

Supplementary Materials for

Data-driven prediction of colonization outcomes for complex microbial communities

Lu Wu, Xu-Wen Wang, *et al.*

Corresponding author: yyl@channing.harvard.edu (Y.Y.L.), lei.dai@siat.ac.cn (L.D.)

The PDF file includes:

Materials and Methods

Supplementary Text

Figs. S1 to S18

Table S1

References

14 **Materials and Methods**

15 ***In silico* simulations of colonization outcomes**

16 We generated synthetic data of colonization outcomes using the generalized Lotka–Volterra (GLV)
17 model (1):

18
$$\frac{dx_i(t)}{dt} = x_i(t)[r_i + \sum_{j=1}^N a_{ij}x_j(t)], i = 1, \dots, N. \quad (1)$$

19 Here $x_i(t)$ represents the absolute abundance of the i -th species at time $t \geq 0$. The pair-wise
20 microbial interaction is presented by the matrix $A = (a_{ij}) \in \mathbb{R}^{N \times N}$, with $a_{ij} > 0$ (< 0 , or $= 0$)
21 means that species- j promotes (inhibits or does not affect) the growth of species- i , respectively.
22 The ecological network $G(A)$ is constructed using an Erdős-Rényi random graph model (2) with
23 N nodes (i.e., species) and connectivity C (i.e., the probability connecting two species). To
24 generate the interaction matrix A of ecological network, for each link $(j \rightarrow i) \in G(A)$ with $j \neq$
25 i , we draw a_{ij} from the normal distribution $N(0, \sigma)$. All other entries of A are set to be zero.
26 The intrinsic growth rate vector $r = [r_i] \in \mathbb{R}^N$ is drawn from a uniform distribution $\mathcal{U}(0, 1)$.
27 Each local community includes N_s species randomly drawn from the $(N - 1)$ species
28 (excluding the exogenous species) and $N_s=30$ in all simulations.

29 To examine the performance of colonization outcome prediction in communities with varying
30 levels of network complexity, we tuned the network connectivity C from the set $[0.3, 0.4, 0.5]$. In
31 addition, to evaluate the sample size required for accurate prediction, we systematically tuned the
32 size of training samples S_{train}/N from 0.5 to 10. An independently generated set of 100 samples
33 were used as test data to evaluate the models. To generate the training samples for classification,
34 we selected 1,100 local communities where the post-invasion steady-state abundance of the
35 exogenous species is above 0.05 (i.e., the threshold used to determine successful colonization) in
36 half of the local communities, and below 0.05 in the other half. To generate the training samples
37 for regression, we selected 1,100 local communities in which the post-invasion steady-state
38 abundance of the exogenous species follows the log-normal distribution (mean=-3, standard
39 deviation=0.5).

40

41 **Colonization outcome prediction by machine learning models**

42 We developed a deep learning model for Colonization Outcome Prediction using the Neural
43 Ordinary Differential Equations (COP-NODE) (3). The architecture of COP-NODE consists of
44 two fully connected layers, and each fully connected layer (with dimension N) is followed by a
45 normalization layer and a ReLU activation layer. The final layer is Sigmoid activation. The Adam
46 optimizer was used for the optimization with a learning rate 0.01 for both classification and
47 regression. The loss function is CrossEntropy for classification and SmoothL1Loss for regression

48 (4). We randomly selected 20% of training samples as the validation set to select the best model
49 and hyperparameters. For classification, we tuned the batch size from the set [16, 32, 64] and the
50 hyperparameter β (the threshold to change between L1 and L2 regularization) from the set [0.001,
51 0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1]. Other machine learning models used in this study, including Logistic
52 Regression, Elastic Net, Random Forest classifier, and regressor, were implemented using the
53 Python package scikit-sklearn (5). We used randomized search on hyperparameters and 3-fold
54 cross-validation to optimize the AUROC for classification and R^2 for regression. The regression
55 models were trained to predict the log-transformed abundance of the exogenous species.
56

57 **Collection and preservation of human stool samples**

58 Stool samples were collected from healthy human donors and were immediately transferred to an
59 anaerobic workstation (85% N₂, 10% H₂ and 5% CO₂, COY). 10g of each stool sample was
60 suspended into 50mL 20% glycerol (v/v, in sterile phosphate-buffered saline, with 0.1% L-cysteine
61 hydrochloride), homogenized by vortexing, and then filtered with sterile nylon mesh to remove
62 large particles in fecal matter. Aliquots of the suspension were stored in sterile cryogenic vials and
63 frozen at -80 °C for long-term storage until processing for DNA extraction and culturing so that
64 the stool-derived community could be revived (thawed) for repeatable experiments. The collection
65 of human stool samples from volunteers at SIAT (referred to as “SIAT cohort”) were approved by
66 the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (SIAT-IRB-
67 200315-HO438).

68 **Large-scale cultivation of human stool-derived *in vitro* communities**

69 20 μ l stool slurries aliquot stocks were inoculated into 980 μ L medium containing antibiotics in
70 triplicate into 96 deep-well plates (PCR-96-SG-C, Axygen) for static culturing at 37 °C for 24h in
71 the anaerobic workstation. The concentration for each antibiotic was evaluated as described in the
72 SI method. The medium (MiPro) used for *in vitro* culture was modified from previous studies,
73 which comprises: peptone water (2.0 g /L, CM0009, Thermo Fisher), yeast extract (2.0 g /L,
74 LP0021B, Thermo Fisher), L-cysteine hydrochloride (1 g /L), Tween 80 (2 mL/L), hemin (5 mg/L),
75 vitamin K1(10 μ L/L), NaCl (1.0 g /L), K₂HPO₄ (0.4 g/L), KH₂PO₄ (0.4 g/L), MgSO₄·7H₂O
76 (0.1 g/L), CaCl₂·2H₂O (0.1 g/L), NaHCO₃ (4 g/L), porcine gastric mucin (4 g/L, M2378, Sigma-
77 Aldrich), sodium cholate (0.25 g/L) and sodium chenodeoxycholate (0.25 g/L) (6). After 24h of
78 antibiotics treatment, *in vitro* microbial communities were passaged every 24 h with a 1:200
79 dilution into fresh medium using the automated 96-format Thermo Scientific™ ClipTip™
80 (Thermofisher) pipette (every 24h, 5 μ L of this saturated culture was transferred into 995 μ L of
81 fresh medium). After 5 days of passaging, 500 μ L of the cultures were mixed with 500 μ L sterile
82 40% glycerol (v/v, in sterile phosphate-buffered saline, with 0.1% L-cysteine hydrochloride) in
83 crimp vials, sealed, and stored as baseline communities at -80 °C for further usage and long-term

84 storage. After each transfer, the remaining samples were centrifuged to remove the supernatant,
85 and the pellets were stored at -80°C with a plastic seal until DNA extraction. The *in vitro* microbial
86 community biomass was evaluated by measurement of optical density (OD₆₀₀) with an Epoch 2
87 plate reader (BioTek) after 24h of incubation.

88

89 **Generation of baseline communities with diverse taxonomic profiles**

90 To examine if *in-vitro* stool-derived communities can reach stable states and display diverse
91 compositions, we collected stool samples from healthy donors and grew them in MiPro medium,
92 which has shown its capability in capturing and maintaining the diversity of *in vitro* stool-derived
93 communities (6-8). We inoculated the stool aliquots into 96-well plates with growth media and
94 incubated them in an anaerobic workstation in triplicate, passing them every 24h with a 1:200
95 dilution. The microbial communities were assessed by shallow metagenomic sequencing, which
96 is a cost-effective method for characterizing species-level composition of microbiota samples (9).
97 We collected time-series data to examine the dynamics of community establishment on the in-vitro
98 platform. The metagenomic analysis revealed that, after an initial period of approximately four
99 days, the composition profiles of almost all *in vitro* communities reached a stable and reproducible
100 steady state. Our analysis also showed that the stool-derived *in vitro* communities were highly
101 complex in their compositions and could retain personalized gut microbiota variation, as evidenced
102 by species-level time-series compositions of 4 representative communities derived from 4 donors
103 over ten rounds of *in vitro* passaging in MiPro (**Fig.S4A,B**).

104

105 From the fecal samples of SIAT cohort, we selected 24 donors in which *E. faecium* and *A.*
106 *muciniphila* were not detected by metagenomic sequencing. To increase the diversity in baseline
107 communities, we treated each donor's sample with 12 antibiotics from different classes (10)
108 (**Fig.S2**). Different antibiotic classes target distinct spectra of bacteria, leading to a remodeling of
109 the community in different directions (10). We selected antibiotics from different classes as
110 described in the EUCAST databases (11). The optimal concentrations of the antibiotics were
111 determined based on a previous study that evaluated the activity spectrum of antibiotic classes on
112 human gut commensals (10). We tested at least three different concentrations for each antibiotic
113 and evaluated the optimized dose based on its ability to partially inhibit (50%-80%) the overall
114 growth of stool-derived bacteria as measured by OD₆₀₀ after 24h of incubation. To ensure
115 reproducibility, we screened at least three different stool aliquot stocks as biological duplicates for
116 each antibiotic. We measured the OD₆₀₀ of each well every 30 minutes using an Epoch 2 plate
117 reader (BioTek) and collected growth curves up to 24h.

118

119 **Bacterial strains**

120 *Enterococcus faecium*, *Enterococcus faecalis* and *Clostridium symbiosum*, *Streptococcus*

121 *salivarius* and *Bifidobacterium breve* strains were isolated from fecal samples of SIAT cohort.
122 Taxonomy of isolates from SIAT cohort was confirmed by whole genome sequencing. Genome
123 sequences have been deposited in PRJEB60398 (see data availability). *Lactobacillus plantarum*
124 HNU082 (12), *Lactobacillus paracasei* HNU312 (13) was provided by Prof. Jiachao Zhang from
125 Hainan University. *Akkermansia muciniphila* (ATCC BAA-835) and *Fusobacterium nucleatum*
126 (ATCC 25586) were purchased from ATCC.

127

128 **Profiling the colonization outcomes of different exogenous species**

129 We conducted a preliminary experiment to investigate the colonization outcome of gut microbial
130 communities to different exogenous species (Fig.S5), including: *E. faecium*, *A. muciniphila* (14),
131 *F. nucleatum*, *S. salivarius*, *B. breve* and *Lactobacillus* spp. (*L. plantarum* HNU082 and *L.*
132 *paracasei* HNU312). We identified 12 stool samples from healthy donors in which the selected
133 invader species were undetectable in the microbiota. We then cultured the stool samples *in vitro*
134 and exposed them to antibiotics before introducing the exogenous species (~5% of total biomass,
135 approximately 10⁶ CFUs for each well) into the community. We used shallow metagenomic
136 sequencing to monitor the time-series and final community composition.

