
Long COVID is primarily a Spike protein Induced
Thrombotic Vasculitis
Robin Kerr  (  robin.kerr@borders.scot.nhs.uk )

NHS Borders https://orcid.org/0000-0003-2480-2748
Harriet A. Carroll 

Lund University https://orcid.org/0000-0002-4998-4675

Case Report

Keywords: Long COVID, post-acute sequelae of COVID-19, microclots, platelet hyperactivation,
endotheliitis, spike induced thrombotic vasculitis

Posted Date: May 18th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2939263/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

Additional Declarations:
RK is the patient described in this case. He consented to participation and publication.

https://doi.org/10.21203/rs.3.rs-2939263/v1
mailto:robin.kerr@borders.scot.nhs.uk
https://orcid.org/0000-0003-2480-2748
https://orcid.org/0000-0002-4998-4675
https://doi.org/10.21203/rs.3.rs-2939263/v1
https://creativecommons.org/licenses/by/4.0/


1 
 

Long COVID is primarily a Spike protein Induced Thrombotic Vasculitis 
 

Robin Kerr1, 2 & Harriet A. Carroll3, 4 

1NHS Borders, Melrose, UK 
2NHS Dumfries and Galloway, Dumfries, UK  
3Lund University, Malmo, Sweden 
4University of Aberdeen, Aberdeen, UK 

 

Corresponding author: Robin Kerr; robin.kerr@borders.nhs.uk; ORCID: 0000-0003-2480-

2748 

Borders General Hospital 

Melrose 

TD6 9QP 

UK 
 

Harriet A. Carroll ORCID: 0000-0002-4998-4675 

 

 
 



2 
 

Abstract 
Long COVID describes an array of often debilitating symptoms in the aftermath of SARS-

CoV-2 infection, with similar symptomatology affecting some people post-vaccination. With 

an estimated > 200 million Long COVID patients worldwide and cases still rising, the effects 

on quality of life and the economy are significant, thus warranting urgent attention to 

understand the pathophysiology. Herein we describe our perspective that Long COVID is a 

continuation of acute COVID-19 pathology, whereby coagulopathy is the main driver of 

disease and can cause or exacerbate other pathologies common in Long COVID, such as 

mast cell activation syndrome and dysautonomia. Considering the SARS-CoV-2 spike 

protein can independently induce fibrinaloid microclots, platelet activation, and endotheliitis, 

we predict that persistent spike protein will be a key mechanism driving the continued 

coagulopathy in Long COVID. We discuss several treatment targets to address the 

coagulopathy, and predict that (particularly early) treatment with combination anticoagulant 

and antiplatelet drugs will bring significant relief to many patients, supported by a case study. 

To help focus attention on such treatment targets, we propose Long COVID should be 

referred to as Spike protein Induced Thrombotic Vasculitis (SITV). These ideas require 

urgent testing, especially as the world tries to co-exist with COVID-19.  

 

Graphical Abstract 
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Background 

Long COVID (or post-acute sequelae of COVID-19) is a debilitating multi-system disease 

causing significant disability [1]. The World Health Organization [2] defined Long COVID as 

those with probable/confirmed SARS-CoV-2 infection, with symptom onset within ~3 months, 

lasting ≥ 2 months, and no alternative diagnosis. Long COVID is estimated to affect > 200 

million people globally; the majority being from those considered “mild” cases [3,4], and 

nearly a third from asymptomatic infection [5,6]. Long COVID-like presentations have also 

been described after SARS-CoV-2 vaccination [7–11]. The average Long COVID sufferer 

experiences 56 symptoms across nine body systems [1], with fatigue, cognitive dysfunction, 

dyspnoea, exercise intolerance, post-exertional symptom exacerbation (PESE), sleep 

disorders, and myalgia being most common [1,3,12–14]. With such an all-encompassing 

definition, Long COVID is likely a multi-pathology illness [10–12].  

 

Long COVID prevalence estimates vary [3,13,18,19], but studies in Scotland have shown it 
affects 1.8-3.2 % of the population [20,21], comparable to cancer (2.5 %), chronic kidney 

disease (3.2 %), chronic obstructive pulmonary disease (2.3 %), and stroke (2.2 %) [22]. 

Two meta-analyses show persistent symptoms in 43-45 % of patients after acute COVID-19 

[3,13]. Tracking studies suggesting that 85 % of those symptomatic at two months post-

infection remain symptomatic at one year [23]. Similarly, symptom resolution after 90 days 

seems uncommon [24], disabling a previously economically active population [1]. 

