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Materials and Methods 14 

In silico simulations of colonization outcomes 15 

We generated synthetic data of colonization outcomes using the generalized Lotka–Volterra (GLV) 16 

model (1):  17 

𝑑𝑥𝑖(𝑡)

𝑑𝑡
= 𝑥𝑖(𝑡)[𝑟𝑖 + ∑ 𝑎𝑖𝑗𝑥𝑗(𝑡)𝑁

𝑗=1 ], 𝑖 = 1, ⋯ , 𝑁.    (1) 18 

Here 𝑥𝑖(𝑡) represents the absolute abundance of the i-th species at time 𝑡 ≥ 0. The pair-wise 19 

microbial interaction is presented by the matrix 𝐴 = (𝑎𝑖𝑗) ∈ ℝ𝑁×𝑁, with 𝑎𝑖𝑗 > 0 (< 0, or = 0) 20 

means that species-j promotes (inhibits or does not affect) the growth of species-i, respectively. 21 

The ecological network 𝐺(𝐴) is constructed using an Erdős-Rényi random graph model (2) with 22 

𝑁  nodes (i.e., species) and connectivity 𝐶  (i.e., the probability connecting two species). To 23 

generate the interaction matrix 𝐴 of ecological network, for each link (𝑗 → 𝑖) ∈ 𝐺(𝐴) with 𝑗 ≠24 

𝑖, we draw 𝑎𝑖𝑗 from the normal distribution ℕ(0, 𝜎). All other entries of 𝐴 are set to be zero. 25 

The intrinsic growth rate vector 𝑟 = [𝑟𝑖] ∈ ℝ𝑁  is drawn from a uniform distribution 𝒰(0,1). 26 

Each local community includes 𝑁𝑠  species randomly drawn from the (𝑁 − 1)  species 27 

(excluding the exogenous species) and 𝑁𝑠=30 in all simulations. 28 

To examine the performance of colonization outcome prediction in communities with varying 29 

levels of network complexity, we tuned the network connectivity 𝐶 from the set [0.3, 0.4, 0.5]. In 30 

addition, to evaluate the sample size required for accurate prediction, we systematically tuned the 31 

size of training samples Strain/N from 0.5 to 10. An independently generated set of 100 samples 32 

were used as test data to evaluate the models. To generate the training samples for classification, 33 

we selected 1,100 local communities where the post-invasion steady-state abundance of the 34 

exogenous species is above 0.05 (i.e., the threshold used to determine successful colonization) in 35 

half of the local communities, and below 0.05 in the other half. To generate the training samples 36 

for regression, we selected 1,100 local communities in which the post-invasion steady-state 37 

abundance of the exogenous species follows the log-normal distribution (mean=-3, standard 38 

deviation=0.5).  39 

 40 

Colonization outcome prediction by machine learning models 41 

We developed a deep learning model for Colonization Outcome Prediction using the Neural 42 

Ordinary Differential Equations (COP-NODE) (3). The architecture of COP-NODE consists of 43 

two fully collected layers, and each fully connected layer (with dimension 𝑁) is followed by a 44 

normalization layer and a ReLU activation layer. The final layer is Sigmoid activation. The Adam 45 

optimizer was used for the optimization with a learning rate 0.01 for both classification and 46 

regression. The loss function is CrossEntropy for classification and SmoothL1Loss for regression 47 
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(4). We randomly selected 20% of training samples as the validation set to select the best model 48 

and hyperparameters. For classification, we tuned the batch size from the set [16, 32, 64] and the 49 

hyperparameter β (the threshold to change between L1 and L2 regularization) from the set [0.001, 50 

0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1]. Other machine learning models used in this study, including Logistic 51 

Regression, Elastic Net, Random Forest classifier, and regressor, were implemented using the 52 

Python package scikit-sklearn (5). We used randomized search on hyperparameters and 3-fold 53 

cross-validation to optimize the AUROC for classification and R2 for regression. The regression 54 

models were trained to predict the log-transformed abundance of the exogenous species. 55 

 56 

Collection and preservation of human stool samples  57 

Stool samples were collected from healthy human donors and were immediately transferred to an 58 

anaerobic workstation (85% N2, 10% H2 and 5% CO2, COY). 10g of each stool sample was 59 

suspended into 50mL 20% glycerol (v/v, in sterile phosphate-buffered saline, with 0.1% L-cysteine 60 

hydrochloride), homogenized by vortexing, and then filtered with sterile nylon mesh to remove 61 

large particles in fecal matter. Aliquots of the suspension were stored in sterile cryogenic vials and 62 

frozen at -80 °C for long-term storage until processing for DNA extraction and culturing so that 63 

the stool-derived community could be revived (thawed) for repeatable experiments. The collection 64 

of human stool samples from volunteers at SIAT (referred to as “SIAT cohort”) were approved by 65 

the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (SIAT-IRB-66 

200315-HO438). 67 

Large-scale cultivation of human stool-derived in vitro communities 68 

20ul stool slurries aliquot stocks were inoculated into 980 μL medium containing antibiotics in 69 

triplicate into 96 deep-well plates (PCR-96-SG-C, Axygen) for static culturing at 37 °C for 24h in 70 

the anaerobic workstation. The concentration for each antibiotic was evaluated as described in the 71 