137

138 **Invasion experiments of *E. faecium* and *A. muciniphila***

139 To conduct invasion experiments, frozen stocks of *E. faecium* (strain SIAT_DA797) and *A.*
140 *muciniphila* (strain ATCC_BAA-835) were grown anaerobically in BHI and mGAM at 37°C,
141 respectively, until stationary phase. *In vitro* microbial baseline communities, stored at -80°C, were
142 thawed and revived by adding 20 µL of the stocks to 980 µL of MiPro medium in deep well plates.
143 After incubation for 24 hours at 37°C, community biomass was measured by OD₆₀₀, and 5 µL of
144 the saturated cultures were diluted into 1 mL of fresh MiPro in a new plate. Each well was invaded
145 with the respective amount of *E. faecium* or *A. muciniphila*, with biomass representing 5% of the
146 inoculated communities' average biomass. The inoculum was passaged every 24 hours of
147 incubation, with a 1:200 dilution into fresh medium for 8-10 passages until the community reached
148 a steady state (10 passages for *E. faecium*, 8 passages for *A. muciniphila*, based on data from
149 Fig.S5). After each passage, the remaining samples were centrifuged to remove the supernatant,
150 and the pellets were stored at -80°C with a plastic seal in plate until DNA extraction.

151

152 **Metagenomic sequencing and taxonomic profiling**

153 DNA was extracted from 200 mg of stool samples using the QIAamp Power Fecal Pro DNA Kit
154 (Qiagen) according to the manufacturer's instructions. For stool-derived *in vitro*-cultured samples,
155 500 µL of cultured samples were used for DNA extraction with the DNeasy UltraClean 96
156 Microbial Kit (Qiagen) using an automated protocol at Tecan Freedom EVO 200. The Hieff NGS®
157 OnePot II DNA Library Prep Kit for Illumina® (Yeasen) was used for library preparation, following

158 the manufacturer's instructions. The resulting library DNA was cleaned up and size-selected with
159 Hieff NGS® DNA Selection Beads (Yeasen), and quantified using the dsDNA High Sensitivity kit
160 on a Qubit (Thermo Fisher). Libraries were further pooled together at equal molar ratios, and the
161 purity and library length distribution were assessed using Bioanalyzer High Sensitivity DNA Kit
162 (Agilent). Sequencing was performed on the Illumina HiSeq X Ten system (150bp paired-end
163 reads; Annoroad Gene Technology Co.), with a target sequencing depth of 0.3 Gbp raw data per
164 sample, as recommended by previous studies (9).

165
166 Samples with fewer than 10^5 clean reads were excluded from downstream analysis. Prior to
167 analysis, reads were trimmed using the following criteria: (1) Removing reads with more than 50%
168 of the base below quality score 19; (2) Removing reads with more than 5% of the base being N;
169 (3) Discarding paired-end reads if either of the paired reads did not meet the above criteria.
170 Microbial community composition from metagenomic sequencing data was generated using the
171 SHOGUN pipeline and the RefSeq database version 82, as described in previous studies (9, 15).
172 Species-level abundance profiles were filtered by using a relative abundance threshold of 0.0001
173 (0.001) for all taxa in colonization prediction of *E. faecium* (*A. muciniphila*), and those low-
174 prevalence taxa (present in less than 20% samples) were further filtered to reduce the feature
175 number. The colonization outcomes were evaluated based on the invader's absolute abundance in
176 the community, which was estimated by multiplying the relative abundance and the OD_{600} value
177 ($OD_{600} \times$ relative abundance). To ensure repeatability, samples with Pearson correlation below 0.8
178 among replicates were excluded from COP analysis. This resulted in the exclusion of 1.8% of
179 samples for *E. faecium* and 1.3% for *A. muciniphila*.

180
181 **Quantification of the relative abundance of *E.faecium* and *A.muciniphila* by metagenomic**
182 **sequencing**

183 To confirm the accuracy of shallow metagenomic sequencing in quantifying the relative abundance
184 of *E. faecium* and *A. muciniphila*, a spike-in experiment was conducted (Fig.S18A). In this
185 experiment, a predefined amount of bacterial DNA from the target species was added to a
186 metaDNA sample extracted from an *in vitro* community derived from human stool. This metaDNA
187 sample was used as the background, since it has been previously sequenced and did not contain
188 the target species. The spike-in DNA of the target species (*E. faecium* or *A. muciniphila*) was 1:10
189 diluted for eight times and was added to the microbial metaDNA to a mixed DNA sample (5 μ L of
190 target species DNA into 30 ng of microbial metaDNA). Three replicates were made for each
191 sample. The mixed DNA was then used for library construction and metagenomic sequencing. By
192 comparing the detected relative abundance generated by shallow metagenomic sequencing with
193 the expected abundance, the accuracy and sensitivity of our workflow were determined. The
194 detection threshold of *E. faecium* is 0.0001 (Fig.S18B) and the detection threshold of *A.*

195 *muciniphila* is 0.001 (**Fig.S18C**). Our results showed that the quantification of the relative
196 abundance of the two target species using the shallow metagenomic sequencing pipeline is
197 accurate and reproducible.

198

199 **Colonization impact of resident species onto the invading species**

200 To compute the colonization impact, e.g., the impact of resident species onto the colonization
201 outcome of the invading species, we first trained the prediction models using all the samples. Then,
202 for resident species i in a permissive local community α , we performed a thought experiment by
203 introducing a perturbation in the abundance of resident species i , and used the trained machine
204 learning model to predict the new steady state abundance of invading species \tilde{x}_i^α after the
205 perturbation. The colonization impact (CI) of resident species i onto the invading species in local
206 community α is defined as:

$$207 \text{CI}_i^\alpha = \frac{\tilde{x}_i^\alpha - x_i^\alpha}{\tilde{x}_i^\alpha + x_i^\alpha}$$

208 where x_i^α is the steady state abundance of invading species in community α before perturbing
209 the abundance of species i . A negative colonization impact ($\text{CI}_i^\alpha < 0$) indicates that species i
210 inhibits the colonization of the invading species in community α . For classification models, x_i^α
211 and \tilde{x}_i^α represent the colonization probability before and after perturbing the abundance of
212 species i .

213

214 **Validation of the inhibitory effect of *E. faecalis* on *E. faecium* colonization**

215 Pairwise co-culture experiments

216 Soft Agar Overlay Assays were conducted using BHI agar plate. *E. faecium* DA797 was cultured
217 to an OD_{600} of 0.6 and 100 μ l of the inoculum was pipetted into 10mL prewarmed (42°C) BHI
218 containing 0.75% (w/v) agar. The mixture was briefly mixed and then transferred onto a plate
219 already laid with 10mL BHI 1.5% agar and four Oxford cups, to embed *E. faecium* into soft agar.
220 The mixture was spread evenly on the surface of the plate. Next, 100- μ l volumes of *E. faecium*, *E.*
221 *faecalis* DA894, *E. faecalis* DA462 ($\text{OD}_{600}=0.6$) were added individually into the Oxford cups.
222 The plates were incubated anaerobically at 37 °C for 24h before observation. The experiment was
223 performed three times with two technical replicates for each strain.

224

225 Liquid co-culture experiments were performed in BHI at 37°C static, under anaerobic conditions.
226 *E. faecium* and *E. faecalis* were cultured separately in BHI at 37°C for 24h without shaking, then
227 diluted in BHI to an OD_{600} of 0.005 and then inoculated at 1:1 ratio into 1 mL of BHI broth and
228 grown for 24h without shaking. Mono- and co-culture outputs were centrifuged to remove the
229 supernatant, and the pellets were subsequently DNA extracted and *E. faecium* specific qPCR
230 primer was used to detect the abundance of *E. faecium*.

231 Community experiments

232 Frozen stocks of *E. faecium* DA797, *E. faecalis* DA462 and DA894 and *C. symbiosum* DA229,
233 were grown anaerobically at 37 °C in BHI until they reached the stationary phase. Eight baseline
234 communities' stocks were revived into 980µL MiPro medium with three replicates in deep well
235 plates. After 24h's incubation at 37 °C, the community biomass was measured by OD₆₀₀. Saturated
236 cultures were then diluted 5µL into 1mL of fresh MiPro in a new 96-well plate before the invasion
237 experiments. Three different experimental schemes were used: 1) Add *E. faecalis* (or *C. symbiosum*)
238 into the baseline community, followed by *E. faecium* on the next day; 2) Add *E. faecalis* and *E.*
239 *faecium* on the same day; 3) Add *E. faecium* into the baseline community, followed by *E. faecalis*
240 on the next day. The inoculum was incubated at 37 °C and serially diluted every 24 h of 7 passages
241 until the community reached a steady state. Saturated cultures were centrifuged to remove the
242 supernatant, and the pellets were stored at -80°C with a plastic seal until DNA extraction. *E.*
243 *faecium* abundance was assessed by both metagenomic sequencing and qPCR.

244 qPCR assays for absolute quantification

245 qPCR reactions were used to validate the impact of *E. faecalis* on the colonization outcome of *E.*
246 *faecium*. qPCR reactions (0.5 µl DNA, 0.2 µM each primer, Hieff® qPCR SYBR Green Master
247 Mix (Yeasen) were performed on a Bio-Rad CFX384 Touch Real-Time PCR Detection System,
248 using primers specific for *E. faecium* under the following reaction conditions: 95 °C for 5min
249 followed by 40 cycles of 95 °C for 10s, 60°C for 20 s and 72°C 20 s. *E. faecium*-specific primer
250 sequences were: Ala-F:ATCCCTCTGGGCACGCAC, Ala-R:ACATACACGCCAATCGTTTC,
251 as described previously (16). Standard curves using genomic DNA of *E. faecium* were used for
252 absolute quantification of *E. faecium* copy numbers.

253

254 ***E. faecium* and *E. faecalis* abundance analysis in human cohorts**

255 The following datasets were used for the metagenomic analysis of the species of interest in four
256 large and diverse human cohorts: Israel (17), Lifelines-DEEP (18), PERDICT-1 (19), TwinsUK
257 (20) and SIAT cohort. Sequencing data were obtained using the accession numbers provided in the
258 associated references and processed by SHOGUN pipeline as previously described. *E. faecium*
259 and *E. faecalis* with relative abundance below 0.0001 is set to 10⁻⁴ for visualization.

260

261 **Statistical analysis**

262 Statistical details for each experiment are indicated in the figure legends. Pearson correlation
263 coefficients and the p-values for testing replicates communities' composition correlation were
264 calculated on log₁₀(relative abundance). Kendall correlation coefficients and the p-values for
265 testing *E. faecium* and *E. faecalis* abundance correlation were calculated on log₁₀(relative
266 abundance). Alpha diversity of the community was calculated on species profile using the observed
267 species richness and Shannon index. The composition of microbiota and variations in colonization

268 outcomes between communities were analyzed by performing PCoA using the Bray-Curtis
269 dissimilarity metric on the species-level abundance profile. Similarities among groups were
270 determined by permutational multivariate analysis of variance (PERMANOVA, Adonis test) based
271 on the Bray-Curtis dissimilarity (21), with 999 permutations used to test the significance. These
272 analyses were conducted using the vegan (22) package (version 2.6-4). Non-parametric Mann-
273 Whitney U-test were used to conduct pairwise comparisons between two groups (23). P values of
274 less than 0.05 were considered as statistically significant, as indicated in the figures (ns, not
275 significant, * $p<0.05$, ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$). Data analysis and plotting was
276 performed in R version 4.1.2 and R studio version 2022.12.0+353 using the packages dplyr, ggpibr,
277 vegen and ComplexHeatmap.

