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1 Superfamilies used in this paper
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2 Voxelization & Featurization

Covalent Bonding
Max overlapping features

Boolean 1-hot Features (19 or 40)

Atom Type (13)
H, HD, HS, C, A, N, NA, NS, OA, OS, SA, S, unknown

*Residue Type (21; Unused)
20 standard AA + unknown

Secondary Strucuture (3)
helix, sheet, unknown

Hydrophobicity (1)
is hyrodophic

Partial Charge (1)
is positive

Electrostatics (1)
is electronegative

PDB ID: 1KQ2.A

Figure 1: Each domain is voxelized by (1) centering in a 256 A’ volume; and (2) discretizing each atom to fit 1 ? voxels searching

a KD-Tree with a radius equal to the current atoms van der walls radii, where the KD-tree initialized by the full 256 A’ volume,
with 1 3 resolution. If two or more atoms occupy a single voxel, the maximum from each feature is used to handle covalent
bonding. Each voxel contains a 1-hot feature vector with 19 or 40 features depending on if residue type is included. Residue
type was not included in the models shown in this paper because due poor reconstruction metrics so was not considered useful
for this type of model, seen in Fig 3

3 Immunoglobulin (2.60.40.10) Model Metrics
3.1 Training & Validation Loss

2.60.40.10 Loss Values

Stage
—— Training

0.125

—— \Validation

0.120

0.115

0.110

0.105

Evidence Lower Bound (ELBO)

0.100

0.095

0.090

0 5 10 15 20 25 30
epoch

Figure 2: The 2.60.40.10 model was trained for 30 epochs using a 80% / 10 % split from CATH’s S35 clusters (test [10 %] not
shown).



3.2 Classification Metrics (w/ Residue Type)
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Figure 3: We trained an Immunoglobulin-specific model 7 different times for 7 different groups of features, excluding all of the
other feature groups. We compared the reconstructed values for each values to the input using ROC (receiver operating; true
positive vs false positive) and PRC (precision vs recall) curves, saving the AUC (area under curve) for each. Most features were
able to be reconstructed well (AUC > 0.6) except residue type so we removed them from further models. We hypothesize that
residue type is not as important for atom-only models and is too coarse-grained to be meaningful for this context.

3.3 Classification Metrics (w/o Residue Type)
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Figure 4: The 2.60.40.10 model was trained with all features, but individual feature groups were separated to perform micro-
averaging ROC, PRC, and F1 scores
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Figure 5: Classification metrics for separated features in the Secondary Structure feature group.
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Figure 6: Classification metrics for separated features in the Atom Type feature group.



4 Multiple Loop Permutations

4.1 Permutants

1kg2A00
SH3 (2.30.30.100)

W 6-2-3-1-5-4
e .0:734 RMSD: 1.297
-Score: 0.61 TM-Score: 0.415

(a) Exemplar SH3 permutatants

Random similarity Similar architecture, Likeley similar fold
5 | Tscore = 0.3 :r:fi:-‘.:ihl:ﬂ random 5 < TM-Score
0.3 < TM-Score = 0.5
4
>
= 3
wn
c SH3 Permutants TM-Score vs Wild-Type
8 . OB Permutants TM-Score vs Wild-Type
2
1
0
0.0 0.2 0.4 0.6 0.8 1.0

TM-Score

(b) TM-Scores for Multiple Loop Permuted structures. Many of the SH3 and OB permutant TM-Scores fall
between 0.3-0.5, showing that that are more than randomly similar, but not the same fold.