SI method. The medium (MiPro) used for in vitro culture was modified from previous studies, 72 

which comprises: peptone water (2.0 g /L, CM0009, Thermo Fisher), yeast extract (2.0 g /L, 73 

LP0021B, Thermo Fisher), L-cysteine hydrochloride (1 g/ L), Tween 80 (2 mL/L), hemin (5 mg/L), 74 

vitamin K1(10 μL/L), NaCl (1.0 g /L), K2HPO4 (0.4 g/L), KH2PO4 (0.4 g/L), MgSO4⋅7H2O 75 

(0.1 g/L), CaCl2⋅2H2O (0.1 g/L), NaHCO3 (4 g/L), porcine gastric mucin (4 g/L, M2378, Sigma-76 

Aldrich), sodium cholate (0.25 g/L) and sodium chenodeoxycholate (0.25 g/L) (6). After 24h of 77 

antibiotics treatment, in vitro microbial communities were passaged every 24 h with a 1:200 78 

dilution into fresh medium using the automated 96-format Thermo Scientific™ ClipTip™ 79 

(Thermofisher) pipette (every 24h, 5 μL of this saturated culture was transferred into 995 μL of 80 

fresh medium). After 5 days of passaging, 500 μL of the cultures were mixed with 500 μL sterile 81 

40% glycerol (v/v, in sterile phosphate-buffered saline, with 0.1% L-cysteine hydrochloride) in 82 

crimp vials, sealed, and stored as baseline communities at −80 °C for further usage and long-term 83 
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storage. After each transfer, the remaining samples were centrifuged to remove the supernatant, 84 

and the pellets were stored at -80°C with a plastic seal until DNA extraction. The in vitro microbial 85 

community biomass was evaluated by measurement of optical density (OD600) with an Epoch 2 86 

plate reader (BioTek) after 24h of incubation. 87 

 88 

Generation of baseline communities with diverse taxonomic profiles 89 

To examine if in-vitro stool-derived communities can reach stable states and display diverse 90 

compositions, we collected stool samples from healthy donors and grew them in MiPro medium, 91 

which has shown its capability in capturing and maintaining the diversity of in vitro stool-derived 92 

communities (6-8). We inoculated the stool aliquots into 96-well plates with growth media and 93 

incubated them in an anaerobic workstation in triplicate, passing them every 24h with a 1:200 94 

dilution. The microbial communities were assessed by shallow metagenomic sequencing, which 95 

is a cost-effective method for characterizing species-level composition of microbiota samples (9). 96 

We collected time-series data to examine the dynamics of community establishment on the in-vitro 97 

platform. The metagenomic analysis revealed that, after an initial period of approximately four 98 

days, the composition profiles of almost all in vitro communities reached a stable and reproducible 99 

steady state. Our analysis also showed that the stool-derived in vitro communities were highly 100 

complex in their compositions and could retain personalized gut microbiota variation, as evidenced 101 

by species-level time-series compositions of 4 representative communities derived from 4 donors 102 

over ten rounds of in vitro passaging in MiPro (Fig.S4A,B). 103 

 104 

From the fecal samples of SIAT cohort, we selected 24 donors in which E. faecium and A. 105 

muciniphila were not detected by metagenomic sequencing. To increase the diversity in baseline 106 

communities, we treated each donor’s sample with 12 antibiotics from different classes (10) 107 

(Fig.S2). Different antibiotic classes target distinct spectra of bacteria, leading to a remodeling of 108 

the community in different directions (10). We selected antibiotics from different classes as 109 

described in the EUCAST databases (11). The optimal concentrations of the antibiotics were 110 

determined based on a previous study that evaluated the activity spectrum of antibiotic classes on 111 

human gut commensals (10). We tested at least three different concentrations for each antibiotic 112 

and evaluated the optimized dose based on its ability to partially inhibit (50%-80%) the overall 113 

growth of stool-derived bacteria as measured by OD600 after 24h of incubation. To ensure 114 

reproducibility, we screened at least three different stool aliquot stocks as biological duplicates for 115 

each antibiotic. We measured the OD600 of each well every 30 minutes using an Epoch 2 plate 116 

reader (BioTek) and collected growth curves up to 24h.  117 

 118 

Bacterial strains  119 

Enterococcus faecium, Enterococcus faecalis and Clostridium symbiosum, Streptococcus 120 
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salivarius and Bifidobacterium breve strains were isolated from fecal samples of SIAT cohort. 121 