278

279 **Supplementary Text**

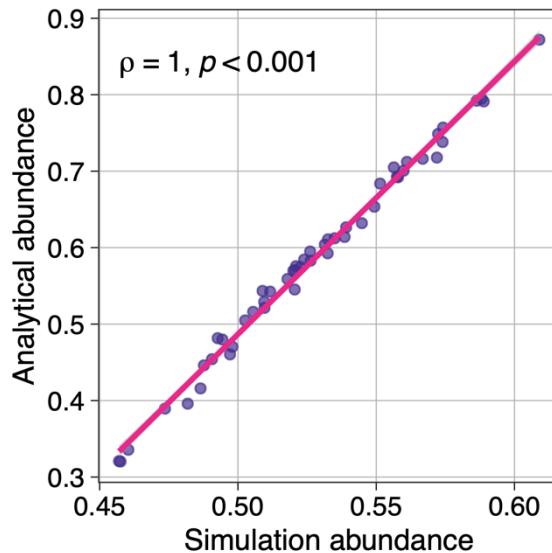
280 **Analytical derivation on the steady state abundance of exogenous species in GLV model**

281 For a local community α of s resident species governed by GLV dynamics, we denote the post-
 282 invasion steady state abundance of the exogenous species as $x_{s+1}^{(1)}$. After invasion, the community
 283 arrives at a new steady state, i.e., $\frac{dx_{s+1}(t)}{dt} = 0$. Thus, according to Eq.1, $x_{s+1}^{(1)}$ can be expressed as:

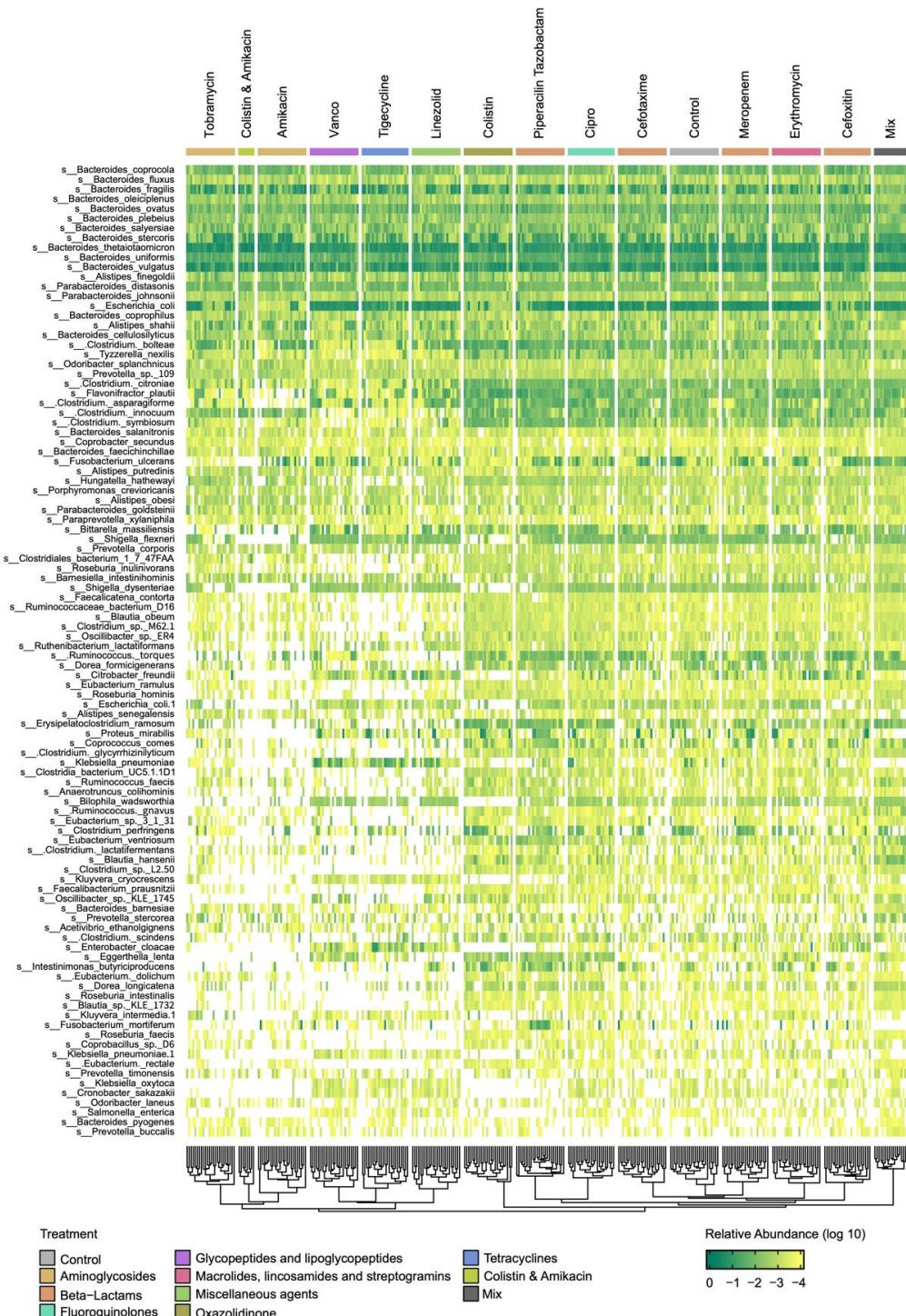
$$284 \quad x_{s+1}^{(1)} = r_{s+1} + \mathbf{c} \mathbf{x}_{1:s}^{(1)} \quad (2)$$

285 Here, the s -dimensional vector \mathbf{c} represents the interaction strength of the resident species onto
 286 the exogenous species, $\mathbf{x}_{1:s}^{(1)}$ represents the post-invasion steady state abundance of the resident
 287 species.

288 Based on derivations in our previous study (24), the shift in the steady state abundance of resident
 289 species (i.e. the difference between $\mathbf{x}_{1:s}^{(1)}$ and the pre-invasion steady state $\mathbf{x}_{1:s}^{(0)}$) satisfies the
 290 following relation:

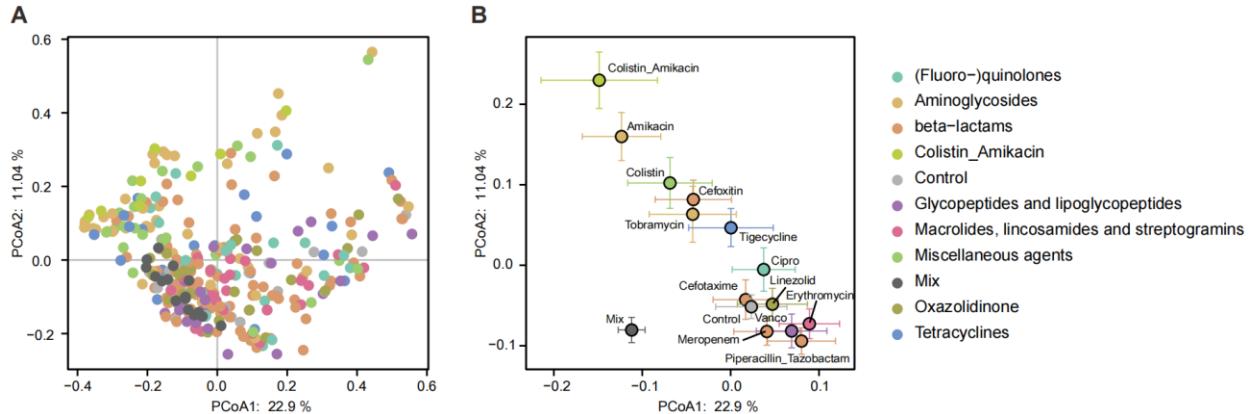

$$292 \quad \mathbf{x}_{1:s}^{(1)} - \mathbf{x}_{1:s}^{(0)} = -\mathbf{A}^{-1} \mathbf{b} x_{s+1}^{(1)} \quad (3)$$

293 Here, the s -dimensional state vector $\mathbf{x}_{1:s}^{(0)} = [\mathbf{x}_1^{(0)}, \mathbf{x}_2^{(0)}, \dots, \mathbf{x}_s^{(0)}]^T$ represents the pre-invasion
 294 steady state of the local community, the s -dimensional vector \mathbf{b} represents the interaction
 295 strength of the exogenous species onto the resident species. The interactions among resident
 296 species are encoded in matrix \mathbf{A} .


297 By combining Eq.2 and Eq.3, we discovered a surprisingly simple linear relation between the post-
 298 invasion abundance of the exogenous species $x_{s+1}^{(1)}$ and the pre-invasion abundance of resident
 299 species $\mathbf{x}_{1:s}^{(0)}$:

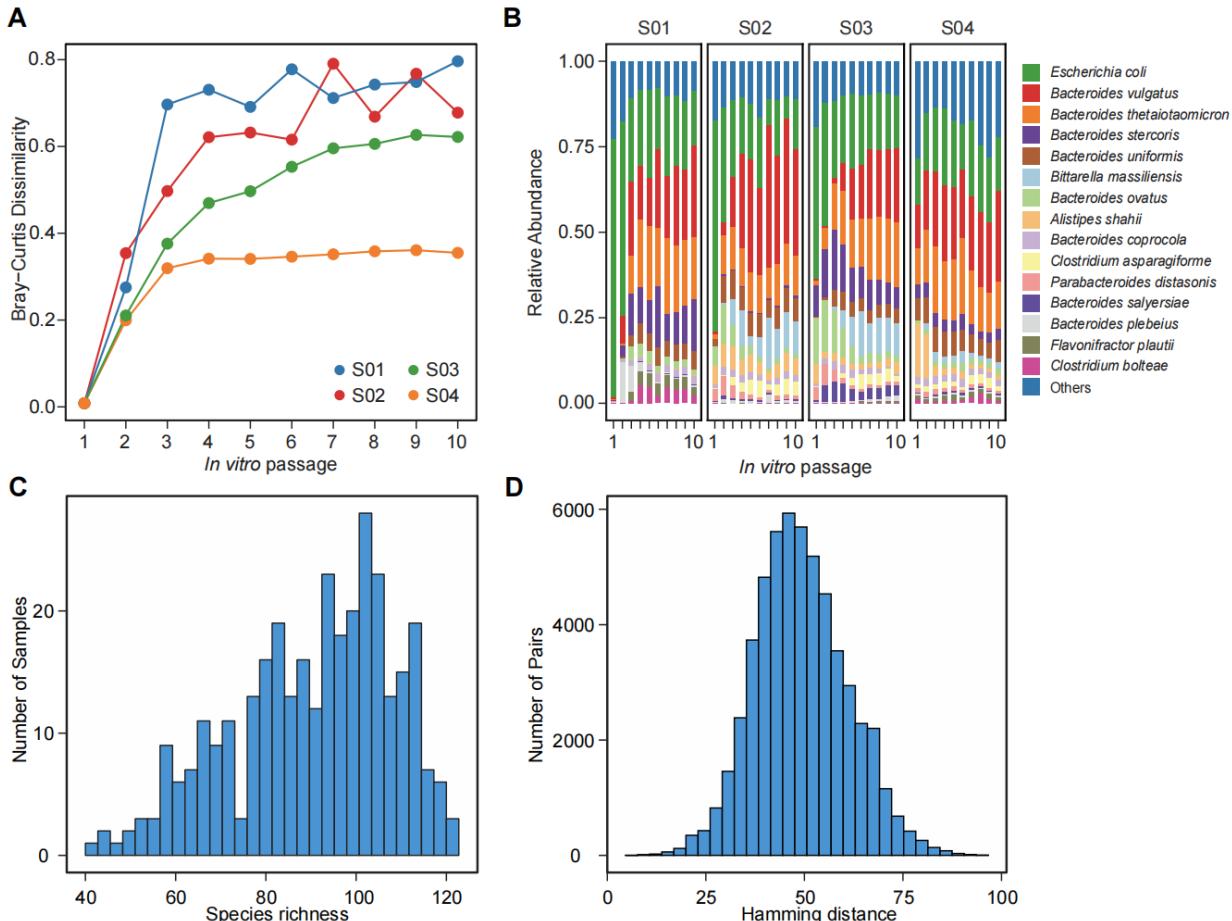
$$301 \quad x_{s+1}^{(1)} = \frac{r_1 + \mathbf{c}^T \mathbf{x}_{1:s}^{(0)}}{1 + \mathbf{c}^T \mathbf{A}^{-1} \mathbf{b}} \quad (4)$$

