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Supplementary results

Multi-omic profiling of Chinese SCC samples

For multi-omic profiling, 114 pairs of SCC tumors and NATs were taken from
patients with detailed clinical data (Table S2). In our cohort, samples of
patients without unambiguous clinical information were not considered for
further multi-omic analysis. In total, we obtained a total data volume of 7.81 TB
(~12.4 GB per WSI, size ranged from 36,352 x 106,240 pixels to 44,800 x
139,264 pixels) (Figure S1A, Table S1). To identify molecular alterations of
SCC, we conducted comprehensive multi-omic profiling, including proteomics
(N = 111), phosphoproteomics (N = 111), exomics (N = 89), and
transcriptomics (N = 80), in paired tumors and NATs in 114 cases where
tumors passed quality control (QC) (Methods, Table S3).

To quantify proteomic and phosphoproteomic alterations in SCC, the 222
tumors and paired NATs were categorized into 23 batches and separately
subjected to tandem mass tag (TMT) labeling after cell lysis and peptide
digestion. For each batch, individual samples were labeled with the TMT
11-plex reagent. Because the samples were not simultaneously obtained, we
selected the cervical cancer cell line, HelLa, as an internal reference for all the
batches to eliminate the batch effect of quantification. After fractionation, each
batch of peptide or phosphopeptide mixtures was analyzed by liquid
chromatography with tandem mass spectrometry (LC-MS/MS), respectively.
From the proteomic profiling, we identified 10,032 proteins, including 6,749
proteins quantified in > 50% of all samples (Figure S1B, Table S3). Using the
Wilcoxon rank-sum test, we identified 1,394 differentially expressed proteins
(DEPs) with |logz(fold change [FC])| > 0.5 in tumors against NATs (Adjusted p
< 0.01, Figure S1B, Table S4). From the phosphoproteomic profiling, we
identified 46,713 phosphorylation sites (p-sites), including 36,891
phospho-serine  (pS), 8,472 phospho-threonine (pT) and 1,350
phospho-tyrosine (pY) residues (Figure S1C, Table S4). In our



phosphoproteomic data, there were 17,670 p-sites simultaneously quantified
in > 50% of all samples (Figure S1C, Table S3). Again, we used Wilcoxon
signed-rank test, and identified 4,598 differentially regulated p-sites (DRPs)
with |log2(FC)| > 0.5 in tumors against NATs (Adjusted p < 0.01, Table S4).
Furthermore, the p-sites from the same phosphoproteins were collapsed by
calculating the median ratio, and 1,191 differentially phosphorylated proteins
(DPPs) were identified by two-sided Wilcoxon signed-rank test with statistical
significance (Adjusted p < 0.01 and |log2(FC)| > 0.5).

To identify genomic and transcriptomic alterations in encoding sequences
(CDSs) of SCC, both whole-exome sequencing (WES) and mRNA sequencing
(RNA-seq) were conducted. WES was used for sequencing 89 pairs of SCC
tumors and NATSs, having a sequencing depth ranging from 133X to 252X, with
an average depth of 173X in tumor or NAT samples (Figure S1D). The
corresponding transcriptomes of 80 pairs of samples were then profiled by
RNA-seq, obtaining clean reads ranging from 20.6 M to 68.3 M, with an
average number of 38.8 M reads in tumor or NAT samples (Figure S1E). For
each gene, the RNA-Seq by expectation maximization (RSEM) count was
calculated as its expression level (Table S3). In total, we obtained 10,217
genes mutually quantified in all samples, including 2,424 differentially
expressed genes (DEGs) with [log2(FC)| > 1 in SCC tumors, using the
Wilcoxon signed-rank test (Adjusted p < 0.01, Figure S1F, Table S3, S4).