Taxonomy of isolates from SIAT cohort was confirmed by whole genome sequencing. Genome 122 

sequences have been deposited in PRJEB60398 (see data availability). Lactobacillus plantarum 123 

HNU082 (12), Lactobacillus paracasei HNU312 (13) was provided by Prof. Jiachao Zhang from 124 

Hainan University. Akkermansia muciniphila (ATCC BAA-835) and Fusobacterium nucleatum 125 

(ATCC 25586) were purchased from ATCC. 126 

 127 

Profiling the colonization outcomes of different exogenous species 128 

We conducted a preliminary experiment to investigate the colonization outcome of gut microbial 129 

communities to different exogenous species (Fig.S5), including: E. faecium, A. muciniphila (14), 130 

F. nucleatum, S. salivarius, B. breve and Lactobacillus spp. (L. plantarum HNU082 and L. 131 

paracasei HNU312). We identified 12 stool samples from healthy donors in which the selected 132 

invader species were undetectable in the microbiota. We then cultured the stool samples in vitro 133 

and exposed them to antibiotics before introducing the exogenous species (~5% of total biomass, 134 

approximately 106 CFUs for each well) into the community. We used shallow metagenomic 135 

sequencing to monitor the time-series and final community composition.  136 

 137 

Invasion experiments of E. faecium and A. muciniphila 138 

To conduct invasion experiments, frozen stocks of E. faecium (strain SIAT_DA797) and A. 139 

muciniphila (strain ATCC_BAA-835) were grown anaerobically in BHI and mGAM at 37℃, 140 

respectively, until stationary phase. In vitro microbial baseline communities, stored at −80°C, were 141 

thawed and revived by adding 20 μL of the stocks to 980 μL of MiPro medium in deep well plates. 142 

After incubation for 24 hours at 37°C, community biomass was measured by OD600, and 5 μL of 143 

the saturated cultures were diluted into 1 mL of fresh MiPro in a new plate. Each well was invaded 144 

with the respective amount of E. faecium or A. muciniphila, with biomass representing 5% of the 145 

inoculated communities' average biomass. The inoculum was passaged every 24 hours of 146 

incubation, with a 1:200 dilution into fresh medium for 8-10 passages until the community reached 147 

a steady state (10 passages for E. faecium, 8 passages for A. muciniphila, based on data from 148 

Fig.S5). After each passage, the remaining samples were centrifuged to remove the supernatant, 149 

and the pellets were stored at -80°C with a plastic seal in plate until DNA extraction. 150 

 151 

Metagenomic sequencing and taxonomic profiling 152 

DNA was extracted from 200 mg of stool samples using the QIAamp Power Fecal Pro DNA Kit 153 

(Qiagen) according to the manufacturer’s instructions. For stool-derived in vitro-cultured samples, 154 

500 uL of cultured samples were used for DNA extraction with the DNeasy UltraClean 96 155 

Microbial Kit (Qiagen) using an automated protocol at Tecan Freedom EVO 200. The Hieff NGS® 156 

OnePot II DNA Library Prep Kit for Illumina® (Yeasen) was used for library preparation, following 157 
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the manufacturer’s instructions. The resulting library DNA was cleaned up and size-selected with 158 

Hieff NGS® DNA Selection Beads (Yeasen), and quantified using the dsDNA High Sensitivity kit 159 

on a Qubit (Thermo Fisher). Libraries were further pooled together at equal molar ratios, and the 160 

purity and library length distribution were assessed using Bioanalyzer High Sensitivity DNA Kit 161 

(Agilent). Sequencing was performed on the Illumina HiSeq X Ten system (150bp paired-end 162 

reads; Annoroad Gene Technology Co.), with a target sequencing depth of 0.3 Gbp raw data per 163 

sample, as recommended by previous studies (9).  164 

 165 

Samples with fewer than 105 clean reads were excluded from downstream analysis. Prior to 166 

analysis, reads were trimmed using the following criteria: (1) Removing reads with more than 50% 167 

of the base below quality score 19; (2) Removing reads with more than 5% of the base being N; 168 

(3) Discarding paired-end reads if either of the paired reads did not meet the above criteria. 169 

Microbial community composition from metagenomic sequencing data was generated using the 170 

SHOGUN pipeline and the RefSeq database version 82, as described in previous studies (9, 15). 171 

Species-level abundance profiles were filtered by using a relative abundance threshold of 0.0001 172 

(0.001) for all taxa in colonization prediction of E. faecium (A. muciniphila), and those low-173 

prevalence taxa (present in less than 20% samples) were further filtered to reduce the feature 174 

number. The colonization outcomes were evaluated based on the invader's absolute abundance in 175 

the community, which was estimated by multiplying the relative abundance and the OD600 value 176 