302 The analytically derived relation can fully explain the simulated colonization outcomes in GLV
 303 model (**Fig.S1**, Spearman correlation $\rho = 1, p < 0.001$). Although the linear relation in Eq. 4
 304 doesn't hold for other dynamical models (e.g., non-linear interactions), it gives us important
 305 insights that learning the mapping for colonization outcome prediction is feasible by data-driven
 306 models and the number of parameters required for fitting the relation is on the order of $\sim O(N)$.
 307 This is consistent with our observations on the number of training samples required for accurate
 308 prediction of colonization outcomes (**Fig. 1**).



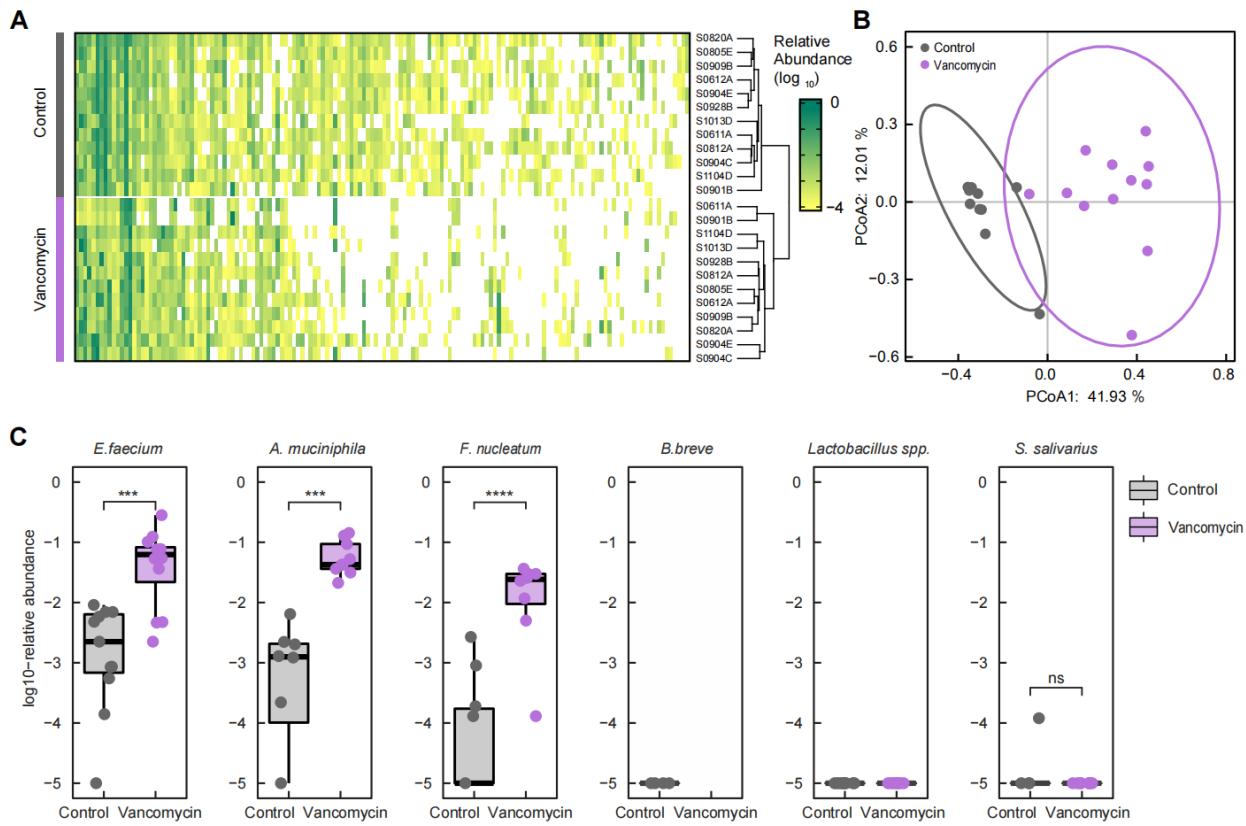
312 **Fig. S1. The steady state abundance of an invading species in communities governed by GLV**
 313 **dynamics: comparison between analytical derivations and simulations.** The analytically
 314 derived relation (Equation 4 in **Supplementary Text**) can fully explain the simulated colonization
 315 outcomes in GLV model (Spearman correlation $\rho = 1, p < 0.001$). We generated 50 local
 316 communities, each consisting of 4 species randomly drawn from a meta-community of 7 species.
 317 Network connectivity $C = 1$ and interaction strength $\sigma = 0.2$. Species-8 was introduced as an
 318 invading species.

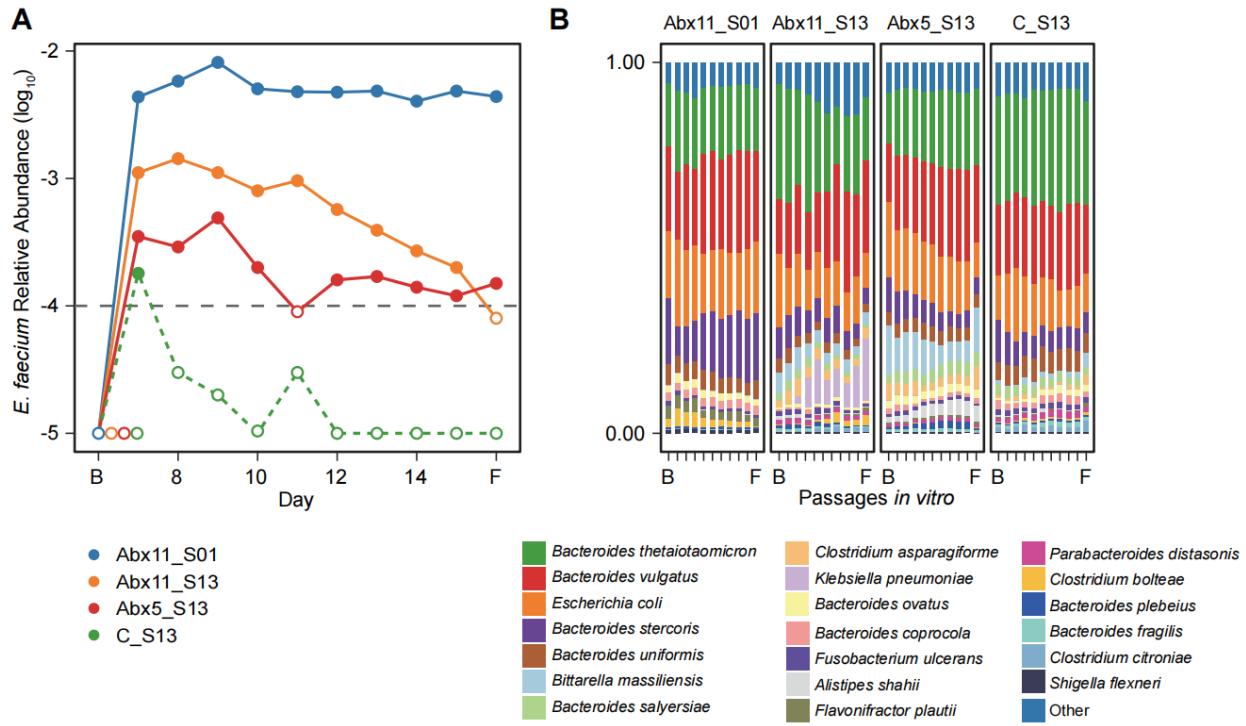
320


321 **Figure S2. The compositional profile of baseline communities at the species level.** Each column
 322 corresponds to a baseline community derived from a human stool sample (24 donors) treated with
 323 antibiotics (12 antibiotics). Mix indicates the group of communities derived from mixing two
 324 different donors. Each row corresponds to a species, clustered by the similarity of relative
 325 abundance across baseline communities. Species with top 100 prevalence are displayed.

