
A Parameter calibration
In the following we describe how we obtained the ecologically feasible values/ranges for the model parameters in (1).

• Amax (the adult tree carrying capacity) is estimated from Barro colorado Island (BCI) data reporting the total aboveground
biomass densities of 28−30kg ·m−2 in55. We rounded this up to 30kg ·m−2.

• gS (the seed growth rate) is computed as the ratio gS =
gsp

S gbc
S

Amax
, where gsp

S is the average seed production and gbc
S is the

average seed weight. According to the data presented in56, gsp
S is around 0.15 seeds y−1 ·mm−2, which corresponds to

15 ·104 seeds y−1 ·m−2. The mass of a single seed varies between 0.002−1g57–59. Therefore we obtain

gS =
15 ·104 · (0.002−1) ·10−3

30
y−1 = (0.01−5)y−1. (7)

• kS (seeds’ turnover rate) is computed as an average total seed turnover rate of 1-6 y−1 based on a review of seed longevity
as observed in tropical forests globally60.

• gN (the transition rate from seeds to seedlings) is given by the product of two factors gN = gt p
N ·gbc

N , where:

– The seed-to-seedling transition probability gt p
N is calculated using BCI data as follows: 1−7% of seeds in the seed

bank germinates after gap formation61. Also, there is a difference of approximately 2-3 orders of magnitude between
seed production and seed germination, which quickly follows production62. Therefore, we can conclude that 1% of
seeds typically germinates. Assuming a maximum of 60% reduction of seedlings due to density-dependent effects,
and that 1% germination is observed after these effects occurred, we obtain gt p

N = 0.01/0.4 = 0.025y−1. (Note:
We expect this value to be smaller than kS.)

– A biomass conversion factor gbc
N due to the increase in biomass coinciding with the transition from seed to seedling

. This conversion factor is given by the ratio between the biomass of a seedling and the biomass of a seed. The
former is estimated to be 10 g on average (e.g.63, 64); i.e. gbc

N = 10
(0.002−1) = 10−5000.

Consequently, we have that

gN = 0.025 · (10−5000)y−1 = 0.25−125y−1. (8)

• β and rT (establishment sensitivity to toxicity parameters) correspond to parameters β and γ in6, respectively. Therefore,
β = 10−5 and rT ∈ [0,68] (mimicking woody plants).

• kN (death rate of the seedlings) is based on65, according to which 2−74% of the seedlings have died after two months.
Therefore, kN ∈ [0.02,0.74].

• rP (the increased mortality of seedlings due to the inhibitor) is obtained by assuming that when I reaches its equilibrium
values I∗ (see Section B) the mortality increases by a factor X ∗kN , with 0.3 < X < 0.966, 67. Since the absolute maximum
increased mortality observed in empirical studies, i.e. the reduction that happens when I reaches the theoretical maximum
toxicity level I (= Amax with our parameter choice), is 90% (e.g.68), we get 0.2 < rP < 0.7.

• gA (the transition rate from seedlings to adults is given by the relation gA = gt p
SS ·g

t p
SA ·gbc

A , where

– The seedling-to-sapling transition rate gt p
SS is 0.0025−2% according to59.

– The sapling-to-adult transition rate is estimated as 0.015−0.1%, based on69–71.

– The seedling-to-adult biomass conversion rate gt p
SAis given by the ratio between the biomass of a sapling and the

one of an seedling. In particular, the sapling biomass is assumed to span between 1 and 10 kg, with a median value
of 5 kg72–74.

Therefore, we have

gA = [(0.000025−0.02) · (0.015−0.1) ·5/0.01] y−1 = 0.00019−1y−1. (9)



• cA (the growth rate in adults’biomass density) is calculated by imposing that the maximum growth rate (given by cA Amax
4 ,

i.e. the logistic function cA A
(

1− A
Amax

)
evaluated at the maximum A = Amax

2 ) is equal to 2 kg ·m−2 ·y−175, 76. This gives

cA = 4
15 y−1, which can be rounded off to 0.25y−1.

• kA (the mortality rate of adult trees) is assumed to be proportional to the inverse of the average longevity of an adult,
which is approximately 100y77, 78. We then consider kA = 0.01y−1.

• cT (the growth rate of inhibitor density due to adult tree density) is computed based on the ecologically reasonable
assumption that the response time in the presence of an adult tree biomass is relatively rapid (order of half a year to
year before soil equilibrates, see e.g.79). In average, we then get cT = 0.7y−1. We observe that cT > kA, since toxicity
increases also when adults are living.