Using 3,837 proteins, 5,299 p-sites, and 10,217 genes mutually quantified
in all samples, the principal component analysis (PCA) was performed for
proteomic (Figure S1G), phosphoproteomic (Figure S1H), and transcriptomic
data (Figure S1l). The results indicated that tumors and NATs could be clearly
distinguished without any batch effect. An analysis of the abundances of the
3,837 proteins in tumors or NATs found a single peak, indicating protein
degradation did not occur during sample preparation (Figure S1J).

Using 491 DEPs, 1,892 DRPs, and 1,088 DEGs significantly up-regulated
in SCC tumors against NATs (Table S4), we performed the enrichment



analysis of Gene Ontology (GO) biological processes (p < 0.01, Figure S1K). It
could be found that different processes were preferentially regulated at
different types of omic levels. One biological process, defense response to
virus, was simultaneously regulated at proteomic and transcriptomic levels.
Two processes, DNA replication and mRNA splicing via spliceosome were
mutually regulated at both proteomic and phosphoproteomic levels. No

process was simultaneously regulated at all three omic levels.

Additional results on molecular subtyping

Here, we applied 16 CFs (Table S2), all of which were tightly associated
with SCC outcomes, to calculate the correlations between molecular subtypes
and clinical relevance by Chi-square (% 2) tests. Using the k-means clustering
method, we first employed 1,394 DEPs, 1,198 DPPs, and 2,424 DEGs altered
in SCC tumors to conduct molecular subtyping for each omic layer (Figure S2A,
B). However, none of the resultant omic subtypes were significantly associated
with the 16 CF types (Figure S2C, Table S5).

Then we hypothesized that CFs and molecular subtypes that are able to
predict outcomes should be consistent with each other, and such a
consistency could be identified through optimization of consistency. We
adopted consistant learning in subtyping module. After the embedding,The
CF- and omics-embedded vectors were separately used for k-means
clustering, and the statistical association between two different subtypes was
tested. The weight value of each CF type was randomly changed, and one or
more molecules in each omic data were randomly dropped. The iterative
manipulation was terminated when the significance of the association between
clinical and omic subtypes did not increase further (Figure 3A). The decoder
module was used to ensure the fidelity of encoder-based embedding.

Functional enrichment analyses of GO biological processes or Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways '2? were also

conducted for different subtypes clustered from phosphoproteomic, or



transcriptomic data, respectively (Figure S2E-F). The results showed that
phosphoproteomic subtypes were consistent with proteomic subtypes with a
number of inflammation/complement-related processes being enriched in the
phosphoproteomic subtype S-lllp. We also found out that the image features

of keratinization have a consistent trend with the classification (Figure S2G).

Additional results on potential biomarker proteins in SCC

To identify potential tumor- and subtype-specific biomarkers, we developed
deepCMD marker module to select optimal biomarker combinations. We
identified marker combinations able to classify tumor and NATs and
importantly to identify the S-Ill inflammation/complement subtype, which is
associated with clinical characteristics of worsened outcomes, with high
fidelity.

There may be additional prognostic biomarkers and therapeutic options to
explore in S-1ll tumors. Immune complexes such as elevated IGHG2, IGHG4
may initiate complement activation in S-lll. In addition, upregulated members
of coagulation (F2/prothrombin and KNG1) and fibrinolytic (PLG, PLGLA, and
PLGLB1) system that we observed in S-lll may also contribute to 3. HRG,
which enhances complement activation by interacting with immunoglobulins,
was increased in S-lll tumors “. Furthermore, PLG, HRG, SEPTIN5, and
SERPINA4 are coordinately upregulated in S-lll, supporting these as targets
and potentially predictive biomarkers. Also, reverse phase protein arrays
(RPPA) have been used to measure the expression or phosphorylation levels
of hundreds of important proteins in SCC °. We obtained RPPA data of 171
cervical cancer tumors from The Cancer Proteome Atlas (TCPA) 8, in which the
expression levels of 13 proteins were significantly correlated with OS (log-rank
p < 0.05). Importantly 3 of the proteins associated with OS in the RPPA data
including SCD, PARP1, and YAP1 were also identified as DEPs up-regulated
in our SCC tumors (Figure S3l).



