μ m) using the lattice SIM method (Elyra 7). The Leap mode was used. Scale bar, 20 μ m. Shown is a representative of $n = 7$ independent experiments (transfections).



Supplementary Fig. 6

Supplementary Fig. 6 | Colocalization of Lifeact-mStayGold and F-tractin-mScarlet-I in a Vero cell.
top, CLSM (single-beam) images of Lifeact-mStayGold (left, green channel) and F-tractin-mScarlet-I (right, red channel). Scale bar, 10 μm .

bottom, The line profile plots indicate the intensity distribution of green and red channels through the white lines across the cell.


Supplementary Fig. 7

Supplementary Fig. 7 | F-actin distribution visualized by mStayGold-tagged actin-binding domains.
COS-7 cells expressing F-tractin=mStayGold (left) or mStayGold(c4)=UtrCH (right) were imaged by SDSRM (SpinSR10). UtrCH: utrophin calponin homology domain²⁸. For each experiment, a confocal image sectioned nearest the cell bottom is shown in green. Images were acquired continuously at 3.18 frames/s for 5.24 min (boxed regions, Supplementary Video 6). A confocal image sectioned across the center of the nucleus is shown in magenta. The nucleus is delineated by a dotted line. Scale bars, 10 μ m. The F-tractin=mStayGold images shown are representative of $n = 15$ independent cell samples. The mStayGold(c4)=UtrCH images shown are representative of $n = 13$ independent cell samples.

Supplementary Fig. 8

COX8a=mStayGold

Supplementary Fig. 8 | A cell-wide 3D reconstruction of the inner mitochondrial membrane.

HeLa cells constitutively expressing COX8a=mStayGold were imaged by SDSRM (SpinSR10) with a volume (z step, 0.25 μ m; z range, 9.0 μ m) imaged by SDSRM (SpinSR10) with an exposure time of 200 ms. An MIP image is shown.

Some mitochondria were found along the nuclear tubular invaginations. Scale bar, 10 μ m. Shown is a representative of $n = 4$ cell samples.

Supplementary Table. 1

	StayGold pH8.5	StayGold pH5.6
Wavelength (Å)	1.0	1.0
Resolution range (Å)	91.2 - 1.56 (1.62 - 1.56)	67.0 - 2.2 (2.28 - 2.2)
Space group	P 2 ₁	P 6 ₁
Unit cell	53.9 Å 44.9 Å 93.8 Å 90° 103.4° 90°	134.0 Å 134.0 Å 59.0 Å 90° 90° 120°
Total reflections	335808 (28363)	325103 (19041)
Unique reflections	61988 (5842)	30868 (3015)
Multiplicity	5.4 (4.9)	10.5 (6.3)
Completeness (%)	99.2 (93.0)	99.8 (98.1)
Mean I/sigma(I)	8.85 (0.46)	10.97 (2.77)
Wilson B-factor	17.48	14.25
R-merge	0.06797 (0.4089)	0.1706 (0.4423)
R-meas	0.07498 (0.4577)	0.1794 (0.4842)
R-pim	0.03111 (0.2015)	0.05485 (0.1913)
CC1/2	0.999 (0.91)	0.994 (0.85)
CC*	1.000 (0.976)	0.998 (0.958)
Reflections used in refinement	61893 (5759)	30858 (3015)
Reflections used for R-free	1986 (197)	1994 (192)
R-work	0.1863 (0.3585)	0.1547 (0.2039)
R-free	0.2153 (0.3804)	0.1897 (0.2869)
CC(work)	0.967 (0.869)	0.968 (0.888)
CC(free)	0.956 (0.824)	0.951 (0.833)
Number of non-hydrogen atoms	4160	4043
macromolecules	3475	3488
ligands	40	63
solvent	663	492
Protein residues	424	425
RMS(bonds)	0.002	0.002
RMS(angles)	0.54	0.62
Ramachandran favored (%)	98.55	97.12
Ramachandran allowed (%)	1.45	2.88
Ramachandran outliers (%)	0.00	0.00
Rotamer outliers (%)	0.54	1.05
Clashscore	2.99	2.77
Average B-factor (Å²)	22.63	15.56
macromolecules (Å²)	19.57	14.09
ligands (Å²)	13.83	13.61
solvent (Å²)	32.87	26.23

Supplementary Table. 1 | Data collection and refinement statistics.
 Statistics for the highest-resolution shell are shown in parentheses.