Consequently, the estimated economic cost may be as high as US$25 billion in the UK alone 

[25].  

Alongside its benefits in acute COVID-19, vaccination confers a modest reduction in the 

odds of developing Long COVID (13 and 9 % reduction after first- and second-dose, 

respectively [26]). However, other research shows that every SARS-CoV-2 reinfection 

increases the risk of death, hospitalisation, and/or multi-organ complications, regardless of 

vaccination status [27]. Thus, protections from vaccination appear far from absolute, 

particularly when other public health measures are being downscaled in many countries [28–
30]. Resultantly, the prevalence of Long COVID continues to rise [31].  

 

Therefore, it seems evident that: the majority of Long COVID cases are not resolving with 

time; prevalence continues to rise; and the economic costs of Long COVID disabling a 

previously productive workforce are significant. Hence, it is imperative that Long COVID 

pathophysiology is understood and treatments urgently implemented. 
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Acute COVID-19: The foundations underpinning Long COVID 
Endothelial cells have a vital role in vascular homeostasis and haemostasis, including 

regulating vascular tone, blood flow, fibrinolysis, and platelet aggregation [32–35]. Acute 

COVID-19 appears to be primarily a disease of the vascular endothelium resulting in a 

microcirculatory thrombotic vasculitis [33,34,36–43]. SARS-CoV-2 spike proteins allow viral 

attachment to target cells via to angiotensin converting enzyme 2 (ACE2) protein binding, 

followed by intracellular viral replication [42,44,45]. ACE2 is present in the tongue, nasal 

mucosa, and lungs as an initial portal of entry, as well as presenting throughout the 

vasculature in endothelial cells. This offers SARS-CoV-2 ample opportunity to spread easily 

throughout the body, including across the blood-brain barrier [33,34,37,42,46–48]. 

 

SARS-CoV-2 entry into endothelial cells downregulates ACE2 leading to a proinflammatory 

and prothrombotic milieu [34,49–51]. Endothelial injury can result from direct infection by 

SARS-CoV-2 causing endothelial cell apoptosis and endotheliitis as well as subsequent 

systemic inflammatory responses [33,34,37,39,49,51,52]. The spike protein alone can 

induce neuronal injury [53], destabilise microvascular haemostasis [54], induce thrombosis 

[55], (irreversibly) activate platelets [56–58] and impair endothelial function [43,59], with 

some effects independent of ACE2 [60] or possibly from anti-spike antibodies [61]. With 

endothelial dysfunction comes impaired vascular tone and a prothrombotic state 

[32,34,35,37,43,49].  

 

Post-mortem examination of severe COVID-19 patients has shown widespread 

coagulopathy, with alveolar capillary microthrombi being nine times more prevalent than in 

influenza A [62]. Similarly, Pretorius et al. [40] found significant clot burden in acute 

COVID-19 patients regardless of severity, compared to those with type 2 diabetes and 

healthy controls. The type of blood clots found, known as microclots, were amyloid in nature, 

thus laying the foundation for chronic post-COVID-19 sequelae.  
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Microclots 
Thrombi are known to develop from inflammation, in part due to platelet hyperactivation [63]. 

COVID-19 is a highly inflammatory disease, with potential to cause cytokine storms [64]. 

Indeed, COVID-19 activates platelets and complement, causing endothelial dysfunction 

[43,65]. The resultant proinflammatory milieu can cause immunothrombosis, particularly 

affecting the microvasculature [65]. Additionally, the S1 subunit of the SARS-CoV-2 spike 

protein can directly interact with platelets and fibrin to cause microclots [36,56,66–68].  

Specifically, the S1 subunit causes structural changes to β and γ fibrin(ogen), complement 3, 
and prothrombin resulting in extensive anomalous microclots [36,58,67–70]. Microclots 

appear to pathologically impair blood flow in systemic microcapillaries [36,71–73], including 

in the brain [48], heart [73–75], lungs [46,73,76], and kidneys [73]. These spike protein 

induced microclots are resistant to fibrinolysis creating the potential for false negative tests 

of clot lysis (e.g. D-dimer) [77] and for the microclots to persist into the pathogenesis of Long 

COVID [36,69,78]. 
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Long COVID as a coagulopathy 
There are several proposed mechanisms offering valid explanations regarding Long COVID. 