(OD600×relative abundance). To ensure repeatability, samples with Pearson correlation below 0.8 177 

among replicates were excluded from COP analysis. This resulted in the exclusion of 1.8% of 178 

samples for E. faecium and 1.3% for A. muciniphila. 179 

 180 

Quantification of the relative abundance of E.faecium and A.muciniphila by metagenomic 181 

sequencing  182 

To confirm the accuracy of shallow metagenomic sequencing in quantifying the relative abundance 183 

of E. faecium and A. muciniphila, a spike-in experiment was conducted (Fig.S18A). In this 184 

experiment, a predefined amount of bacterial DNA from the target species was added to a 185 

metaDNA sample extracted from an in vitro community derived from human stool. This metaDNA 186 

sample was used as the background, since it has been previously sequenced and did not contain 187 

the target species. The spike-in DNA of the target species (E. faecium or A. muciniphila) was 1:10 188 

diluted for eight times and was added to the microbial metaDNA to a mixed DNA sample (5 μL of 189 

target species DNA into 30 ng of microbial metaDNA). Three replicates were made for each 190 

sample. The mixed DNA was then used for library construction and metagenomic sequencing. By 191 

comparing the detected relative abundance generated by shallow metagenomic sequencing with 192 

the expected abundance, the accuracy and sensitivity of our workflow were determined. The 193 

detection threshold of E. faecium is 0.0001 (Fig.S18B) and the detection threshold of A. 194 
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muciniphila is 0.001 (Fig.S18C). Our results showed that the quantification of the relative 195 

abundance of the two target species using the shallow metagenomic sequencing pipeline is 196 

accurate and reproducible.  197 

 198 

Colonization impact of resident species onto the invading species 199 

To compute the colonization impact, e.g., the impact of resident species onto the colonization 200 

outcome of the invading species, we first trained the prediction models using all the samples. Then, 201 

for resident species 𝑖 in a permissive local community 𝛼, we performed a thought experiment by 202 

introducing a perturbation in the abundance of resident species 𝑖, and used the trained machine 203 

learning model to predict the new steady state abundance of invading species 𝑥̃𝑖
𝛼  after the 204 

perturbation. The colonization impact (CI) of resident species 𝑖 onto the invading species in local 205 

community 𝛼 is defined as: 206 

CI𝑖
𝛼 =

𝑥̃𝑖
𝛼 − 𝑥𝑖

𝛼

𝑥̃𝑖
𝛼 + 𝑥𝑖

𝛼  207 

where 𝑥𝑖
𝛼 is the steady state abundance of invading species in community 𝛼 before perturbing 208 

the abundance of species 𝑖. A negative colonization impact (CI𝑖
𝛼 < 0) indicates that species 𝑖 209 

inhibits the colonization of the invading species in community 𝛼. For classification models, 𝑥𝑖
𝛼 210 

and 𝑥̃𝑖
𝛼  represent the colonization probability before and after perturbing the abundance of 211 

species 𝑖. 212 

 213 

Validation of the inhibitory effect of E. faecalis on E. faecium colonization 214 

Pairwise co-culture experiments 215 

Soft Agar Overlay Assays were conducted using BHI agar plate. E. faecium DA797 was cultured 216 

to an OD600 of 0.6 and 100ul of the inoculum was pipetted into 10mL prewarmed (42°C) BHI 217 

containing 0.75% (w/v) agar. The mixture was briefly mixed and then transferred onto a plate 218 

already laid with 10mL BHI 1.5% agar and four Oxford cups, to embed E. faecium into soft agar. 219 

The mixture was spread evenly on the surface of the plate. Next, 100-µl volumes of E. faecium, E. 220 

faecalis DA894, E. faecalis DA462 (OD600=0.6) were added individually into the Oxford cups. 221 

The plates were incubated anaerobically at 37 °C for 24h before observation. The experiment was 222 

performed three times with two technical replicates for each strain. 223 

 224 

Liquid co-culture experiments were performed in BHI at 37°C static, under anaerobic conditions. 225 

E. faecium and E. faecalis were cultured separately in BHI at 37°C for 24h without shaking, then 226 

diluted in BHI to an OD600 of 0.005 and then inoculated at 1:1 ratio into 1 mL of BHI broth and 227 

grown for 24h without shaking. Mono- and co-culture outputs were centrifuged to remove the 228 

supernatant, and the pellets were subsequently DNA extracted and E. faecium specific qPCR 229 

primer was used to detect the abundance of E. faecium. 230 
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Community experiments 231 