SCSP profile in cervical cancer

In total, we identified 3,541 unique proteins from at least one region, and
up to 2,194 proteins were quantified in > 50% of all regions. Most proteins
were identified with more than 2 peptides. (Figure S6D, E). And to improve our
understanding of the single-cell proteomic heterogeneity of SCC, we estimated
the proportions of the 29 deepCMD single-cell states from the corresponding
WSI, and then the eigen matrix of expression levels of 3,541 proteins in the 29
states was determined by non-negative matrix factorization (NMF) from the
SCSP data. Using such a matrix, NMF determined the proportions of the 29
single-cell states in each tumor sample based on bulk proteomic data.
Subsequently, 6,694 expression levels of the protein not detected in SCSP
profiling were then determined by NMF for each of the 29 single-cell states.
We assumed that the known markers of immune cells should be enriched in
corresponding immune cell subtypes. Based on this hypothesis, we iteratively
optimized our immune cell subtypes until the enrichment of known immune cell
markers did not increase.

We deconvoluted the spatial proteomes of the 29 single-cell states. For 29
single-cell states, Spearman’s correlation between two proteomes calculated
from spatial proteome and bulk proteomic data was analyzed, showing an
overall significantly positive correlation in 29 single-cell states (Adjusted p <
0.01, Figure S6F). The consistency of results from different levels indicates the

high accuracy and reliability of our results.
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Supplementary Figure Legends

Figure S1. Multi-omic profiling of tumors and NATs from SCC patients
(A) The number of WSIs in tumors and NATs. (B) The numbers of identified
proteins in at least one sample, mutually quantified proteins in > 50% of all
samples, and DEPs with |log2(FC)| > 0.5 in tumors vs. NATs (adjusted p <
0.01). (C) The numbers of identified pS, pT, and pY residues in at least one
sample, mutually quantified p-sites in > 50% of all samples, and DRPs with
[log2(FC)| > 0.5 in tumors vs. NATs (adjusted p < 0.01). (D) The sequencing
depths of WES in tumors and NATs. (E) The distribution of numbers of
QC-passed reads in tumors and NATs from RNA-seq profiling. (F) The
numbers of identified mMRNAs in at least one sample, mutually quantified
MRNAs in all samples, and DEGs with |log2(FC)| > 1 in tumors vs. NATs
(adjusted p < 0.01). (G-I) PCA results of (G) proteomic data, (H)
phosphoproteomic data, and (I) transcriptomic data, respectively. (J) The
distribution of normalized abundance values (NAVs) of proteins in tumors and
NATs. (K) The sankey plot of enriched GO biological processes of DEPs,
DRPs, and DEGs significantly up-regulated in SCC tumors against NATSs.
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Figure S2. Integrated molecular subtyping in SCC

(A) The schematic diagram of different solutions for the k-means clustering (k
= 2, 3, or 4) of patients based on proteomic data. (B) The delta plot of the
relative change in the area under the cumulative distribution function (CDF)
curve of the k-means clustering with different k values. (C) The statistical
significance values of the conventional clustering (initial) and cLCM-based
clustering (optimized), for proteomic, phosphoproteomic and transcriptomic
data. (D) Enriched GO biological processes associated with proteomic
subtypes. (Hypergeometric test, p < 0.05). (E,F) Enriched GO biological
processes  associated  with (E) phosphoproteome-, and (F)
transcriptome-based subtypes, respectively (Hypergeometric test, p < 0.05).