326

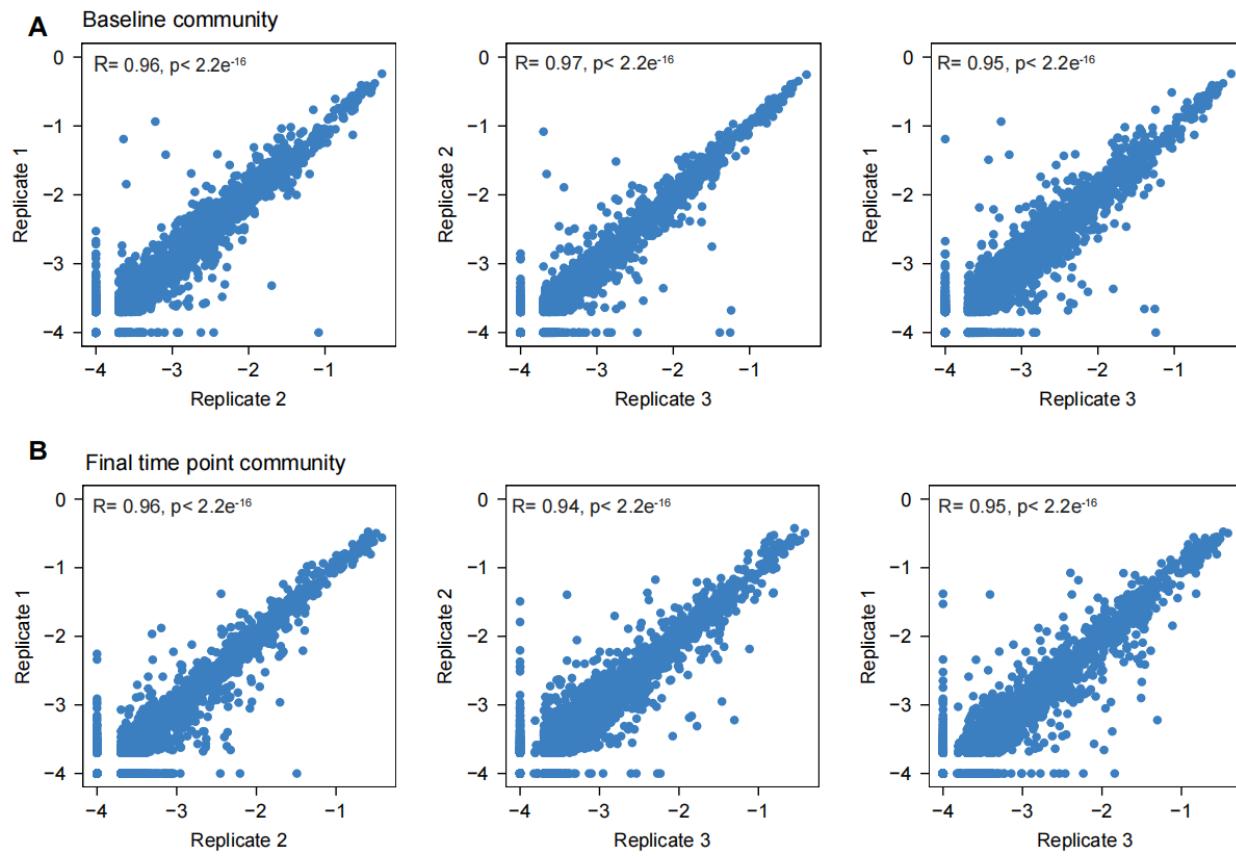
327 **Figure S3. Generation of diverse baseline communities by antibiotics treatments. (A)**
328 Principal-coordinate analysis (PCoA) based on the Bray-Curtis dissimilarity of the compositional
329 profiles at the species level. The baseline communities are color-coded according to antibiotics
330 treatments. **(B)** The colored dot for each antibiotics treatment represents the compositional profile
331 averaged over 24 subjects. Error bars are SEMs. The antibiotics of different classes had distinct
332 impacts on community structure. Tobramycin and amikacin, belonging to aminoglycosides,
333 drastically changed the community structure. In contrast, meropenem, cefoxitin, and cefotaxime,
334 belonging to beta-lactams, had relatively moderate impacts on the community structure.

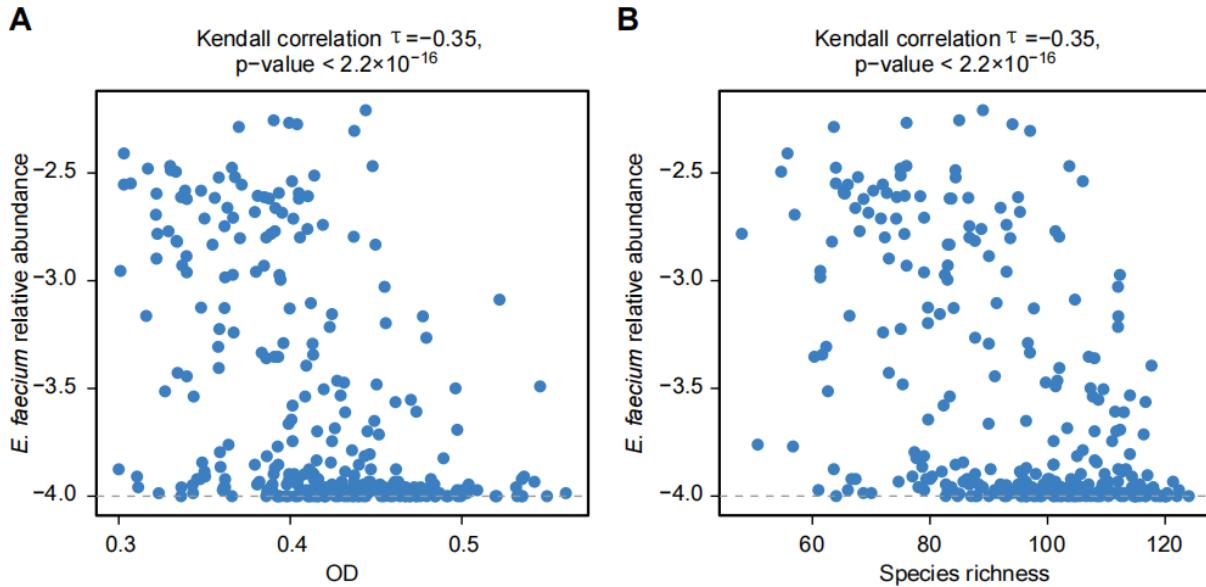

335


336

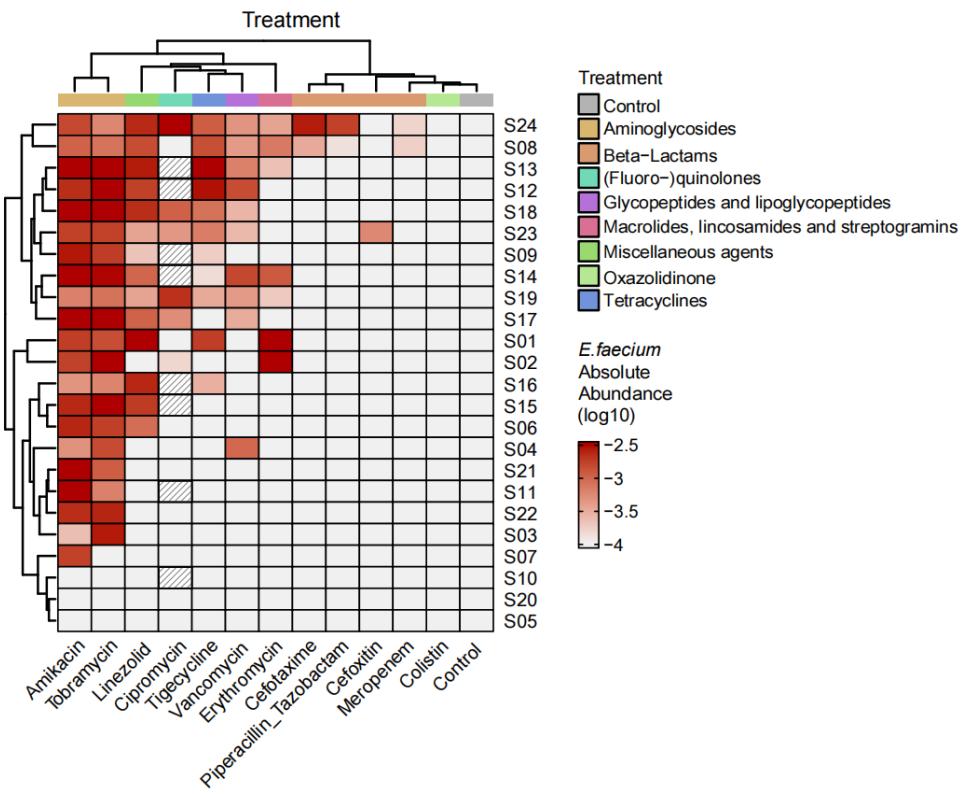
337 **Figure S4. Stabilization of human stool-derived *in vitro* communities and the statistics of**
 338 **steady-state baseline community composition. (A)** The Bray-Curtis dissimilarity to the initial
 339 compositional profile during serial passaging. Colored lines indicate the trajectories of
 340 communities from different donors (S01-S04). **(B)** Time series of the compositional profiles. The
 341 human stool-derived *in vitro* communities reached steady states after ~5 rounds of serial passaging
 342 in the MiPro medium. **(C)** Species richness of steady-state baseline communities. **(D)** Hamming
 343 distance between the species presence/absence profiles of baseline communities.

344

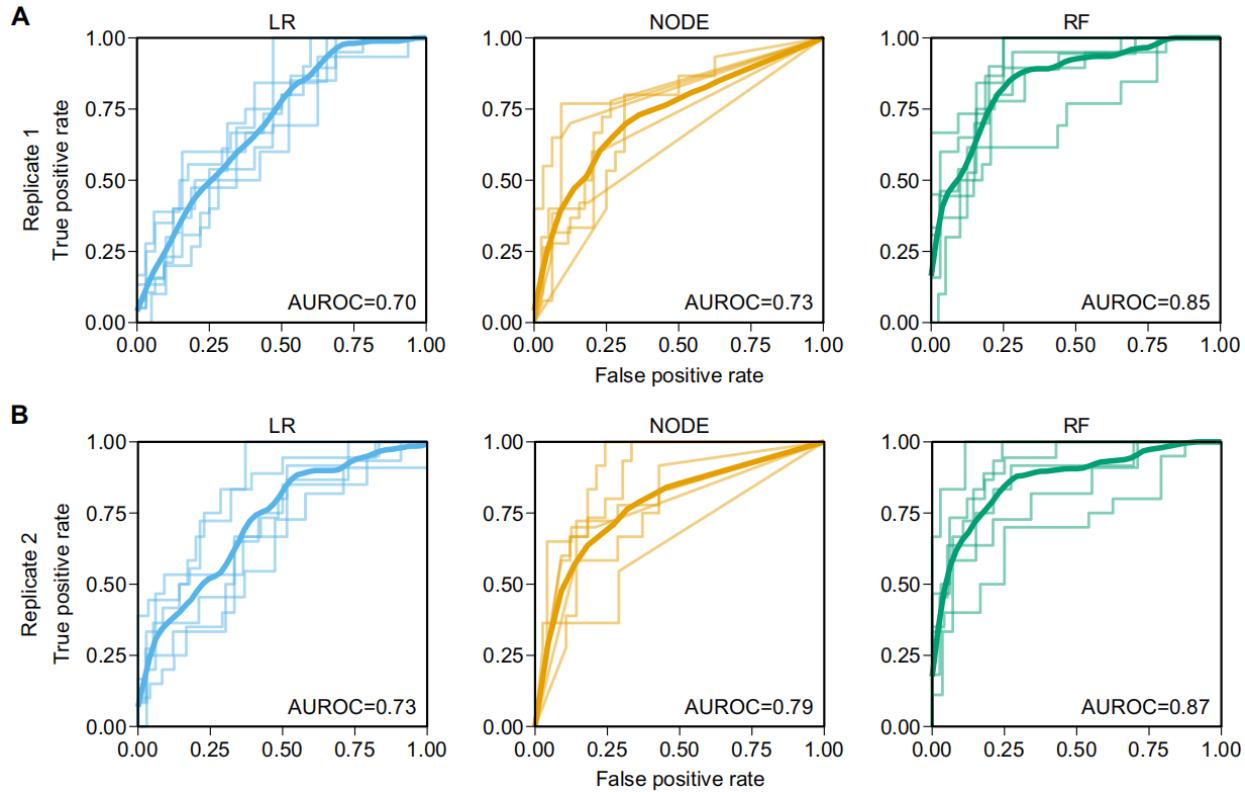

345
346 **Fig. S5. Colonization outcomes of different exogenous microbial species in human stool-**
347 **derived *in vitro* communities. (A)** The compositional profile of baseline communities at the
348 species level. Each row corresponds to a baseline community derived from a human stool sample
349 (12 donors) treated with vancomycin (Vanco) or not (Control). Each column corresponds to a
350 species, clustered by the similarity of relative abundance across baseline communities. Species
351 with top 100 prevalence are displayed. **(B)** Vancomycin treatment altered the community structure
352 at the species level (Adonis test, $R^2=0.36$, $p<0.0001$), as determined by PERMANOVA based on
353 the Bray-Curtis dissimilarity. **(C)** Colonization outcomes of different exogenous species, including
354 *E. faecium*, *A. muciniphila*, *F. nucleatum*, *S. salivarius*, *B. breve* and *Lactobacillus* spp. (*L. plantarum* HNU082 and *L. paracasei* HNU312). The relative abundance of the invading species
355 was determined by metagenomic sequencing of the final time point. We found that *E. faecium*, *A.*
356 *muciniphila* and *F. nucleatum* could successfully colonize in some communities at varying levels
357 of post-invasion abundance. In contrast, *S. salivarius*, *B. breve* and *Lactobacillus* spp. were unable
358 to colonize in nearly all the baseline communities that we tested. Moreover, we found that
359 vancomycin treatment significantly altered the colonization outcomes, rendering the communities
360 more susceptible to invasion. ns, not significant, *** $p < 0.001$, **** $p < 0.0001$, Mann-Whitney
361 U-tests. For visualization, the relative abundance was set to 10^{-5} if it was below the detection limit
362 (i.e. failed invasion).
364