For many patients, several of these pathologies may co-exist and interact. Current ideas 

include mast cell activation syndrome (MCAS), neuroinflammation, viral reactivation, SARS-

CoV-2 and/or spike protein persistence, autoimmunity, and gut dysbiosis [9,79]. An 

increasingly recognised pathology is related to microclots, platelet hyperactivation, and 

endothelial dysfunction [36,40,43,80–82]. Herein we describe our perspective that Long 

COVID is primarily (though not necessarily exclusively) a thrombotic vasculitis.  

 

Microclots in Long COVID patients were first described by Pretorius et al. [82] who found 

fibrinolysis resistant microclots to persist abundantly in the blood, accompanied by platelet 

hyperactivation and dysregulated haemostasis. These were macroscopically visible as a 

pellet in centrifuged samples of platelet poor plasma (not seen in healthy controls or those 

with type 2 diabetes), with comparable levels to acute COVID-19 [82].  

 

Capillary occlusion 

Human capillaries are typically 5–10 μm in diameter, meaning red blood cells (~8 μm 
diameter) circulate single file aided by their (usually) flexible structure [83]. Microclots found 

in Long COVID patients have a diameter of 5-200 μm meaning they can occlude capillaries 

[82,83]. Consequently ischaemia-reperfusion injuries at a microvascular level may occur [83] 

offering an explanation for post-exertional symptom exacerbation (PESE) affecting 75-89 % 

of patients. PESE is a diagnostic criterion for myalgic encephalomyelitis, which is objectively 

demonstrated via cardiopulmonary exercise testing on consecutive days [1,83–87] and in 

subsequent prolonged recovery [88].  

 

Microvasculature occlusion offers an explanation for several other Long COVID symptoms, 

such as chest pain, which may be caused by microvasculature ischaemia [89]. Evidence of 

capillary occlusion has been demonstrated in several studies of the microvasculature of 

different organs of Long COVID patients providing evidence of systemic vascular changes 

[89–95]. Such microvascular changes include a reduction in sublingual vascular density 

comparable to severe acute COVID-19 [93] and retinal vascular density [94,95], fibrin 

thrombi occluding capillaries in the skin [92], and muscle capillary loss [90,91]. Biomarkers of 

microvascular remodelling triggered by tissue hypoxia, such as vascular endothelial growth 

factor (VEGF), have been found in Long COVID, likely as a compensation for capillary 

occlusion [96–98]. However, any new vessels formed will also be susceptible to occlusion. 

Similar compensatory angiogenesis has been observed in multiple organs of severe acute 

COVID-19 patients [99]. These findings are consistent with capillary occlusion by microclots. 

 

Coagulopathy 

Beyond “typical” Long COVID symptoms evidence of coagulopathy is found in other 

outcomes such as elevated risk of ischaemic heart disease and myocardial infarction 

following acute COVID-19 [100–102]. Risk remains elevated but reduces over time (e.g. 

acute myocardial infarction hazard ratio [HR] 1 week post-COVID-19: 22.10, 95 % 

confidence interval [CI] 21.00, 23.20, versus HR 27-49 weeks post-COVID-19: 1.75, 95 % CI 

1.50, 2.05) [100], possibly suggesting there is ongoing coagulopathic processes in some 

people. Indeed, microclots have been found > 23 months after SARS-CoV-2 infection 

[82,103–109].  
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Sustained elevation of circulating thrombogenic S1 spike subunit have been observed in 

Long COVID patients when compared to those who recovered after COVID-19 infection 

[67,110–112], which may explain continued thrombosis risk post-COVID-19 in some. 

Analysis of COVID-19-induced microclots also showed the presence of spike protein (but not 

whole SARS-CoV-2) and inflammatory markers within the clots [58,66,113]. Clot lysis 

therefore has the potential to perpetuate further clot formation and platelet activation through 

release of entrapped spike protein and inflammatory proteins, causing a vicious cycle 

[113,114]. Entrapment of inflammatory proteins can also help explain why many Long 

COVID patients have “normal” test results. 

 

Platelet activation and endotheliitis 

Although microclots are a key pathological feature in Long COVID, they are accompanied by 

hyperactivated platelets and endotheliitis [43]. Markers of endothelial damage in Long 

COVID correlate with higher symptom burden and reduced exercise tolerance [103,105–
107,109,115–121], whilst hyperactive platelets amplify and sustain endotheliitis [116] and 

therefore Long COVID [82,104,108,122,123]. Additionally, Long COVID patients with 

greatest cognitive deficits show the highest levels of cerebral hypoperfusion [124], and 

neuroinflammation [125], with plasma inflammatory markers consistent with endotheliitis 

[118,126,127]. As endothelial dysfunction is a precursor to atherosclerosis, complications of 

COVID-19 could be seen for decades to come [128].  