Frozen stocks of E. faecium DA797, E. faecalis DA462 and DA894 and C. symbiosum DA229, 232 

were grown anaerobically at 37 °C in BHI until they reached the stationary phase. Eight baseline 233 

communities’ stocks were revived into 980μL MiPro medium with three replicates in deep well 234 

plates. After 24h’s incubation at 37 °C, the community biomass was measured by OD600. Saturated 235 

cultures were then diluted 5μL into 1mL of fresh MiPro in a new 96-well plate before the invasion 236 

experiments. Three different experimental schemes were used: 1) Add E. faecalis (or C. symbiosum) 237 

into the baseline community, followed by E. faecium on the next day; 2) Add E. faecalis and E. 238 

faecium on the same day; 3) Add E. faecium into the baseline community, followed by E. faecalis 239 

on the next day. The inoculum was incubated at 37 °C and serially diluted every 24 h of 7 passages 240 

until the community reached a steady state. Saturated cultures were centrifuged to remove the 241 

supernatant, and the pellets were stored at -80°C with a plastic seal until DNA extraction. E. 242 

faecium abundance was assessed by both metagenomic sequencing and qPCR. 243 

qPCR assays for absolute quantification 244 

qPCR reactions were used to validate the impact of E. faecalis on the colonization outcome of E. 245 

faecium. qPCR reactions (0.5 µl DNA, 0.2 µM each primer, Hieff® qPCR SYBR Green Master 246 

Mix (Yeasen) were performed on a Bio-Rad CFX384 Touch Real-Time PCR Detection System, 247 

using primers specific for E. faecium under the following reaction conditions: 95 °C for 5min 248 

followed by 40 cycles of 95 °C for 10s , 60°C for 20 s and 72°C 20 s. E. faecium-specific primer 249 

sequences were: Ala-F:ATCCCTCTGGGCACGCAC, Ala-R:ACATACACGCCCAATCGTTTC, 250 

as described previously (16). Standard curves using genomic DNA of E. faecium were used for 251 

absolute quantification of E. faecium copy numbers. 252 

 253 

E. faecium and E. faecalis abundance analysis in human cohorts 254 

The following datasets were used for the metagenomic analysis of the species of interest in four 255 

large and diverse human cohorts: Israel (17), Lifelines-DEEP (18), PERDICT-1 (19), TwinsUK 256 

(20) and SIAT cohort. Sequencing data were obtained using the accession numbers provided in the 257 

associated references and processed by SHOGUN pipeline as previously described. E. faecium 258 

and E. faecalis with relative abundance below 0.0001 is set to 10-4 for visualization.  259 

 260 

Statistical analysis 261 

Statistical details for each experiment are indicated in the figure legends. Pearson correlation 262 

coefficients and the p-values for testing replicates communities’ composition correlation were 263 

calculated on log10(relative abundance). Kendall correlation coefficients and the p-values for 264 

testing E. faecium and E. faecalis abundance correlation were calculated on log10(relative 265 

abundance). Alpha diversity of the community was calculated on species profile using the observed 266 

species richness and Shannon index. The composition of microbiota and variations in colonization 267 
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outcomes between communities were analyzed by performing PCoA using the Bray-Curtis 268 

dissimilarity metric on the species-level abundance profile. Similarities among groups were 269 

determined by permutational multivariate analysis of variance (PERMANOVA, Adonis test) based 270 

on the Bray-Curtis dissimilarity (21), with 999 permutations used to test the significance. These 271 

analyses were conducted using the vegan (22) package (version 2.6-4). Non-parametric Mann-272 

Whitney U-test were used to conduct pairwise comparisons between two groups (23). P values of 273 

less than 0.05 were considered as statistically significant, as indicated in the figures (ns, not 274 

significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). Data analysis and plotting was 275 

performed in R version 4.1.2 and R studio version 2022.12.0+353 using the packages dplyr, ggpubr, 276 

vegen and ComplexHeatmap. 277 

  278 
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Supplementary Text 279 

Analytical derivation on the steady state abundance of exogenous species in GLV model 280 

For a local community 𝛼 of 𝑠 resident species governed by GLV dynamics, we denote the post-281 

invasion steady state abundance of the exogenous species as 𝑥𝑠+1
(1)

 . After invasion, the community 282 

arrives at a new steady state, i.e., 
𝑑𝑥𝑠+1(𝑡)

𝑑𝑡
= 0. Thus, according to Eq.1, 𝑥𝑠+1

(1)  can be expressed as:  283 

𝑥𝑠+1
(1) = 𝑟𝑠+1 + 𝒄𝐱1:𝑆

(1) (2) 284 

Here, the 𝑠-dimensional vector 𝒄 represents the interaction strength of the resident species onto 285 

the exogenous species, 𝐱1:𝑆
(1)  represents the post-invasion steady state abundance of the resident 286 

species. 287 

 288 

Based on derivations in our previous study (24), the shift in the steady state abundance of resident 289 

species (i.e. the difference between 𝐱1:𝑆
(1)   and the pre-invasion steady state 𝐱1:𝑆