365

366 **Fig. S6. Post-invasion time series of *E. faecium* abundance and community composition. (A)**
 367 The colonization outcome of *E. faecium* in different communities was persistent during serial
 368 passaging. The dashed line indicates the detection limit of the relative abundance of *E. faecium*
 369 (Fig.S18). **(B)** The community composition was stable during serial passaging. B and F denote the
 370 baseline and the final time point.

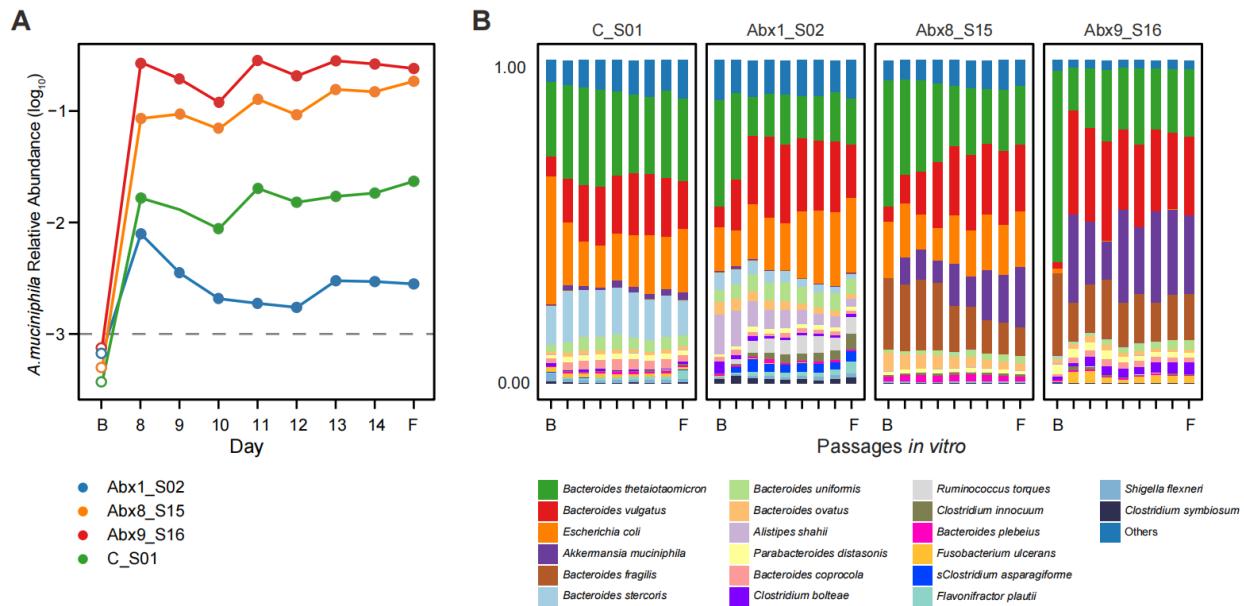

371

374 **Fig. S7. The composition of *in vitro* communities before and post *E. faecium* invasion is highly**
 375 **reproducible across replicates.** The species-level compositional profile of the baseline
 376 communities (A) and of the post-invasion communities (B) is highly reproducible among technical
 377 replicates (Pearson correlation). For visualization, the relative abundance was set to 10^{-4} if it was
 378 below the detection limit. n=3 replicates.


380
381 **Fig. S8. The invasion resistance to *E. faecium* increases with community biomass and**
382 **diversity. (A)** The post-invasion steady state abundance of *E. faecium* is negatively correlated with
383 the biomass of baseline communities (measured by OD₆₀₀). **(B)** The post-invasion steady state
384 abundance of *E. faecium* is negatively correlated with the species richness of baseline communities.
385

386

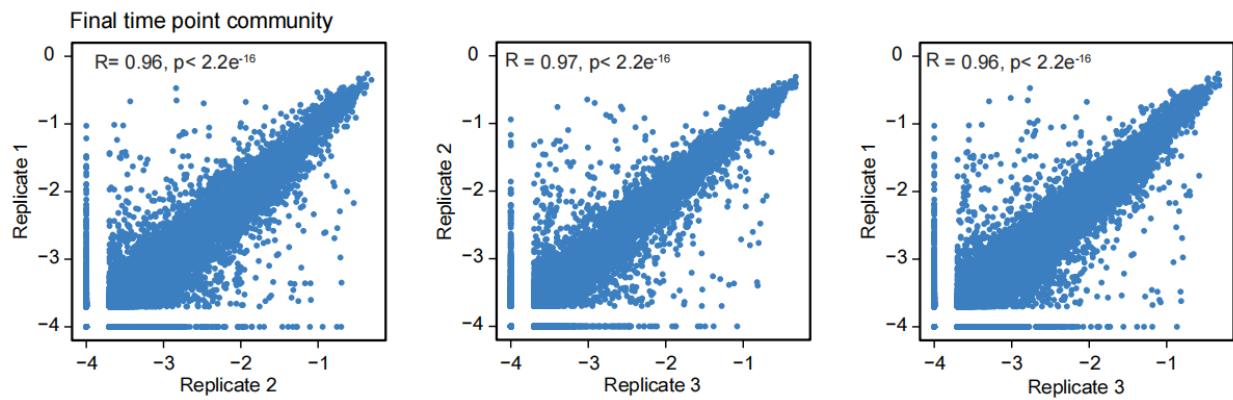
387 **Fig. S9. Variations in the colonization outcomes of *E. faecium* across different donors and**
 388 **antibiotics treatments.** For instance, post-invasion abundance of *E. faecium* in communities
 389 derived from donor S24 was higher than other donors; post-invasion abundance of *E. faecium* in
 390 communities treated with amikacin was higher than the control group and other treatment groups.
 391 Each row corresponds to a donor from which the communities were derived, each column
 392 corresponds to a treatment. The color gradient represents absolute abundance (OD₆₀₀ × relative
 393 abundance) of *E. faecium* at the post-invasion steady state. Samples marked with slashes are not
 394 available.

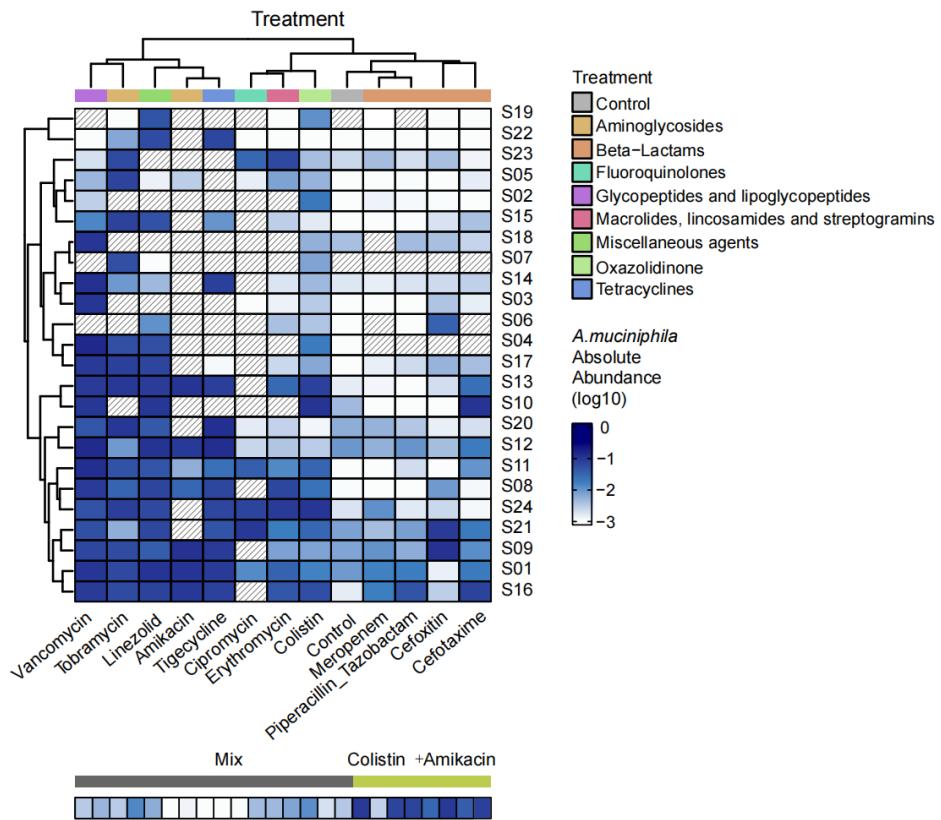

395

396

397 **Fig. S10. The performance of colonization outcome prediction for *E. faecium* is consistent**
 398 **across replicates.** ROC curve of machine learning models in binary classification (permissive vs.
 399 resistant) of the colonization outcomes of *E. faecium* in replicate 1 (A) and replicate 2 (B). For
 400 each 6-fold cross validation (ROC curves shown in light color), we trained each model using the
 401 samples from 20 subjects and the samples from the remaining 4 subjects to evaluate the model.
 402 The mean ROC curve is shown in dark color. LR: Logistic Regression, NODE: COP-Neural
 403 Ordinary Differential Equations classifier, RF: Random Forest classifier.

