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Figure S1: Length distribution of multiloops. Distribution of multiloop size
L, number of backbones, among MFE structures of 5 000 uniformly selected
sequences at varied length.
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Figure S2: Approximation Error for K0. In [1] an approximation for the dif-
ference of K0 at a given concentration and 1M was proposed. However, we
noticed that this approximation yields a non-vanishing salt correction at 1M .
We therefore used the Cephes library to compute K0 directly. The panel shows
the salt correction of base pair stack at 37◦C in the function of salt concentra-
tion using the approximation (blue) and the precise computation implemented
in ViennaRNA (orange).
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Figure S3: Nonlinear electrostatic effects τss. In [1], the permittivity (relative
dielectric constant) εr of water εr ≈ 80 is assumed to be temperature indepen-
dent. This assumption results in a discontinuity of τss at around 53.3 ◦C. In-
corporating the empirical temperature dependence of εr results in 1/`B < 1/lss.
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Figure S4: Van t’Hoff plots for 18 duplexes. Plotting 1/Tm versus ln c shows
a generally good agreement of between predictions and the experimental data
from from [2].
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Figure S5: Converged salt correction for duplex initialization. Converged cor-
rection function fitted (left) to the difference gexpw (ρ) − gw(ρ) of 18 duplexes
data [2], The plot (right) of the predicted melting temperature correction versus
the experiments of longer duplexes [3] shows a better agreement with Pearson
correction r = 0.54.

Converged salt correction for duplex initialization

ginit(ρ) = − exp

(
a(log(

ρ

ρ0
))2 + b log(

ρ

ρ0
) + ln c

)
+ c

with a = −1.25480589, b = −0.05306256, and c = 160. The parameter c is a
constant to ensure all data points are positive in natural logarithm while fitting.
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