checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

Datablock: as

C-C = 0.0106 A	1	Wavelength	=0.71073
283 K		(_ /	g
Calculated		Reported	
3155.1(4)		3155.1(4)	
I 2/c		I2/c	
-I 2yc		-I2yc	
C24 H20 Cu F6 N8 solvent]	Si [+	?	
C24 H20 Cu F6 N8 solvent]	Si [+	С48 Н40 С	u2 F12 N16 Si2
626.12		1252.22	
1.318		1.318	
4		2	
0.792		0.792	
1268.0		1268.0	
1270.21			
13,20,18		13,20,18	
2666		2665	
0.888,0.909			
0.888			
od= Not given			
ss= 1.000	Theta(ma	ax) = 24.60	0
0.0927(2301)			wR2(reflections) = 0.2320(2665)
Npar= 1	L84		J. 2320 (2003)
	a=11.7055(8) alpha=90 283 K Calculated 3155.1(4) I 2/c -I 2yc C24 H20 Cu F6 N8 solvent] C24 H20 Cu F6 N8 solvent] 626.12 1.318 4 0.792 1268.0 1270.21 13,20,18 2666 0.888,0.909 0.888 od= Not given ss= 1.000 0.0927(2301)	a=11.7055(8) b=17.5127 alpha=90 beta=96.5 283 K Calculated 3155.1(4) I 2/c -I 2yc C24 H20 Cu F6 N8 Si [+ solvent] C24 H20 Cu F6 N8 Si [+ solvent] 626.12 1.318 4 0.792 1268.0 1270.21 13,20,18 2666 0.888,0.909 0.888 od= Not given Theta(max)	a=11.7055(8) b=17.5127(13) alpha=90 beta=96.514(2) 283 K Calculated Reported 3155.1(4) 3155.1(4) I 2/c I2/c -I 2yc -I2yc C24 H20 Cu F6 N8 Si [+ ? Solvent] C24 H20 Cu F6 N8 Si [+ ? Solvent] 626.12 1252.22 1.318 1318 4 2 0.792 0.792 1268.0 1270.21 13,20,18 2666 2665 0.888,0.909 0.888 od= Not given SS= 1.000 Theta(max) = 24.60

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level B

PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of Sil Check PLAT990_ALERT_1_B Deprecated .res/.hkl Input Style SQUEEZE Job ... ! Note

Alert level C

THETM01_ALERT_3_C The value of sine(theta_max)/wavelength is less than 0.590 Calculated sin(theta_max)/wavelength = 0.5857

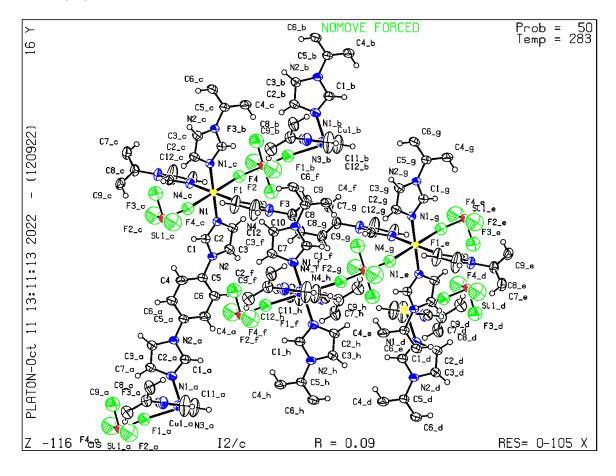
PLAT052_ALERT_1_C	Info on Absorption Correction Method Not Given	Please	Do !
PLAT241_ALERT_2_C	High 'MainMol' Ueq as Compared to Neighbors of	F1	Check
PLAT241_ALERT_2_C	High 'MainMol' Ueq as Compared to Neighbors of	C12	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of	C5	Check
PLAT341_ALERT_3_C	Low Bond Precision on C-C Bonds	0.01062	Ang.

Alert level G

PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... 4 Report PLAT004_ALERT_5_G Polymeric Structure Found with Maximum Dimension 3 Info PLAT045_ALERT_1_G Calculated and Reported Z Differ by a Factor ... 2 Check PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large 45.96 Why ? PLAT177_ALERT_4_G The CIF-Embedded .res File Contains DELU Records 1 Report PLAT178_ALERT_4_G The CIF-Embedded .res File Contains SIMU Records 1 Report PLAT186_ALERT_4_G The CIF-Embedded .res File Contains ISOR Records 1 Report PLAT230 ALERT 2 G Hirshfeld Test Diff for Si1 15.5 s.u. PLAT230_ALERT_2_G Hirshfeld Test Diff for Si1 --F2 16.2 s.u. PLAT230_ALERT_2_G Hirshfeld Test Diff for Si1 --F3 20.0 s.u. PLAT230_ALERT_2_G Hirshfeld Test Diff for --F4 16.2 s.u. Si1 PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Cu1 10.7 s.u. --F1PLAT605_ALERT_4_G Largest Solvent Accessible VOID in the Structure 452 A**3 PLAT794_ALERT_5_G Tentative Bond Valency for Cul 2.19 Info (II) . PLAT860_ALERT_3_G Number of Least-Squares Restraints 24 Note PLAT869_ALERT_4_G ALERTS Related to the Use of SQUEEZE Suppressed ! Info Please Do ! PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary . PLAT965_ALERT_2_G The SHELXL WEIGHT Optimisation has not Converged Please Check PLAT967_ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res .. 49.2 Degree

- 0 **ALERT level A** = Most likely a serious problem resolve or explain
- 2 ALERT level B = A potentially serious problem, consider carefully
- 6 ALERT level C = Check. Ensure it is not caused by an omission or oversight
- 19 ALERT level G = General information/check it is not something unexpected
- 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
- 12 ALERT type 2 Indicator that the structure model may be wrong or deficient
- 3 ALERT type 3 Indicator that the structure quality may be low
- 5 ALERT type 4 Improvement, methodology, query or suggestion
- 3 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.


Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica*, *Journal of Applied Crystallography*, *Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 12/09/2022; check.def file version of 09/08/2022