404

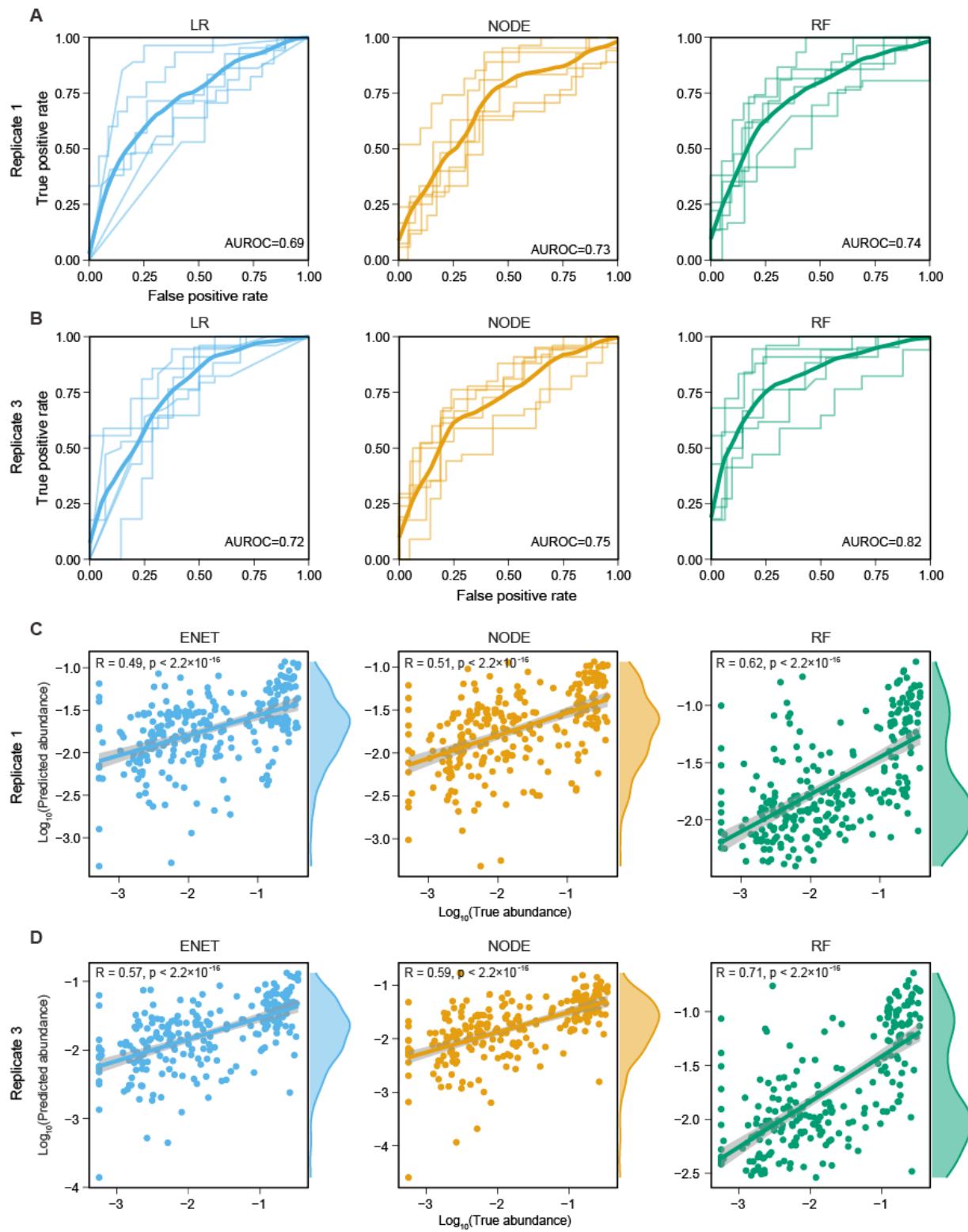

405
406
407
408
409
410
411


Fig. S11. Post-invasion time series of *A. muciniphila* abundance and community composition.
(A) The colonization outcome of *A. muciniphila* in different communities was persistent during serial passaging. The dashed line indicates the detection limit of the relative abundance of *A. muciniphila* (Fig.S18). **(B)** The community composition was stable during serial passaging. B and F denote the baseline and the final time point.

412

413 **Fig. S12. The composition of *in vitro* communities post *A. muciniphila* invasion is highly**
 414 **reproducible across replicates.** The species-level compositional profile of the post-invasion
 415 communities is highly reproducible among technical replicates (Pearson correlation). For
 416 visualization, the relative abundance was set to 10^{-4} if it was below the detection limit. n=3
 417 replicates.

418

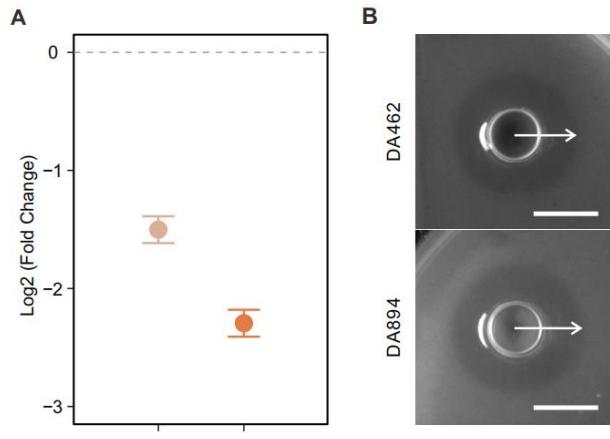


419

420 **Fig. S13. Variations in the colonization outcomes of *A. muciniphila* across different donors**
 421 **and antibiotics treatments.** For instance, post-invasion abundance of *A. muciniphila* in
 422 communities derived from donor S16 was higher than other donors; post-invasion abundance of
 423 *A. muciniphila* in communities treated with vancomycin was higher than the control group and
 424 other treatment groups. Each row corresponds to a donor from which the communities were
 425 derived, each column corresponds to a treatment. The color gradient represents absolute abundance
 426 (OD₆₀₀ × relative abundance) of *A. muciniphila* at the post-invasion steady state. Samples marked
 427 with slashes were not used in *A. muciniphila* invasion experiments. Mix indicates the group of
 428 communities derived from mixing two different donors.

429

430

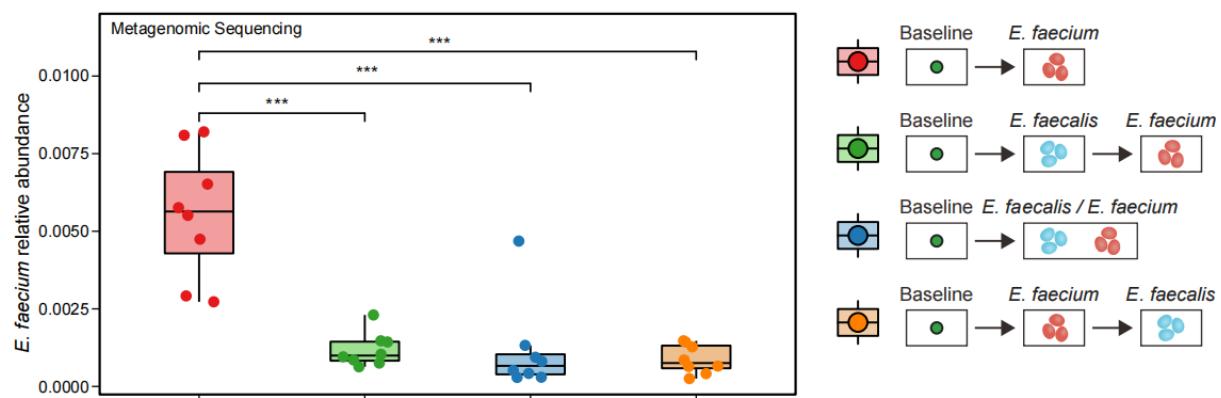


431

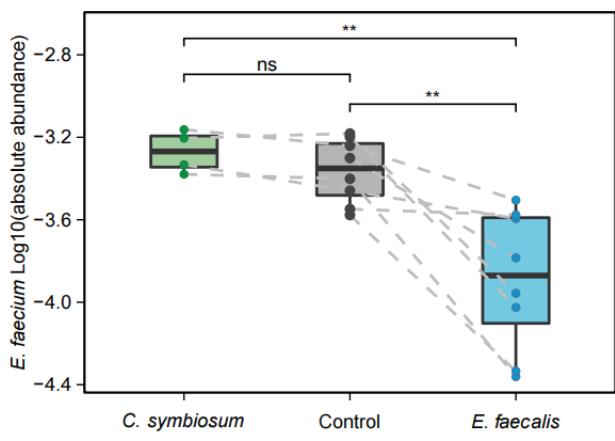
432 **Fig. S14. The performance of colonization outcome prediction for *A. muciniphila* is consistent**
 433 **across replicates.** ROC curve of machine learning models in binary classification (high permissive
 434 vs. Low permissive) of the colonization outcomes of *A. muciniphila* in replicate 1 (**A**) and replicate
 435 **3 (**B**).** For each 6-fold cross validation (ROC curves shown in light color), we trained each model

436 using the samples from 20 subjects and the samples from the remaining 4 subjects to evaluate the
437 model. The mean ROC curve is shown in dark color. Pearson's correlation coefficient between the
438 predicted abundance and the true abundance of *A. muciniphila* in replicate 1 (**C**) and replicate 3
439 (**D**). LR: Logistic Regression, ENET: Elastic Net Linear Regression, NODE: COP-Neural
440 Ordinary Differential Equations regressor, RF: Random Forest regressor.

441



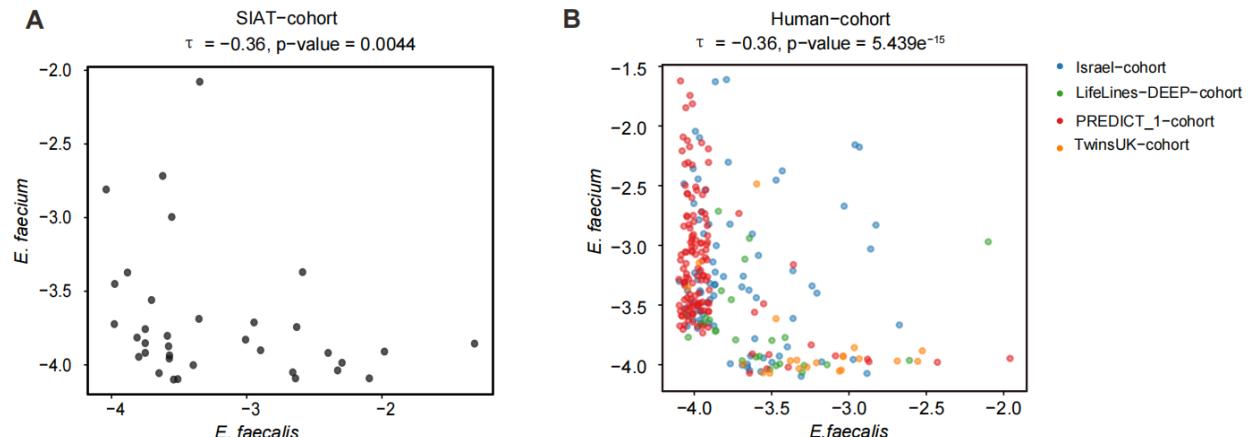
442


443 **Fig. S15. *E. faecalis* inhibits the growth of *E. faecium* in pairwise co-culture.** (A) The fold
 444 change in the abundance of *E. faecium* (the pairwise co-culture group divided by the mono-culture
 445 group) was lower than 1 (dashed line), indicating that the growth of *E. faecium* was inhibited in
 446 the presence of *E. faecalis* during pairwise co-culture in BHI. n=3 replicates, the error bars are
 447 SEMs, measured by qPCR. (B) The Oxford cup assay was used to determine the inhibition of *E.*
 448 *faecium* by *E. faecalis*. An inhibition zone surrounding the Oxford Cup when *E. faecalis* was
 449 present. Scale bar, 1 cm. Two *E. faecalis* strains DA462 and DA894 were used in the assays.