Figure 7: Multiple Loop Permutations Example



4.2 Class Imbalance Scores

Joint Imbalanced Joint Oversampledloint Undersampled
SH3 & OB Model SH3 & OB Model SH3 & OB Model

140 A
120 e .
SH3 Representatives
- (OB Representatives
100 h ] SH3 Permutatants
- —— OB Permutatants
£’ 80 A . -
G Background (TM-Score
GC) <0.3 from model input)
O 60 4 1 b —— 1kq2A00 SH3 Wild Type
—— 1luebA03 OB Wild Type
40 4 i E —— ul2 (OB)
| | —— ul24 (SH3)
20 . .
0 A _
0.100 0.125 0.150 0.100 0.125 0.150 0.100 0.125 0.150

ELBO ELBO ELBO

Figure 8: In order test how class imbalance affects our models, we trained 3 joint SH3 and OB models: (A) using all domains from
each superfamily; (B) oversampling SH3 domains to match the number of OB domains; and (3) under-sampling OB domains
to match the number of SH3 domains. We found no significant change between them in terms of ELBO scores when running
representatives, multi-loop permuted models, and ancestral versions of SH3 and OB.



5 Latent Space

5.1 UMAP
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Figure 9: Latent Space from UMAP. Representatives from each superfamily were subjected to models trained with domains from
the same superfamily, saving the latent variable representing the mean for each representative domain. The latent variables for
each different model were concatenated and reduced from 1024 dims to 2 for visualization



5.2 t-SNE

T-SNE Dimension 2
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Figure 10: Latent Space from t-SNE

Average Electrostatics



5.3 PCA
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Figure 11: Latent Space from PCA
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6 Stochastic Block Modelling

# of Clusters 20
Silhouette Score —0.0705
Davies-Boundin Score 33.1678
Overlap Score 0.2798
Rand Score 0.8542
Rand Score Adjusted 0.1977
Adjusted Mutual Information 0.4108
Homogeneity Score 0.4831
Completeness Score (.3749

Table 1: Clustering metrics of DeepUrfold SBM vs CATH
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6.7 Downsampled SBM

Superfamilies (=100 domains representatives)

Il Winged helix-like DNA-binding domain
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Figure 18: In order to test how the SBM treats highly imbalanced classes, we included only superfamilies that had > 100 domain
representatives and sampled 100 random domains from each. No immediate change can be detected and OB domains are still
found in the same community as Immunoglobulins
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8 Model Architecture

DomainStructureVAE( =0.1, affine=True, track_running_stats=True)

(encoder) : Encoder( (2) : MinkowskiELU()
(blockl): Sequential( (3): MinkowskiConvolution(in=256, out=256,
(0) : MinkowskiConvolution(in=20, out=16, kernel_size kernel_size=[3, 3, 3], stride=[1, 1, 1],
=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, dilation=[1, 1, 11)
11) (4): MinkowskiSyncBatchNorm(256, eps=1e-05, momentum
(1) : MinkowskiSyncBatchNorm(16, eps=1e-05, momentum =0.1, affine=True, track_running_stats=True)
=0.1, affine=True, track_running_stats=True) (5) : MinkowskiELU()
(2) : MinkowskiELU() )
(3): MinkowskiConvolution(in=16, out=16, kernel_size (block6) : Sequential(
=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, (0) : MinkowskiConvolution(in=256, out=512,
1]) kernel_size=[3, 3, 3], stride=[2, 2, 2],
(4) : MinkowskiSyncBatchNorm(16, eps=1e-05, momentum dilation=[1, 1, 1])
=0.1, affine=True, track_running_stats=True) (1) : MinkowskiSyncBatchNorm(512, eps=1e-05, momentum
(5) : MinkowskiELU() =0.1, affine=True, track_running_stats=True)
) (2) : MinkowskiELU()
(block2): Sequential( (3): MinkowskiConvolution(in=512, out=512,
(0) : MinkowskiConvolution(in=16, out=32, kernel_size kernel_size=[3, 3, 3], stride=[1, 1, 1],
=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, dilation=[1, 1, 11)
11) (4) : MinkowskiSyncBatchNorm(512, eps=1e-05, momentum
(1) : MinkowskiSyncBatchNorm(32, eps=1e-05, momentum =0.1, affine=True, track_running_stats=True)
=0.1, affine=True, track_running_stats=True) (5) : MinkowskiELU()
(2) : MinkowskiELU() )
(3) : MinkowskiConvolution(in=32, out=32, kernel_size (block7): Sequential(