(0)  ) satisfies the 290 

following relation: 291 

𝐱1:𝑆
(1) − 𝐱1:𝑆

(0)  = −𝑨−1𝒃𝑥𝑠+1
(1)   (3) 292 

Here, the 𝑠 -dimensional state vector 𝐱1:𝑆
(0)  = [𝐱1

(0) , 𝐱2
(0) , ⋯ 𝐱𝑆

(0) ]
T
  represents the pre-invasion 293 

steady state of the local community, the 𝑠 -dimensional vector 𝒃  represents the interaction 294 

strength of the exogenous species onto the resident species. The interactions among resident 295 

species are encoded in matrix 𝑨.  296 

 297 

By combining Eq.2 and Eq.3, we discovered a surprisingly simple linear relation between the post-298 

invasion abundance of the exogenous species 𝑥𝑠+1
(1)  and the pre-invasion abundance of resident 299 

species 𝐱1:𝑆
(0) : 300 

𝑥𝑠+1
(1) =

𝑟1+𝒄T𝐱1:𝑆
(0)

1+𝒄T𝑨−1𝒃
 (4) 301 

The analytically derived relation can fully explain the simulated colonization outcomes in GLV 302 

model (Fig.S1, Spearman correlation 𝜌 = 1, 𝑝 < 0.001 ). Although the linear relation in Eq. 4 303 

doesn’t hold for other dynamical models (e.g., non-linear interactions), it gives us important 304 

insights that learning the mapping for colonization outcome prediction is feasible by data-driven 305 

models and the number of parameters required for fitting the relation is on the order of ~O(N). 306 

This is consistent with our observations on the number of training samples required for accurate 307 

prediction of colonization outcomes (Fig. 1).  308 

  309 
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 310 

 311 

Fig. S1. The steady state abundance of an invading species in communities governed by GLV 312 

dynamics: comparison between analytical derivations and simulations. The analytically 313 

derived relation (Equation 4 in Supplementary Text) can fully explain the simulated colonization 314 

outcomes in GLV model (Spearman correlation 𝜌 = 1, 𝑝 < 0.001 ). We generated 50 local 315 

communities, each consisting of 4 species randomly drawn from a meta-community of 7 species. 316 

Network connectivity 𝐶 = 1 and interaction strength 𝜎 = 0.2. Species-8 was introduced as an 317 

invading species. 318 

  319 
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 320 

Figure S2. The compositional profile of baseline communities at the species level. Each column 321 

corresponds to a baseline community derived from a human stool sample (24 donors) treated with 322 

antibiotics (12 antibiotics). Mix indicates the group of communities derived from mixing two 323 

different donors. Each row corresponds to a species, clustered by the similarity of relative 324 

abundance across baseline communities. Species with top 100 prevalence are displayed.  325 
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 326 

Figure S3. Generation of diverse baseline communities by antibiotics treatments. (A) 327 

Principal-coordinate analysis (PCoA) based on the Bray-Curtis dissimilarity of the compositional 328 

profiles at the species level. The baseline communities are color-coded according to antibiotics 329 

treatments. (B) The colored dot for each antibiotics treatment represents the compositional profile 330 

averaged over 24 subjects. Error bars are SEMs. The antibiotics of different classes had distinct 331 

impacts on community structure. Tobramycin and amikacin, belonging to aminoglycosides, 332 

drastically changed the community structure. In contrast, meropenem, cefoxitin, and cefotaxime, 333 

belonging to beta-lactams, had relatively moderate impacts on the community structure. 334 

335 
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 336 

Figure S4. Stabilization of human stool-derived in vitro communities and the statistics of 337 

steady-state baseline community composition. (A) The Bray-Curtis dissimilarity to the initial 338 

compositional profile during serial passaging. Colored lines indicate the trajectories of 339 

communities from different donors (S01-S04). (B) Time series of the compositional profiles. The 340 

human stool-derived in vitro communities reached steady states after ~5 rounds of serial passaging 341 

in the MiPro medium. (C) Species richness of steady-state baseline communities. (D) Hamming 342 

distance between the species presence/absence profiles of baseline communities. 343 

  344 
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 345 

Fig. S5. Colonization outcomes of different exogenous microbial species in human stool-346 

derived in vitro communities. (A) The compositional profile of baseline communities at the 347 

species level. Each row corresponds to a baseline community derived from a human stool sample 348 

(12 donors) treated with vancomycin (Vanco) or not (Control). Each column corresponds to a 349 

species, clustered by the similarity of relative abundance across baseline communities. Species 350 

with top 100 prevalence are displayed. (B) Vancomycin treatment altered the community structure 351 

at the species level (Adonis test, R2=0.36，p<0.0001 ), as determined by PERMANOVA based on 352 

the Bray-Curtis dissimilarity. (C) Colonization outcomes of different exogenous species, including 353 