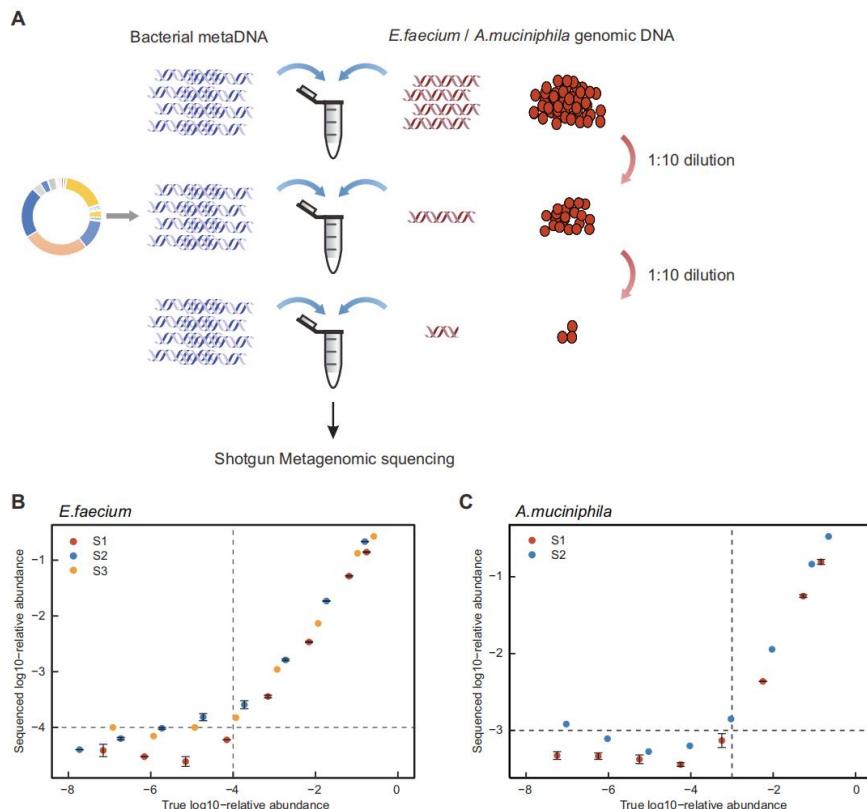
450

A

B



451


452 **Fig. S16. *E. faecalis* inhibits the growth of *E. faecium* in human stool-derived *in vitro***
 453 **communities. (A)** The end-point abundance of *E. faecium*, measured by metagenomic sequencing.

454 **(B)** The end-point abundance of *E. faecium* in communities inoculated with *E. faecalis* (inhibitory)
 455 or *C. symbiosum* (neutral) before *E. faecium* invasion (ns, not significant, ** p < 0.01, *** p <
 456 0.001, Mann-Whitney U-tests).

457

Fig. S17. The relative abundance of *E. faecalis* and *E. faecium* is negatively correlated in human gut metagenomic samples. (A) Negative correlation (Kendall correlation $\tau = -0.36$) between the relative abundances of *E. faecalis* and *E. faecium* in the SIAT cohort. **(B)** Negative correlation (Kendall correlation $\tau = -0.36$) between the relative abundances of *E. faecalis* and *E. faecium* in independent human cohorts. The detection limit in relative abundance was set to 10^{-4} . 71.5% of the samples in the SIAT cohort and 93.8% of the samples in the four independent cohorts were negative (i.e., below the detection limit) for both *E. faecium* and *E. faecalis*.

468

469 **Fig. S18. Quantification of the relative abundance of *E. faecium* and *A. muciniphila* by**

470 metagenomic sequencing. (A) To confirm the accuracy of shallow metagenomic sequencing in

471 quantifying the relative abundance of *E. faecium* and *A. muciniphila*, a spike-in experiment was

472 conducted. The spike-in DNA of the target species (*E. faecium* or *A. muciniphila*) was 1:10 diluted

473 for eight times and was added to the microbial metaDNA to a mixed DNA sample. The mixed

474 DNA was then used for library construction and metagenomic sequencing. (B-C)

475 By comparing the detected relative abundance generated by shallow metagenomic sequencing with the expected

476 abundance, the accuracy and sensitivity of our workflow were determined. The detection threshold

477 of *E. faecium* is 0.0001 and the detection threshold of *A. muciniphila* is 0.001.

478

Table S1 Information of antibiotics used in this study.

Antibiotics	Name	Concentration (ug/ml)	Target	Class
Abx1	Meropenem	35	Cell wall	beta-lactams
Abx2	Cefoxitin	10	Cell wall	beta-lactams
Abx3	Cefotaxime sodium salt	40	Cell wall	beta-lactams
Abx4	Piperacillin Sodium+Tazobactam acid	20+2.5	Cell wall	beta-lactams
Abx5	Vancomycin	16	Cell wall	Glycopeptides and lipoglycopeptides
Abx6	Colistin sulfate salt	20	Cell wall	Miscellaneous agents
Abx7	Ciprofloxacin	12	DNA synthesis	(Fluoro-)quinolones
Abx8	Tobramycin	400	Protein synthesis	Aminoglycosides
Abx9	Amikacin	200	Protein synthesis	Aminoglycosides
Abx10	Erythromycin	80	Protein synthesis	Macrolides, lincosamides and streptogramins
Abx11	Linezolid	70	Protein synthesis	Oxazolidinone
Abx12	Tigecycline	0.256	Protein synthesis	Tetracyclines

481 **References**

482 1. An Illustrated Guide to Theoretical Ecology. *Journal of Mammalogy* **82**, 247-248 (2001).

483 2. P. Erdős, Alfréd Rényi, On the evolution of random graphs. *Publ. Math. Inst. Hung. Acad. Sci* **5**, 43 (1960).

484 3. S. Michel-Mata, X. W. Wang, Y. Y. Liu, M. T. Angulo, Predicting microbiome compositions from species

485 assemblages through deep learning. *iMeta* **1**, (2022).

486 4. A. a. G. Paszke, Sam and Massa, Francisco and Lerer, Adam and Bradbury, James and Chanan, Gregory and

487 Killeen, Trevor and Lin, Zeming and Gimelshein, Natalia and Antiga, Luca and Desmaison, Alban and Kopf,

488 Andreas and Yang, Edward and DeVito, Zachary and Raison, Martin and Tejani, Alykhan and Chilamkurthy,

489 Sasank and Steiner, Benoit and Fang, Lu and Bai, Junjie and Chintala, Soumith, PyTorch: An Imperative Style,

490 High-Performance Deep Learning Library. *33rd Conference on Neural Information Processing Systems*

491 (*NeurIPS 2019*), (2019).

492 5. L. G. Buitinck L, Blondel M, Pedregosa F, Mueller A, Grisel O, Niculae V, Prettenhofer P, Gramfort A, Grobler

493 J, Layton R, API design for machine learning software: experiences from the scikit-learn project. *arXiv*

494 preprint [arXiv:1309.0238](https://arxiv.org/abs/1309.0238), (2013).

495 6. L. Li *et al.*, An in vitro model maintaining taxon-specific functional activities of the gut microbiome. *Nature*

496 *communications* **10**, 4146 (2019).

497 7. B. Javdan *et al.*, Personalized Mapping of Drug Metabolism by the Human Gut Microbiome. *Cell*, (2020).

498 8. H. P. Browne *et al.*, Culturing of 'unculturable' human microbiota reveals novel taxa and extensive

499 sporulation. *Nature* **533**, 543-+ (2016).

500 9. B. Hillmann *et al.*, Evaluating the Information Content of Shallow Shotgun Metagenomics. *mSystems* **3**,

501 (2018).

502 10. L. Maier *et al.*, Unravelling the collateral damage of antibiotics on gut bacteria. *Nature* **599**, 120-124 (2021).

503 11. T. EUCAST, European Committee on Antimicrobial Susceptibility Testing, Breakpoint tables for interpretation

504 of MICs and zone diameters. *Version 5.0, 2015* (2015).

505 12. S. Huang *et al.*, Candidate probiotic *Lactiplantibacillus plantarum* HNU082 rapidly and convergently evolves

506 within human, mice, and zebrafish gut but differentially influences the resident microbiome. *Microbiome* **9**,

507 151 (2021).

508 13. Z. Zhang *et al.*, *Lactobacillus fermentum* HNU312 alleviated oxidative damage and behavioural

509 abnormalities during brain development in early life induced by chronic lead exposure. *Ecotoxicol Environ*

510 *Saf* **251**, 114543 (2023).

511 14. P. D. Cani, W. M. de Vos, Next-Generation Beneficial Microbes: The Case of *Akkermansia muciniphila*. *Front*

512 *Microbiol* **8**, 1765 (2017).

513 15. W. Xu *et al.*, Characterization of Shallow Whole-Metagenome Shotgun Sequencing as a High-Accuracy and

514 Low-Cost Method by Complicated Mock Microbiomes. *Front Microbiol* **12**, 678319 (2021).

515 16. S. Dehbashi, H. Tahmasebi, P. Sedighi, F. Davarian, M. R. Arabestani, Development of high-resolution melting

516 curve analysis in rapid detection of vanA gene, *Enterococcus faecalis*, and *Enterococcus faecium* from clinical

517 isolates. *Trop Med Health* **48**, 8 (2020).

518 17. D. Zeevi *et al.*, Personalized Nutrition by Prediction of Glycemic Responses. *Cell* **163**, 1079-1094 (2015).

519 18. M. J. Bonder *et al.*, The effect of host genetics on the gut microbiome. *Nature Genetics* **48**, 1407-1412 (2016).

520 19. F. Asnicar *et al.*, Microbiome connections with host metabolism and habitual diet from 1,098 deeply

521 phenotyped individuals. *Nat Med* **27**, 321-332 (2021).

522 20. H. Xie *et al.*, Shotgun Metagenomics of 250 Adult Twins Reveals Genetic and Environmental Impacts on the
523 Gut Microbiome. *Cell systems* **3**, 572-584 e573 (2016).

524 21. K. R. Clarke, Non - parametric multivariate analyses of changes in community structure. *Australian Journal
525 of Ecology* **18**, 26 (1993).

526 22. P. Dixon, VEGAN, a package of R functions for community ecology. *Journal of Vegetation Science* **14.6**, 3
527 (2003).

528 23. N. Segata *et al.*, Metagenomic biomarker discovery and explanation. *Genome Biology* **12**, R60 (2011).

529 24. T. E. Gibson, A. Bashan, H. T. Cao, S. T. Weiss, Y. Y. Liu, On the Origins and Control of Community Types in the
530 Human Microbiome. *PLoS Comput Biol* **12**, e1004688 (2016).

531