• kI (the toxicity decay rate), analogously to cT , is calculated based on the assumptions that the pathogens effect disappears
quite quickly (around half a year to a year) after adult trees are removed. Therefore, we consider kI = 0.7y−1.

• dS (the diffusion coefficient for seeds) was derived using empirically derived seed dispersal kernels80. Specifically, using
we first simulated seed distribution patterns around a single adult tree based on a typical empirical seed dispersal kernel80,
and then approximating this distribution by a Gaussian. This Gaussian distribution could then be reproduced with a
diffusion model, selecting the diffusion coefficient that provided the best fit to this Gaussian distribution. Through this
procedure, we obtained best-fitting values within the range dS = 3−4m2 y−1.

• dI (the diffusion coefficient of toxicity) this spatial parameter is more challenging to parameterize than dS, as direct
observations are not available (in contrast to observed seed dispersal patterns). Hence, our general approach is to vary dI ,
while keeping all other parameters fixed, to identify the range for which JC distributions emerge. To set the upper bound
of the range to be considered, we relied on previous studies suggesting that negative density-dependent effects occur
within a range of 30 m around adult trees11, 15, 22

B Steady-states
The steady-states of System (1) are given by the solutions to the following system

0 = gS ·A− kS ·S, (10a)

0 =
gN ·S

1+β · erT ·I
−
(

kN +gA

(
1− A

Amax

)
+ rP · I

)
·N, (10b)

0 = (gA ·N + cA ·A) ·
(

1− A
Amax

)
− kA ·A, (10c)

0 = cT ·A− kI · I. (10d)

Because of the complexity deriving by the exponential term in the denominator of Equation (10b), this system has been carefully
studied in its corresponding nondimensional form in27, to which we refer for further details. For the purpose of the current
paper, however, we merely recall that System (10) admits two solutions given by

E∗0 = (S∗0,N
∗
0 ,A

∗
0, I
∗
0 ) = (0,0,0,0) , (11a)

E∗1 = (S∗1,N
∗
1 ,A

∗
1, I
∗
1 ) =

gS ·A∗

kS
,

gS f
(

A∗
kI

)
kS

(
kN + rP

kI
A∗+gA

(
1− A∗

Amax

)) A∗, A∗,
cT ·A∗

kI

 , (11b)

where A∗ is the unique solution of

f
(

A
kI

)
A = g(A)A,

with

f (X) :=
gN

1+β · erT ·X
,

g(X) :=
kS

(
cA

(
X

Amax
−1
)
+ kA

)(
gA ·X−Amax

(
gA +

rP·X
kI

+ kN

))
gA ·gS (X−Amax)

.



C Additional plots for S, A, and I
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Figure 8. Numerical investigation of the NF influence on the emergence of Janzen-Connell distributions by means of
exclusively growth inhibition (top row) and increased mortality (bottom row) for S ((a), (d)), A ((b), (e)), and I ((c), (f)). The
plots show the variables’ profiles at time t = tmax (where the maximum amplitude for N is reached, indicated in the legend)
obtained by simulating System (1) for different values of the establishment sensitivity to autotoxicity parameter rT ,
corresponding to different percentages of rref

T = 68m2 kg−1 (top row), and different values of rP representing the increased
mortality induced by soil-borne pathogens, corresponding to different percentages of rref

P = 2m2 kg−1 y−1 (bottom row). The
other parameter values are fixed as given in Section 2.3. The corresponding N profiles are shown in Figure 4.
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Figure 9. Numerical investigation of the seed dispersal influence on the emergence of Janzen-Connell distributions for S (a),
A (b), and I (c). The plots show the variables’ profiles at time t = tmax (where the maximum amplitude for N is reached,
indicated in the legend) obtained by simulating System (1) for different values of the seed dispersal coefficient dS,
corresponding to different percentages of dref

S = 3m2 y−1 (the other parameter values are fixed as in Section 2.3). The
corresponding N profile is shown in Figure 6.
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Figure 10. Numerical investigation of the influence of different growth/defence approaches on the emergence of
Janzen-Connell distributions for S (a), A (b), and I (c). The plots show the variables’ profiles at time t = tmax (where the
maximum amplitude for N is reached, indicated in the legend) obtained by simulating System (1) for a species with faster
growth, weaker defence (gA = 0.9y−1 and rP = 2m2 kg−1 y−1, dotted line) and slower growth, stronger defence mechanisms
(gA = 0.02y−1 and rP = 0.1m2 kg−1 y−1, dashed line), respectively (the other parameter values are fixed as in Section 2.3).
The corresponding N profile is shown in Figure 6.


	Parameter calibration
	Steady-states
	Additional plots for S, A, and I