E. faecium, A. muciniphila, F. nucleatum, S. salivarius, B. breve and Lactobacillus spp. (L. 354 

plantarum HNU082 and L. paracasei HNU312). The relative abundance of the invading species 355 

was determined by metagenomic sequencing of the final time point. We found that E. faecium, A. 356 

muciniphila and F. nucleatum could successfully colonize in some communities at varying levels 357 

of post-invasion abundance. In contrast, S. salivarius, B. breve and Lactobacillus spp. were unable 358 

to colonize in nearly all the baseline communities that we tested. Moreover, we found that 359 

vancomycin treatment significantly altered the colonization outcomes, rendering the communities 360 

more susceptible to invasion. ns, not significant, ***p < 0.001, ****p < 0.0001, Mann-Whitney 361 

U-tests. For visualization, the relative abundance was set to 10-5 if it was below the detection limit 362 

(i.e. failed invasion). 363 

 364 
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 365 

Fig. S6. Post-invasion time series of E. faecium abundance and community composition. (A) 366 

The colonization outcome of E. faecium in different communities was persistent during serial 367 

passaging. The dashed line indicates the detection limit of the relative abundance of E. faecium 368 

(Fig.S18). (B) The community composition was stable during serial passaging. B and F denote the 369 

baseline and the final time point. 370 

  371 
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 372 

 373 

Fig. S7. The composition of in vitro communities before and post E. faecium invasion is highly 374 

reproducible across replicates. The species-level compositional profile of the baseline 375 

communities (A) and of the post-invasion communities (B) is highly reproducible among technical 376 

replicates (Pearson correlation). For visualization, the relative abundance was set to 10-4 if it was 377 

below the detection limit. n= 3 replicates. 378 

  379 
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 380 

Fig. S8. The invasion resistance to E. faecium increases with community biomass and 381 

diversity. (A) The post-invasion steady state abundance of E. faecium is negatively correlated with 382 

the biomass of baseline communities (measured by OD600). (B) The post-invasion steady state 383 

abundance of E. faecium is negatively correlated with the species richness of baseline communities. 384 

  385 
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 386 

Fig. S9. Variations in the colonization outcomes of E. faecium across different donors and 387 

antibiotics treatments. For instance, post-invasion abundance of E. faecium in communities 388 

derived from donor S24 was higher than other donors; post-invasion abundance of E. faecium in 389 

communities treated with amikacin was higher than the control group and other treatment groups. 390 

Each row corresponds to a donor from which the communities were derived, each column 391 

corresponds to a treatment. The color gradient represents absolute abundance (OD600×relative 392 

abundance) of E. faecium at the post-invasion steady state. Samples marked with slashes are not 393 

available. 394 

  395 
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 396 

Fig. S10. The performance of colonization outcome prediction for E. faecium is consistent 397 

across replicates. ROC curve of machine learning models in binary classification (permissive vs. 398 

resistant) of the colonization outcomes of E. faecium in replicate 1 (A) and replicate 2 (B). For 399 

each 6-fold cross validation (ROC curves shown in light color), we trained each model using the 400 

samples from 20 subjects and the samples from the remaining 4 subjects to evaluate the model. 401 

The mean ROC curve is shown in dark color. LR: Logistic Regression, NODE: COP-Neural 402 

Ordinary Differential Equations classifier, RF: Random Forest classifier. 403 

404 
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 405 

Fig. S11. Post-invasion time series of A. muciniphila abundance and community composition. 406 

(A) The colonization outcome of A. muciniphila in different communities was persistent during 407 

serial passaging. The dashed line indicates the detection limit of the relative abundance of A. 408 

muciniphila (Fig.S18). (B) The community composition was stable during serial passaging. B and 409 

F denote the baseline and the final time point. 410 

  411 
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 412 

Fig. S12. The composition of in vitro communities post A. muciniphila invasion is highly 413 

reproducible across replicates. The species-level compositional profile of the post-invasion 414 

communities is highly reproducible among technical replicates (Pearson correlation). For 415 

visualization, the relative abundance was set to 10-4 if it was below the detection limit. n= 3 416 

replicates. 417 

  418 
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 419 

Fig. S13. Variations in the colonization outcomes of A. muciniphila across different donors 420 

and antibiotics treatments. For instance, post-invasion abundance of A. muciniphila in 421 

communities derived from donor S16 was higher than other donors; post-invasion abundance of 422 

A. muciniphila in communities treated with vancomycin was higher than the control group and 423 

other treatment groups. Each row corresponds to a donor from which the communities were 424 

derived, each column corresponds to a treatment. The color gradient represents absolute abundance 425 

(OD600×relative abundance) of A. muciniphila at the post-invasion steady state. Samples marked 426 

with slashes were not used in A. muciniphila invasion experiments. Mix indicates the group of 427 

communities derived from mixing two different donors.  428 

 429 

   430 
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 431 

Fig. S14. The performance of colonization outcome prediction for A. muciniphila is consistent 432 

across replicates. ROC curve of machine learning models in binary classification (high permissive 433 

vs. Low permissive) of the colonization outcomes of A. muciniphila in replicate 1 (A) and replicate 434 