=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1,
11)

(4) : MinkowskiSyncBatchNorm(32, eps=1e-05, momentum
=0.1, affine=True, track_running_stats=True)
(5) : MinkowskiELU()

)
(block3): Sequential(
(0) : MinkowskiConvolution(in=32, out=64, kernel_size
=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1,
1)

(1) : MinkowskiSyncBatchNorm(64, eps=1e-05, momentum
=0.1, affine=True, track_running_stats=True)

(2): MinkowskiELU()

(3) : MinkowskiConvolution(in=64, out=64, kernel_size

=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1,
11)

(4) : MinkowskiSyncBatchNorm(64, eps=1e-05, momentum
=0.1, affine=True, track_running_stats=True)
(5) : MinkowskiELU(Q)

)
(block4): Sequential(
(0) : MinkowskiConvolution(in=64, out=128,
kernel_size=[3, 3, 3], stride=[2, 2, 2],
dilation=[1, 1, 1])

(1) : MinkowskiSyncBatchNorm(128, eps=1e-05, momentum
=0.1, affine=True, track_running_stats=True)

(2) : MinkowskiELU()

(3) : MinkowskiConvolution(in=128, out=128,

kernel _size=[3, 3, 3], stride=[1, 1, 1],
dilation=[1, 1, 1])

(4) : MinkowskiSyncBatchNorm(128, eps=1e-05, momentum
=0.1, affine=True, track_running_stats=True)
(5) : MinkowskiELU()

)
(blockb5): Sequential(
(0) : MinkowskiConvolution(in=128, out=256,
kernel_size=[3, 3, 3], stride=[2, 2, 2],
dilation=[1, 1, 11)

(1) : MinkowskiSyncBatchNorm(256, eps=1e-05, momentum
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(0) : MinkowskiConvolution(in=512, out=1024,
kernel_size=[3, 3, 3], stride=[2, 2, 2],
dilation=[1, 1, 11)

(1) : MinkowskiSyncBatchNorm(1024, eps=1e-05,
momentum=0.1, affine=True, track_running_stats=
True)

(2) : MinkowskiELU()

(3): MinkowskiConvolution(in=1024, out=1024,
kernel_size=[3, 3, 3], stride=[1, 1, 1],
dilation=[1, 1, 11)

(4) : MinkowskiSyncBatchNorm(1024, eps=1e-05,
momentum=0.1, affine=True, track_running_ stats=
True)

(5) : MinkowskiELU()

)

(global_pool): MinkowskiGlobalPooling(mode=PoolingMode
.GLOBAL_AVG_POOLING_PYTORCH_INDEX)

(linear_mean): MinkowskiLinear(in_features=1024,
out_features=1024, bias=True)

(linear_log_var): MinkowskiLinear (in_features=1024,
out_features=1024, bias=True)

(decoder) : Decoder(

(blockl): Sequential(
(0) : MinkowskiConvolutionTranspose(in=1024, out
=1024, kernel_size=[2, 2, 2], stride=[2, 2, 2],
dilation=[1, 1, 1])

(1) : MinkowskiSyncBatchNorm(1024, eps=1e-05,
momentum=0.1, affine=True, track_running_ stats=
True)

(2) : MinkowskiELU()

(3): MinkowskiConvolution(in=1024, out=1024,
kernel_size=[3, 3, 3], stride=[1, 1, 1],
dilation=[1, 1, 11)

(4) : MinkowskiSyncBatchNorm(1024, eps=1e-05,
momentum=0.1, affine=True, track_running_stats=
True)

(5) : MinkowskiELU()

(6): MinkowskiConvolutionTranspose(in=1024, out=512,



)

kernel_size=[2, 2, 2], stride=[2, 2, 2],
dilation=[1, 1, 11)