Supplementary Video captions

Supplementary Video 1 | Visualization of chromosome-targeting of td5oxStayGold-tagged condensin I at low copy number expressed via a genome-editing technique. After release from cell cycle arrest, genome-edited HCT116 cells (#897) were imaged for CAP-H-td5oxStayGold (at 488 nm excitation) and SiR-DNA-labeled chromosomes (at 637 nm excitation) using spinning-disk LSCM (SpinSR10) at the indicated times (hour: min). Every 1 min, 3D scanning was executed with a z -step size of 1 μm over an axial range of 13 μm , and the green and far-red fluorescence images were merged. Maximum intensity projection (MIP) images are shown. This movie (6.20 MB) has been generated via considerable compression of the original large-volume video data (1.52 GB). Compression was made using TMPGEnc. See Fig. 4. Shown is a representative of $n = 3$ independent experiments.

Supplementary Video 2 | High-speed visualization of chromosome-targeting of td5oxStayGold-tagged condensin I in genome-edited HCT116 cells. After release from cell cycle arrest, genome-edited HCT116 cells (#897) were imaged at a single z position for observing CAP-H-td5oxStayGold (488 nm excitation) and for SiR-DNA-labeled chromosomes (637 nm excitation) by spinning-disk LSCM (SpinSR10) at 1 frame per second. Merged images at the indicated times (min: s). This movie (9.05 MB) has been generated via considerable compression of the original large-volume video data (7.03 GB). Compression was made using FFmpeg. See Extended Data Fig. 5a.

Supplementary Video 3 | Photostability comparison between CAP-H-mClover3 and CAP-H-td5oxStayGold under the same optical conditions. Genome-edited HCT116 cells (#899, left vs. #897, right) during prometaphase were volume (z step, 0.25 μm ; z range, 2.5 μm) imaged by spinning-disk LSCM (SpinSR10) with excitation at 488 nm continuously every 6.9 sec over a total period of 278 sec. MIP images are shown. This movie (1.40 MB) has been generated via considerable compression of the original large-volume video data (12.4 MB). Compression was made using TMPGEnc. Elapsed times (min: s). See Extended Data Fig. 5b.

Supplementary Video 4 | Visualization of td5StayGold-harboring Golgi membranes. Volumetric and continuous imaging of HeLa cells expressing td5StayGold(c4)=GianCreg in two independent experiments (top and bottom). Cells were volume (z step, 0.5 μm ; z range, 2.5 μm) imaged by SDSRM (SpinSR10)

continuously with an exposure time of 100 ms without using the z -drift compensator (IX3-ZDC2, Evident). MIP images are shown. This movie (9.88 MB) has been generated via considerable compression of the original large-volume video data (122 MB). Compression was made using TMPGEnc. Elapsed times (min: s). See Fig. 5b.

Supplementary Video 5 | Visualization of the Golgi apparatus and microtubule network. A COS-7 cell expressing td5StayGold(c4)=GianCreg and td8ox2StayGold(c4)= β -tubulin was imaged by SDSRM (SpinSR10) continuously with an exposure time of 200 ms without using the z -drift compensator (IX3-ZDC2, Evident). MIP images are shown. This movie (9.43 MB) has been generated via considerable compression of the original large-volume video data (100 MB). Compression was made using TMPGEnc. Elapsed times (min: s).