3 (B). For each 6-fold cross validation (ROC curves shown in light color), we trained each model 435 
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using the samples from 20 subjects and the samples from the remaining 4 subjects to evaluate the 436 

model. The mean ROC curve is shown in dark color. Pearson’s correlation coefficient between the 437 

predicted abundance and the true abundance of A. muciniphila in replicate 1 (C) and replicate 3 438 

(D). LR: Logistic Regression, ENET: Elastic Net Linear Regression, NODE: COP-Neural 439 

Ordinary Differential Equations regressor, RF: Random Forest regressor.  440 
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 442 

Fig. S15. E. faecalis inhibits the growth of E. faecium in pairwise co-culture. (A) The fold 443 

change in the abundance of E. faecium (the pairwise co-culture group divided by the mono-culture 444 

group) was lower than 1 (dashed line), indicating that the growth of E. faecium was inhibited in 445 

the presence of E. faecalis during pairwise co-culture in BHI. n= 3 replicates, the error bars are 446 

SEMs, measured by qPCR. (B) The Oxford cup assay was used to determine the inhibition of E. 447 

faecium by E. faecalis. An inhibition zone surrounding the Oxford Cup when E. faecalis was 448 

present. Scale bar, 1 cm. Two E. faecalis strains DA462 and DA894 were used in the assays. 449 
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 451 

Fig. S16. E. faecalis inhibits the growth of E. faecium in human stool-derived in vitro 452 

communities. (A) The end-point abundance of E. faecium, measured by metagenomic sequencing. 453 

(B) The end-point abundance of E. faecium in communities inoculated with E. faecalis (inhibitory) 454 

or C. symbiosum (neutral) before E. faecium invasion (ns, not significant, ** p < 0.01, *** p < 455 

0.001, Mann-Whitney U-tests).  456 

  457 



28 
 

 458 

 459 

Fig. S17. The relative abundance of E. faecalis and E. faecium is negatively correlated in 460 

human gut metagenomic samples. (A) Negative correlation (Kendall correlationτ= -0.36) 461 

between the relative abundances of E. faecalis and E. faecium in the SIAT cohort. (B) Negative 462 

correlation (Kendall correlationτ= -0.36) between the relative abundances of E. faecalis and E. 463 

faecium in independent human cohorts. The detection limit in relative abundance was set to 10 -4. 464 

71.5% of the samples in the SIAT cohort and 93.8% of the samples in the four independent cohorts 465 

were negative (i.e., below the detection limit) for both E. faecium and E. faecalis. 466 

  467 
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 468 

Fig. S18. Quantification of the relative abundance of E.faecium and A.muciniphila by 469 

metagenomic sequencing. (A) To confirm the accuracy of shallow metagenomic sequencing in 470 

quantifying the relative abundance of E. faecium and A. muciniphila, a spike-in experiment was 471 

conducted. The spike-in DNA of the target species (E. faecium or A. muciniphila) was 1:10 diluted 472 

for eight times and was added to the microbial metaDNA to a mixed DNA sample. The mixed 473 

DNA was then used for library construction and metagenomic sequencing. (B-C) By comparing 474 

the detected relative abundance generated by shallow metagenomic sequencing with the expected 475 

abundance, the accuracy and sensitivity of our workflow were determined. The detection threshold 476 

of E. faecium is 0.0001 and the detection threshold of A. muciniphila is 0.001.  477 

  478 
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Table S1 Information of antibiotics used in this study. 479 

Antibiotics Name 
Concentration

（ug/ml） 
Target Class 

Abx1 Meropenem 35 Cell wall beta-lactams 

Abx2 Cefoxitin 10 Cell wall beta-lactams 

Abx3 
Cefotaxime sodium 

salt 
40 Cell wall beta-lactams 

Abx4 

Piperacillin 

Sodium+Tazobactam 

acid 

20+2.5 Cell wall beta-lactams 

Abx5 Vancomycin 16 Cell wall 
Glycopeptides and 

lipoglycopeptides 

Abx6 Colistin sulfate salt 20 Cell wall Miscellaneous agents 

Abx7 Ciprofloxacin 12 
DNA 

synthesis 
(Fluoro-)quinolones 

Abx8 Tobramycin 400 
Protein 

synthesis 
Aminoglycosides 

Abx9 Amikacin 200 
Protein 

synthesis 
Aminoglycosides 

Abx10 Erythromycin 80 
Protein 

synthesis 

Macrolides, 

lincosamides and 

streptogramins 

Abx11 Linezolid 70 
Protein 

synthesis 
Oxazolidinone 

Abx12 Tigecycline 0.256 
Protein 

synthesis 
Tetracyclines 
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