(7): MinkowskiSyncBatchNorm(512, eps=1e-05, momentum
=0.1, affine=True, track_running_stats=True)

(8): MinkowskiELU()

(9) : MinkowskiConvolution(in=512, out=512,

kernel_size=[3, 3, 3], stride=[1, 1, 1],
dilation=[1, 1, 11)

(10) : MinkowskiSyncBatchNorm(512, eps=1e-05,
momentum=0.1, affine=True, track_running_stats=
True)

(11) : MinkowskiELU()

(block2): Sequential(

)

(0) : MinkowskiConvolutionTranspose(in=512, out=256,
kernel_size=[2, 2, 2], stride=[2, 2, 2],
dilation=[1, 1, 11)

(1) : MinkowskiSyncBatchNorm(256, eps=1e-05, momentum
=0.1, affine=True, track_running_stats=True)

(2): MinkowskiELU()

(3) : MinkowskiConvolution(in=256, out=256,

kernel_size=[3, 3, 3], stride=[1, 1, 1],
dilation=[1, 1, 11)

(4) : MinkowskiSyncBatchNorm(256, eps=1e-05, momentum
=0.1, affine=True, track_running_stats=True)
(5) : MinkowskiELU()

(block3): Sequential(

)

(0): MinkowskiConvolutionTranspose(in=256, out=128,
kernel_size=[2, 2, 2], stride=[2, 2, 2],
dilation=[1, 1, 11)

(1) : MinkowskiSyncBatchNorm(128, eps=1e-05, momentum
=0.1, affine=True, track_running_stats=True)

(2): MinkowskiELU()

(3) : MinkowskiConvolution(in=128, out=128,
kernel _size=[3, 3, 3], stride=[1, 1, 1],
dilation=[1, 1, 11)

(4) : MinkowskiSyncBatchNorm(128, eps=1e-05, momentum
=0.1, affine=True, track_running_stats=True)

(5): MinkowskiELU()

(block4): Sequential(

(0) : MinkowskiConvolutionTranspose(in=128, out=64,
kernel _size=[2, 2, 2], stride=[2, 2, 2],
dilation=[1, 1, 11)
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)

(1) : MinkowskiSyncBatchNorm(64, eps=1e-05, momentum
=0.1, affine=True, track_running_stats=True)

(2) : MinkowskiELU()

(3): MinkowskiConvolution(in=64, out=64, kernel_size
=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1,
11)

(4): MinkowskiSyncBatchNorm(64, eps=1e-05, momentum
=0.1, affine=True, track_running_stats=True)

(5) : MinkowskiELU()

(blockb5): Sequential(

)

(0) : MinkowskiConvolutionTranspose(in=64, out=32,
kernel_size=[2, 2, 2], stride=[2, 2, 2],
dilation=[1, 1, 11)

(1) : MinkowskiSyncBatchNorm(32, eps=1e-05, momentum
=0.1, affine=True, track_running_stats=True)

(2) : MinkowskiELU()

(3): MinkowskiConvolution(in=32, out=32, kernel_size
=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1,
11)

(4): MinkowskiSyncBatchNorm(32, eps=1e-05, momentum
=0.1, affine=True, track_running_stats=True)

(5) : MinkowskiELU()

(block6): Sequential(

)

(0): MinkowskiConvolutionTranspose(in=32, out=16,
kernel_size=[2, 2, 2], stride=[2, 2, 2],
dilation=[1, 1, 1])

(1) : MinkowskiSyncBatchNorm(16, eps=1e-05, momentum
=0.1, affine=True, track_running_stats=True)

(2): MinkowskiELU()

(3) : MinkowskiConvolution(in=16, out=16, kernel_size
=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1,
1)

(4): MinkowskiSyncBatchNorm(16, eps=1e-05, momentum
=0.1, affine=True, track_running_stats=True)

(5) : MinkowskiELU()

(block7) : MinkowskiConvolution(in=16, out=20,

kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation
=[1, 1, 1D

(pruning) : MinkowskiPruning()
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