 

Oxygen extraction 

Microclot capillary occlusion and endotheliitis can lead to impaired systemic oxygen 

extraction [43,129–133]. Long COVID patients have higher mean blood lactate than healthy 

controls both at rest and throughout exercise, consistent with a lower anaerobic threshold 

[130]. The reduction in VO2 max in Long COVID patients is from a peripheral rather than a 

central cardiac limit due to impaired capillary oxygen extraction [130–133] and not 

deconditioning [134]. Indeed, impaired oxygen extraction has been associated with exercise 

intolerance in Long COVID patients [135] along with a proteomic signature consistent with 

endotheliitis [133]. 

 

Radiologically this is supported with xenon 129 magnetic resonance imaging scans 

demonstrating impaired pulmonary gas transfer in Long COVID patients, attributed to 

microclots, and correlating with a reduced exercise tolerance and a greater oxygen 

desaturation after exertion [136,137]. Ventilation/perfusion scans and single-photon emission 

computed tomography (CT) are preferred post-COVID-19 for evaluating capillary thrombosis 

and perfusion defects, which can be underestimated with conventional CT pulmonary 

angiogram [138], including in paediatric cases [139,140]. These findings support the concept 

of microclots, and can help explain the wide-ranging symptoms of Long COVID due to multi-

organ tissue hypoxia [129,131–133,136].  

 

Co-pathologies 

Beyond the central problem of tissue hypoxia resulting from a thrombotic vasculitis there are 

other consequences to persisting endothelial inflammation. Patients with Long COVID have 

a significantly elevated risk (HR > 80) of dysautonomia [79], with some symptoms, like 

postural tachycardia, being potentially partially explained by coagulopathy particularly early 

in disease progression [80]. The autonomic nervous system innervates blood vessels walls 



8 
 

to regulate vascular tone [32]. The sympathetic and parasympathetic fibres innervate the 

muscle layer of vessels, whereas only parasympathetic fibres innervate the endothelial layer, 

making parasympathetic fibres more susceptible to the consequences of endothelial 

inflammation [32]. Nerve ischaemia has been proposed as an aetiology [9]. Resultant 

dysautonomia, where sympathetic function predominates, which is found in a moderate to 

severe range in two thirds of Long COVID patients, is independent of initial infection severity 

[32,141] and is associated with exercise intolerance [142]. 

 

A major consequence of post-COVID-19 dysautonomia is postural orthostatic tachycardia 

syndrome (POTS) [143]. POTS aetiology is multifactorial, but endothelial disease [144], 

hyperactive platelets [145,146], tissue hypoxia [147], thromboinflammation [146], and 

enhanced sympathetic activation [144,147–149] have all been implicated. POTS causes 

abnormal cerebral blood flow and oxygenation [150,151] consistent with the end organ 

consequences of thrombotic vasculitis in Long COVID and contributes to a range of common 

Long COVID symptoms (e.g. fatigue, tremoring, dizziness) [152]. Predominant sympathetic 

activation results in symptoms which can be commonly misdiagnosed as anxiety [153–155]. 

Downregulation of ACE2 and tissue hypoxia can both reduce serotonin synthesis [156,157], 

whilst hyperactive platelets (which store serotonin) may cause serotonin depletion [113]. 

Thus, anxiety may be a consequence of coagulopathy and dysautonomia [158].  

 

Increased cases of POTS have been observed after SARS-CoV-2 infection and (five times 

less frequently) vaccination [143,159].There is increasing recognition that Long COVID 

symptoms, diagnoses, and pathophysiology can also be triggered after SARS-CoV-2 

vaccination in some patients [7,8,10,11] where spike protein persistence has been 

implicated [7–9]. With the same illnesses occurring after vaccination and infection, some 

have suggested spike protein (rather than whole virus) persistence can drive Long COVID 

and POTS pathology [7–9,11,143]. At a population level, the net benefits of vaccination 

against COVID-19 have been clearly established. However, as spike protein alone has been 

demonstrated to induce microclots in vitro [36] and a minority of those vaccinated with a 

spike protein based vaccine develop Long COVID-like syndrome, we believe this offers a 

crucial insight into Long COVID aetiology [7–9,11]. Supporting this, and in line with evidence 

presented above for Long COVID, several cases have been reported of post-COVID-19 

vaccine retinal vascular occlusion (summarised in [160]), attributed to Susac syndrome (an 

autoimmune endotheliopathy) and microthrombi, with potential links to hyperviscosity 

syndrome.  