(G) The representative tiles from S-I and other types.
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Figure S3. Additional experiments to validate potential biomarkers
specific for SCC tumors or proteomic subtype S-lll

(A-C) Individual candidate biomarker proteins in the top 10 combinations
specific for proteomic subtypes (A) S-I, (B) S-ll, and (C) S-Ill. (D,E) The
histograms showing the siRNA library screening against 33 DEPs in HelLa and
SiHa cells. HeLa (3500 per well) and SiHa (3500 per well) are harvested 3d
post transfection and cell viability was determined by CCK8 assay. (F) The
representative images of immunohistochemistry analysis showing different
expression level of EPCAM and GBP1 protein in SCC tumor tissue and normal
cervix. Scale bar, 50um. (G) The representative images of
immunohistochemistry analysis showing SEPTINS, SERPINA4 and PLG
protein expression heterogeneity among SCC tumor samples. Scale bar, 50
um. (H) The statistics of image feature “StDev FormFactor” values between
HRG high expressed and low expressed samples. (Two-sided t-test, p =
0.0124) (1) The prognostic powers of 3 DEPs identified in this study, including
SCD, PARP1, and YAP1. The data of their correlation between RPPA-based

expression levels to OS outcomes were directly taken from TCPA €.
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Figure S4. Additional experiments to validate potential actionable PKs

(A,B) The histograms showing the siRNA library screening against 37 potential
PKs in HelLa and SiHa cells. HeLa (3500 per well) and SiHa (3500 per well)
are harvested 3 d post transfection and cell viability was determined by CCK8
assay. (C) The representative results of cell proliferation assay in SiHa cells
while CDK18, CDK9 and PLK1 expression were diminished by siRNA. Each
sample was assayed in quintuplicates in 96-well plate. Cell viability was
measured with CCK8 kit at OD = 450 nm every 48 h consecutively. (D) The
drug response curves of CDK9 and PLK-1 inhibitors in HelLa (left) and SiHa
(right) cells. IC50 of each drug in two cell lines was calculated with Graphpad
Prism software. (E) The representative images (left panel) and quantitative
analysis at a concentration of 10nM (right panel) of colony formation assays of
CDKS9 and PLK-1 inhibitors treated HeLa and SiHa cells. (F)The western blot
validation of the effect of PLK1 (top), CDK18 (middle) and CDK9 (bottom)
siRNA interference in HeLa and SiHa cells. (G) The western blot analysis of
HPV EG6, E7 oncoprotein and p53 protein levels in HeLa and SiHa cells treated
with increasing dose of two CDK9 inhibitor NVP-2 (above) AZD4573 (bottom).

(H) The cell cycle analysis of HeLa cells treated with DMSO, NVP-2, AZD4573,

B16726 and GSK461346 at 5 nM, 10 nM and 20 nM respectively for 48 h.
PLK-1 inhibitors mainly induced cell cycle arrest at G2/M phase while CDK9

inhibitors resulted a clear G1 phase arrest.
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Figure S5. Additional results for CDK18 and CDK9

(A) The schematic illustration of the PDX1-2 establishments from 2 recurrent
cervical cancer patients. (B) The representative images showing the
concordance of the histological morphology between SCC primary tumor and
the corresponding PDX. Scale bar, 50 um. (C) Line charts showing the body
weight changes of nude mice in each treatment group during drug
administration (n = 5 or 6). Black arrows indicate the starting point of drug
administration. (D,E) The representative images and quantification of
immunohistochemistry analysis of Ki67 (left panel) and yH2AX (right panel) in
HelLa xenograft and three PDXs after indicated treatment (n = 5 or 6). Scale
bar, 50 ym. An unpaired t test was performed for statistical analysis. (F) The
CoT of reasoning the relationship between the expression of CDK18 and
CDKS9 with image feature. (H,I) GSEA plots of the indicated pathway when
compared RNA-seq data of CDK18 knock-out cells to parental HeLa cells. *p <
0.05, **p < 0.01, **p < 0.001. (J) The statistics of image feature “Granularity”
values and CDK18/CDK9 kinase activities (Two-sided t-test, p = 0.0391).
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Figure S6. Additional analyses of the single-cell heterogeneity in SCC.