Supplementary Video 6 | Visualizing F-actin dynamics by continuous, sustainable, cell-wide imaging. COS-7 cells expressing F-tractin=mStayGold (left) or mStayGold(c4)=UtrCH by imaged by SDSRM (SpinSR10) at a single z position at 3.18 frames/s for 5.24 min. Elapsed times (min: s). This movie (9.05 MB) has been generated via considerable compression of the original large-volume video data (7.03 GB). Compression was made using TMPGEnc. See Supplementary Fig. 7.

Supplementary Video 7 | Visualizing the effects of drugs on F-actin organization. COS7 cells expressing F-tractin=mStayGold (top) or mStayGld(c4)=UtrCH (bottom) were imaged by SDSRM (SpinSR10) at a single z position at 2.41 frames/s for 13.82 min. Cells were treated with 1 μ M Cytochalasin D (left) or 2 μ M Latrunculin A (right). Elapsed times (min: s). This movie (9.38 MB) has been generated via considerable compression of the original large-volume video data (4.29 GB). Compression was made using FFmpeg. See Extended Data Fig. 7.

Supplementary Video 8 | Visualizing the inner mitochondrial membrane dynamics by sustainable, cell-wide volumetric SIM imaging. HeLa cells expressing COX8a=mStayGold were 3D scanned continuously with a z -step size of 0.11 μ m over an axial range of 2.08 μ m by lattice SIM (Elyra 7) at 37 °C. The total number of acquired volumes was 47. SIM² was used for image reconstruction. This movie (6.69 MB) has been generated via considerable compression of the original large-volume video data (47 MB). Compression was made using TMPGEnc. Elapsed times (min: s). See Fig. 5c.

Supplementary Video 9 | Visualizing the inner mitochondrial membrane dynamics by fast, sustainable imaging. HeLa cells expressing COX8a=mStayGold were imaged by SDSRM (SpinSR10). Single-plane images were acquired continuously at 8.70 frames/s (exposure time: 100 ms). This movie highlights stable mitochondria. The autofocus function of a *z*-drift compensator (IX3-ZDC2, Evident) was continuously active. The total number of acquired frames was 1,000. This movie (6.71 MB) has been generated via considerable compression of the original large-volume video data (70.7 MB). Compression was made using TMPGEnc. Elapsed times (min: s). The stable IMM dynamics shown is a representative of $n = 17$ cells over $n = 10$ independent transfections.

Supplementary Video 10 | Visualizing the inner mitochondrial membrane dynamics by fast, sustainable imaging. HeLa cells expressing COX8a=mStayGold were imaged by SDSRM (SpinSR10). Single-plane images were acquired continuously at 2.41 frames/s (exposure time: 400 ms). This movie highlights a mobile mitochondrion. The autofocus function of a *z*-drift compensator (IX3-ZDC2, Evident) was continuously active. The total number of acquired frames was 500. This movie (3.19 MB) has been generated via considerable compression of the original large-volume video data (31.4 MB). Compression was made using TMPGEnc. Elapsed times (min: s). The mobile IMM dynamics shown is a representative of $n = 14$ cells over $n = 9$ independent transfections.

Supplementary Video 11 | Agonist-, antagonist-, and Ca^{2+} ionophore-induced longitudinal changes in IMM structures revealed by fast, sustained, wide imaging. HeLa cells expressing COX8a=mStayGold were imaged by SDSRM (SpinSR10) continuously at a temporal resolution of 2.5 frames per second. Two representative experimental data are shown. Histamine, cyproheptadine, and ionomycin were applied at 1 minute, 2.5 minutes, and 4 minutes, respectively. The autofocus function of a *z*-drift compensator (IX3-ZDC2, Evident) was continuously active. This movie (8.9 MB) has been generated via considerable compression of the original large-volume video data (412 MB). Compression was made using TMPGEnc. Elapsed times (min: s). See Extended Data Fig. 8. Representatives of $n = 12$ independent experiments (transfections).