 

Finally, MCAS appears to be a key Long COVID pathology, and is also implicated in POTS 

[161]. Mast cells are found in the vasculature and are implicated in inflammation, 

haemostasis, vaso-activity, vascular leakage, and endothelial cell activation [162] so their 

degranulation may contribute to immunological and thrombotic outcomes in COVID-19 

[163,164]. Simultaneously, the vasculature facilitates mast cell activity [162], thus platelet 

activation and ischemia-reperfusion can contribute to mast cell degranulation [83,165]. 

Several mast cell mediators are directly implicated in coagulopathy: heparin has 

anticoagulative properties but spike protein has high binding affinity with it [55]; tryptase has 

a role in fibrinolysis [166]; and VEGF is stored and secreted by mast cells [162,167]. MCAS 

therefore may be a direct result of continued coagulopathy, even if activation was initiated 

via antigen exposure. Spike protein persistence may be a chronic MCAS trigger [168]. Thus, 

whilst MCAS appears to be a co-pathology in some Long COVID patients, mitigating the 
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coagulopathy could have dual benefit via reducing (inappropriate/damaging) mast cell 

activation whilst mitigating thrombogenesis.   

 

Overall, current evidence suggests Long COVID is in most cases primarily a coagulopathy 

and a vasculopathy causing multi-system symptoms from systemic tissue hypoxia. These 

same features have been demonstrated in acute COVID-19, suggesting Long COVID is a 

continuation of thrombogenic processes occurring in acute COVID-19. That similar clinical 

presentations occur with other coagulopathic diseases, such as antiphospholipid syndrome, 

provides consilient evidence for such an idea. Long COVID is likely in many cases a Spike 

protein Induced Thrombotic Vasculitis (SITV) (Figure 1). We therefore propose the use of 

the term SITV as it is more descriptive of a unifying proposed mechanism and primary 

pathology, helps focus attention on early therapeutic interventions to avoid chronic 

complications, and offers a distinction for other pathologies that may predominate in some 

patients.  
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Figure 1. Schematic representation of our perspective that Long COVID is primarily a spike protein induced thrombotic vasculitis. We propose 

in people who recover from acute COVID, spike protein clears, whereas in those who get Long COVID, there is an inability to clear spike 

protein (which may include persistent SARS-CoV-2 virion). Both the spike protein and resultant inflammation induce microclots and 

hyperactivated platelets (as well as activating mast cells), triggering an uninhibited clotting cascade. In response, mast cells are activated which 

may also contribute to continued coagulopathy and inflammation. Whilst in many patients polypharmacy is needed to tackle the co-

pathology(ies) (not all of which are outlined herein), targeting coagulopathy seems essential to mitigate thrombotic risks and help mitigate other 

immunogenic cascades.  
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Potential treatments  
Therapeutic endeavours for Long COVID to date have predominantly focused on 

rehabilitation and psychological therapy [169], perhaps borne out of the impression that 

patients with Long COVID are recovering from acute COVID-19 rather than suffering 

ongoing pathology. Considering such pathology, these treatments can be harmful, e.g. due 

to PESE [1,87,170]. Indeed, rehabilitation is largely ineffective at improving Long COVID 

symptoms [169]. We contend that Long COVID patients (those with SITV) will not be ready 

to rehabilitate until the underlying illness and its complications have been effectively treated. 

The treatment targets for SITV are microclots, hyperactive platelets, and endotheliitis. It has 

been proposed that treating this multifaceted inflammatory coagulopathy with a single drug 

will be insufficient and a combination of anticoagulant and antiplatelet drugs are required to 

achieve synergistic and superior outcomes [81,114,156], with early intervention 

recommended [43,114,156]. 