(A) The basic procedure of sampling 113 heterogeneous regions from whole
tumor sample. (B) The ROC curve of single-cell recognition on malignant,
immune and other cells. (C) Seurat-based clustering 7 of single cells
recognized by deepCMD-SCSP. (D) The distribution of peptide numbers of
proteins identified from the spatial proteomic profiling. (E) The numbers of
identified proteins and proteins quantified in > 50% of all small regions. (F) The
Spearman’s correlation between the two proteomes of 29 single-cell subtypes
calculated from spatial proteome and bulk proteomic data. (G) The histogram
showing the proportion of malignant cells, immune cells and other cells in S-I,
S-1l, and S-lll. (H) The enrichment analysis of GO biological processes (p <

0.01) of top 50 state-specific proteins of each malignant cell state.



Supplementary Table Legends

Table S1. The total ChatGPT questioning and answering pairs of interpretation,
reasoning and new insights. Table S1A. First question in interpretation module
of querying DEPs, DPPs, DEGs, FMGs and single-cell markers. Table S1B.
Second question in interpretation module of querying DEPs, DPPs, DEGs,
FMGs and single-cell markers. Table S1C. Third question in interpretation
module of querying DEPs, DPPs, DEGs, FMGs and single-cell markers. Table
S1D First question in reasoning module of querying image characteristics.
Table S1E. Second question in interpretation module of querying image
characteristic changing. Table S1F. Third question in interpretation module of
querying molecular alteration with imaging characteristic changing. Table S1G.
First question in new insight module of querying experimental verified
moleclues. Table STH. Second question in new insight module of querying
experimental results of molecules. Table S1l. Third question in new insight
module of querying reasoning confidence of molecule involvement in cervical

cancer. Table S1J. Questions within signal webs.

Table S2. The Clinical Characteristics of 114 SCC Patients.

Table S3. The Multi-omic Profiling and the Spatial Proteomic Profiling, Related
to STAR Methods and Figure S2.

Table S3A. The proteomic profiling of 111 paired samples. Table S3B. The
phosphoproteomic profiling of 111 paired samples. Table S3C. The
WES-based somatic variants. Table S3D. The transcriptomic profiling of 80
paired samples. Table S3E. The spatial proteomic profiling of 113 small

regions.

Table S4. The DEPs, DRPs and DPPs in SCC Tumor against NAT Samples,
Related to STAR Methods and Figure S1, S2.



Table S4A. The list of 1,394 DEPs. Table S4B. The list of 1,198 DPPs. Table
S4C. The list of 4,598 DRPs. Table S4D. The list of 2,424 DEGs. Table S4E.
The list of 2,073 omic DICs. Table S4F The list of 288 single-cell DICs.

Table S5. The Correlation between Clinical Subtypes and Molecular Subtypes,
the List of Top 10 Tumor- and Subtype-specific Candidate Biomarker
Combinations, 37 Actionable Kinases, and the Expression Matrix of 10,235
Proteins in 29 Single-cell states, Related to STAR Methods and Figure 6.

Table S6A. The correlation between clinical subtypes and proteome-,
transcriptome- and phosphoproteome-based subtypes. Table S6B. The details
of top 10 tumor- and subtype-specific biomarker combinations. Table S6C.
The details of 37 predicted actionable kinases. Table S6D. The expression

matrix of 10,235 proteins in 29 deconvoluted single-cell subtypes.

Table S6. The siRNAs for Candidate Protein Biomarkers and Candidate PKs,
as well as 14 Kinase Inhibitors with Corresponding Doses for 8 PKs, Related
to STAR Methods and Figure 5.

Table S7A. The list of siRNAs for candidate protein biomarkers. Table S7B.
The list of siRNAs for candidate PKs. Table S7C. The 14 kinase inhibitors for 8
PKs.
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