Anticoagulants 

Anticoagulants target clotting. In acute COVID-19, favourable outcomes have been 

hypothesised and achieved when targeting coagulopathy [38,171,172], and anticoagulants 

are recommended by NICE under certain circumstances [173]. In one case series of Long 

COVID patients, early treatment with apixaban 5 mg B.I.D. (with aspirin, clopidogrel, and a 

proton pump inhibitor) for ≥ 1 month resulted in symptomatic resolution in 24/24 patients 

[81]. Symptomatic improvement also correlated with a reduction in microclots and 

hyperactive platelets. Another case series (n = 91) of anticoagulation/antiplatelet treatment 

showed 74-87 % of patients reporting improvement in nine key symptoms and a concurrent 

reduction in microclots, but one gastrointestinal bleed [80].  

As Long COVID microclots are resistant to fibrinolysis [36,69,78], dabigatran may be 

superior as it increases clot susceptibility to fibrinolysis more than other anticoagulants 

[174,175]. Heparin inhibits spike protein ACE2 binding meaning it has antiviral and 

anticoagulant properties [60,176–178]. Heparin has been utilised to effectively treat 

pathology such as Long COVID-related perfusion defects [139], as well as microclots in the 

context of pulmonary emboli [179]. Further, obstetric patients (n = 291) with Long COVID 

who received enoxaparin antenatally to six weeks postnatally reported ongoing Long COVID 

symptoms less frequently than those who did not [180]. 

Antiplatelets 

Treatment targets with antiplatelets are hyperactive platelets and endotheliitis. Emerging 

evidence suggests a unique role for P2Y12 inhibitors (e.g. ticagrelor, clopidogrel) which 

attenuate platelet and endothelial cell interaction, therefore reducing platelet activation, 

endotheliitis, and clot formation more potently than aspirin [58,116]. In patients hospitalised 

with acute COVID-19, favourable outcomes (e.g. lower mortality) have been found with 

antiplatelet medications, with higher survival seen with dual antiplatelet treatment, without 

increased risk of bleeding [181,182]. Others have found improved perfusion with tirofiban, 

along with aspirin, clopidogrel and prophylactic dose anticoagulant [183]. In a randomised 

controlled trial, hospitalised patients receiving aspirin had similar rates of 28-day mortality 

(versus standard care), but a slightly shorter hospital stay, and a higher proportion 

discharged alive within 28-days [184]. Further, aspirin use was associated with a 0.6 % 

absolute risk reduction in thrombotic events, although a 0.6 % absolute risk increase in 

major bleeding events [184].  
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In terms of Long COVID, obstetric patients taking 325 mg/d aspirin were more likely to report 

symptomatic improvement than those who were not [180]. In a case series of 24 Long 

COVID patients, aspirin has been shown to reduce hyperactive platelets as a single agent 

but required the addition of apixaban and clopidogrel to reduce microclots [81]. Similar 

findings were reported in a larger case series (n = 91), showing reduced platelet activation 

after anticoagulation with dual antiplatelets [80]. Considering emerging evidence of Long 

COVID-like vaccine reactions, we note that aspirin has previously been explored as a 

method to reduce acute vaccine-induced endotheliitis [185] which is an area requiring further 

research.  

Selective Serotonin Reuptake Inhibitors  

Selective serotonin reuptake inhibitors (SSRIs) have potential in Long COVID via multiple 

coagulopathy-related mechanisms. SSRIs reduce (endothelial) inflammatory markers, such 

as interleukin-8 [186], including in COVID-19 [127], with antidepressants being associated 

with lower Severe Adult Respiratory Distress Syndrome and need for mechanical ventilation 

[126]. Sertraline binds to the S1 subunit blocking its interaction with ACE2 [187] which may 

be important considering growing evidence SARS-CoV-2/spike protein persistence in Long 

COVID [79].  

SSRIs have antiplatelet [188], endothelial protective [189], and mast cell stabilising [190] 

properties. Such effects appear to be favourable in the context of acute COVID-19 [190], 

including reduced risk of clot formation [191]. Sertraline appears to have additional 

antiplatelet and endothelial protective properties in patients already treated with aspirin and 

clopidogrel (in a non-COVID-19 context) [189]. SSRIs may also directly target the 

neuroinflammation prominent in Long COVID [192,193] . 

Overall, SSRIs have multiple mechanisms of action which seem pertinent to SITV. Studies 

have found an association between SSRIs and favourable outcomes in acute COVID-19 

[194,195], suggesting they may positively influence underlying pathophysiology. Whilst 

research is warranted, since the pathophysiology is similar to acute COVID-19, we predict 

SSRIs may have a role in the treatment of SITV. In addition to the drugs described above, 

there are several other therapeutics outside the scope of this perspective that offer potential 

via similar and other mechanisms (e.g. fibrinolytics, statins). We encourage research on 

these therapeutics.  
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Case study 

Evidence on aggressively targeting post-COVID-19 coagulopathy is limited, with no 

randomised controlled trials published to our knowledge. As such, we present the case of a 

healthy male healthcare worker, age 36 years at the time of his first SARS-CoV-2 infection 

(April 2020). Baseline cardiovascular fitness was sufficient to cycle 160 km in a day. 

COVID-19 symptoms included cough, fever, dyspnoea, diarrhoea, rashes, anosmia, and 

fatigue, with desaturation (88-92 %) upon minimal exertion, including when supine.  

 

Bloodwork was normal three weeks post-infection (Table 1). In the absence of recognised 

treatment for Long COVID, no further medical evaluation was sought for over a year. 

Ongoing symptoms included: dyspnoea, desaturation upon minimal exertion; myalgia 

consistent with claudication with most physical activities; extreme fatigue; exercise 

intolerance; cognitive dysfunction; sleep disturbance; and PESE. Symptoms deteriorated 

with each COVID-19 vaccination (all BNT162b2). POTS was diagnosed after the third 

vaccination. 
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Table 1. Tests conducted on our case 

 Reference 
range 

Post-infection 1* Post-infection 2* 
 April 2020 June 2021 July 2021 Oct 2021 Nov 2021 Dec 2021 Jan 2022 Feb 2022 April 2022 
Haematology          
Full blood count  Normal Normal - - Normal - Normal - - 
D-dimer (ng/mL) 0-230 63 - - - 253 - - - - 

Blood film  - 
Platelet 

clumping 
- - - - - - - 

Prothrombin time (s) 10.5-13.5 - - - - 10.4 - - - - 
aPPT  - - - - Normal - - - - 
Fibrinogen  - - - - Normal - - - - 
ESR (mm/h) 0-10 - - - - 15 - 15 - - 
Liver and kidney function          
Liver function tests  Normal Normal - - - - - - - 
Urea and electrolytes  Normal Normal - - Normal - - - - 
Immunology          
C-reactive protein  Normal - - - - - - - - 
Coelaic serology  - Normal - - - - - - - 
Endocrinology          
TSH  - Normal - - Normal - - - - 
Testosterone  - - - - Normal - - - - 
Biochemistry          
Calcium  - Normal - - Normal - - - - 
Glucose   - Normal - - Normal - - - - 
Total protein (g/L) 60-78 - - - - 83 - - - - 
Imaging          
Chest X-ray  Normal - - - - - - - - 
Electrocardiogram  Normal - - - - - - - - 
CTPA and HRCT  - - Normal1 - - - - - Normal 
Other tests          
NASA lean test (↑HR, bpm) < 30 - - - > 40 - - - > 70 - 
Spirometry  - - - - - Normal3 - - - 
CPET (without 
catheterisation) 

 - - - - - Normal4 - - - 

* Infection 1: Polymerase chain reaction test positive 07/04/2020; Infection 2: Lateral flow test positive 17/02/2022; Infection 3: Lateral flow test positive 

11/12/2022 (no further testing after infection 3) 

SARS-CoV-2 vaccinations, all BNT162b2, were administered on 24/12/20, 09/02/21, and 02/10/21. 
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Abnormal results in bold with grey background.  
1 No filling defect within pulmonary arteries down to and including first order subsegmental level. No evidence of right heart or central pulmonary artery 
dilation.  No focal/diffuse parenchymal/airway abnormality identified. 
2 Accompanied by pre-syncope 
3 Forced expiratory volume in 1 second (FEV1)  4.72 (107 %); Forced vital capacity (FVC) 5.85 (107 %); FEV1/FVC 0.81; total lung capacity 7.41 (101 %); 

residual volume 1.56 (79 %) 
4 VO2 max 106 % predicted; Peak watts 114 % predicted  

Abbreviations: ↑HR, heart rate increase; aPPT, activated partial thromboplastin time; CPET, cardiopulmonary exercise testing; CTPA, computerised 

tomography pulmonary angiogram; ESR, erythrocyte sedimentation rate; HRCT, high-resolution computerised tomography; TSH, thyroid stimulating hormone 
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Based on emerging evidence of inflammatory aetiology in Long COVID, treatment of 

prednisolone [196] tapered over two weeks was initiated 17 months post-infection (Figure 

2). From week two, there was a notable improvement in breathing, claudication, exercise 

tolerance and cognition. After completion of the prednisolone course, symptoms reverted to 

baseline, suggesting there was an underlying vasculitis/endotheliitis that steroids temporarily 

compensated, but there remained a trigger to ongoing pathology (microclots and hyperactive 

platelets). Furthermore, if the driver to symptoms was chronic SARS-CoV-2 infection (as 

opposed to spike protein persistence) then a deterioration rather than a benefit would be 

expected with steroids.  

 

 

Figure 2. Medications initiated in our case, their respective durations, their timing relative to 

each SARS-CoV-2 infection, and correlation with sustained symptomatic benefit or symptom 

resolution.  For sustained symptomatic benefit a combination of 2-3 antiplatelet drugs ± an 

anticoagulant were required. 

 

 

At 20 months a respiratory-physiotherapist verified ongoing desaturations with climbing 

stairs, which has been shown to correlate with perfusion deficits [136,197]—consistent with 

current understanding of microclots and further supported by 100 % of Long COVID patients 

tested so far in research having microclots and hyperactivated platelets [81,82]. These tests 

are being developed for clinical use [198]. At 21 months, aspirin, clopidogrel, dabigatran, and 

omeprazole were initiated (Figure 2). Without access to thromboelastography to monitor 
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coagulation status, treatment duration was one month based on published treatment 

approaches at the time [81], whilst continuing dabigatran alone into a second month (Figure 

2) given the clinical picture was consistent with pulmonary microemboli. Treatment decisions 

conformed with UK guidance on unlicensed prescribing where the consultations took place 

[199]. There were no adverse bleeding events. 

 

Symptomatic deterioration occurred in the first two weeks, which we propose was due to 

release of inflammatory markers within degraded microclots exacerbating endotheliitis [113] 

and/or widespread ischaemia-reperfusion injury [83]. From the third week there was daily 

incremental symptomatic improvement, which sustained beyond treatment completion.  

 

SARS-CoV-2 reinfection occurred the following month causing the return of previously 

resolved (from triple anticoagulation) symptoms, plus an exacerbation of POTS. The patient 

received molnupiravir, prednisolone, and aspirin without symptomatic benefit. Sertraline was 

initiated principally for POTS and low mood with improved symptoms and tachycardia, in line 

with previous reports [200,201], but also for its antiplatelet and anti-inflammatory properties. 

With the return of dyspnoea, desaturations, and other symptoms, aspirin, clopidogrel, 

dabigatran, and omeprazole were recommenced, alongside sertraline acting as a third 

antiplatelet drug (Figure 2). Improvement followed a similar pattern to the initial triple 

anticoagulation course. Treatment was extended to eight weeks with full symptomatic 

resolution and return to employment and exercise. Thereafter, all treatment was stopped, 

except sertraline as a continued therapy for POTS.  

 

The patient remained in good health for seven months, until their third SARS-CoV-2 

infection, with the return of dyspnoea, cognitive dysfunction, and fatigue. This was the first 

infection where the patient was taking sertraline at the outset. Aspirin, clopidogrel, and 

omeprazole were restarted for one month. An exacerbation of POTS required the addition of 

a titrated dose of bisoprolol [201]. During this infection, there was no sustained 

desaturations, myalgia, claudication, or PESE. The initial symptoms were not sustained. We 

attribute this to early intervention targeting viral load and hyperactive platelets from the 

outset, but cannot rule out other factors, such as acquired immunity, as well as a less 

virulent and coagulopathic SARS-CoV-2 variant [202].  

 

  



18 
 

Conclusion 

A growing body of evidence supports that Long COVID is primarily a coagulopathic and 

endothelial disease. We propose the use of the term SITV as it describes the 

pathophysiology of post-COVID-19 and post-vaccination Long COVID presentations, and 

helps focus attention on early therapeutic intervention targeting microclots, hyperactive 

platelets, and endotheliitis. This multifaceted coagulopathy requires synergistic 

polypharmacy to achieve symptomatic resolution, as described in our case report. 

Thromboelastography can be utilised to mitigate bleeding risk. Our perspective does not 

negate the need to find and treat other pathologies common in Long COVID, but does 

highlight how coagulopathy can cause, exacerbate, and interact with other pathologies. 

Future research should investigate the efficacy of (particularly early) aggressive 

anticoagulation and antiplatelet treatment following COVID-19 infection (or similar post-

vaccine sequelae) in averting or treating Long COVID.  
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