

1 *Supporting Information*

2 Charge Carrier Mapping for Z-scheme Photocatalytic Water

3 Splitting Sheet by Categorization of Microscopic Time-resolved

4 Image Sequence

5

6 Makoto Ebihara¹ Takeshi Ikeda,^{2,3} Sayuri Okunaka,^{2,3} Hiromasa Tokudome,^{2,3} Kazunari

7 Domen,^{4,5} and Kenji Katayama^{1*}

8 ¹ Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan

9 ² Research Institute, TOTO Ltd., Kanagawa 253-8577, Japan

10 ³ Japan Technological Research Association of Artificial Photosynthetic Chemical Process

11 (ARPChem), Tokyo 101-0032, Japan

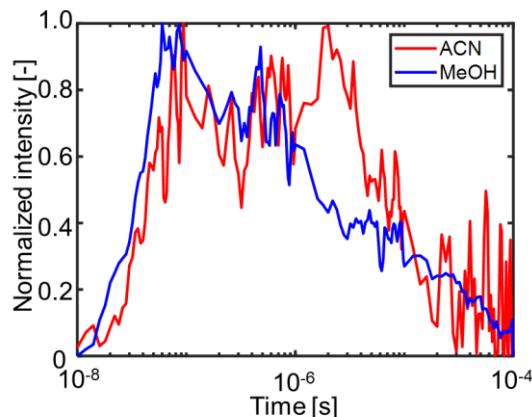
12 ⁴ Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research,

13 Shinshu University, Nagano 380-8553, Japan

14 ⁵ Office of University Professors, The University of Tokyo, Tokyo 113-8656, Japan

15

16 *Corresponding author:

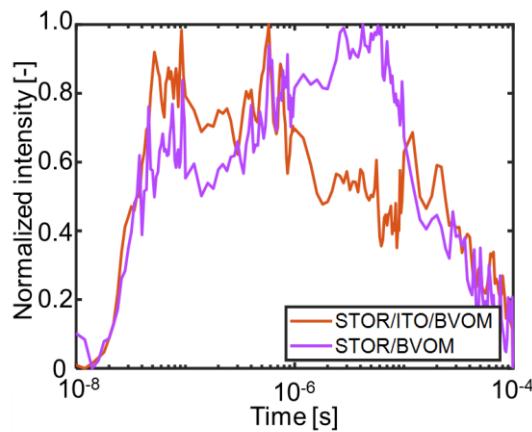

17 K. Katayama, Phone: +81-3-3817-1913, E-mail: kkata@kc.chuo-u.ac.jp

18

19

20 ***The scavenger effect for Rh-doped SrTiO₃ (STOR) by methanol (MeOH)***

21 In our experiments, the samples were excited by the pump light with a wavelength of 355
 22 nm (3.55 eV) due to the limitation of our equipment, and it led to the interband transitions for STOR
 23 and Mo-doped BiVO₄ (BVOM), causing electrons and holes photo-excited directly in the conduction
 24 and valence bands. We assumed that the photo-excited holes at the valence band in STOR decayed to
 25 the Rh³⁺ state observed as the slow rising component (formation of Rh⁴⁺ state) until 10 μ s in ACN.
 26 Since it was reported that the holes at the Rh³⁺ states could be scavenged by MeOH, we measured the
 27 response of STOR in MeOH. The result is shown in Fig.S1, and it clearly demonstrated that the slow
 28 rising component in ACN was quenched in MeOH. Thus, we concluded that this rising component
 29 was attributed to the hole decay process to Rh³⁺ state, corresponding to the oxidation process from
 30 Rh³⁺ to Rh⁴⁺ states in STOR.


31 Fig.S1 The refractive index change response of STOR in ACN and MeOH until 100 μ s, obtained by
 32 the PI-PM image sequence.

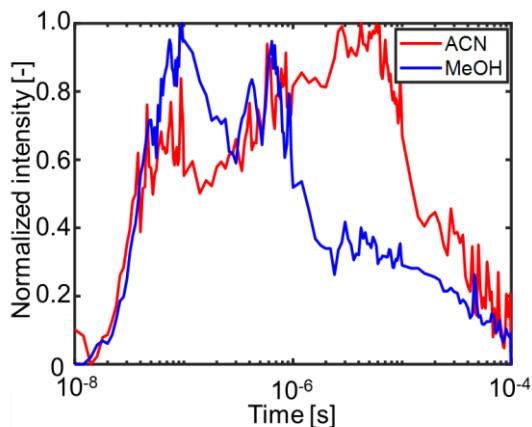
33

34

35 **The role of ITO binder**

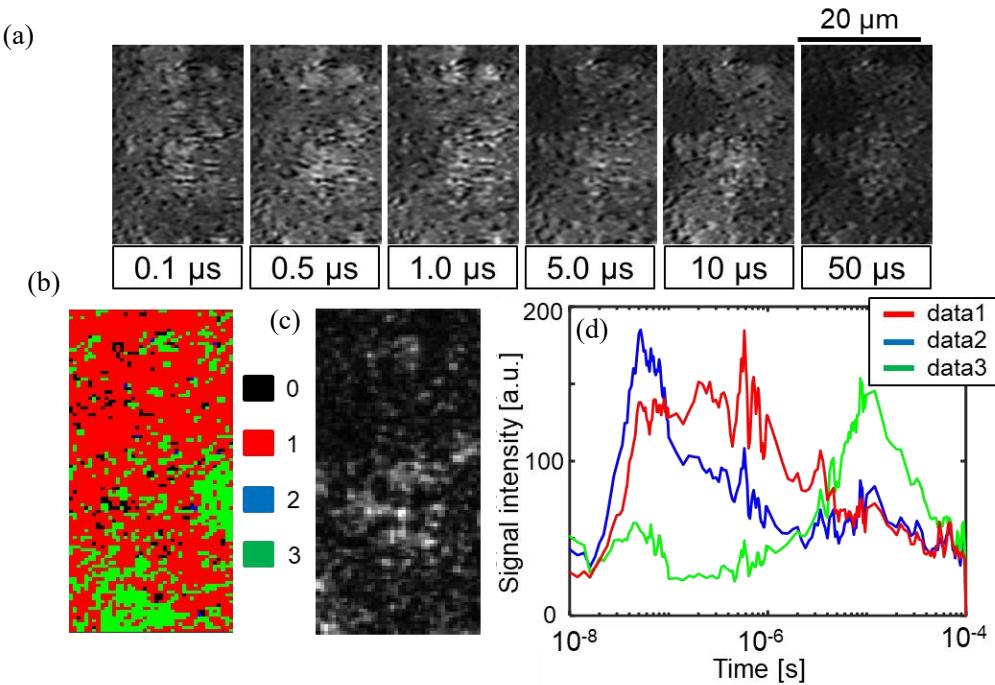
36 It has been reported that the ITO binder, corresponding to the charge transfer mediator,
 37 proceeds the recombination between the electrons in oxygen evolution photocatalyst (OEP) and the
 38 holes in hydrogen evolution photocatalyst (HEP), and the efficiency of oxygen and hydrogen evolution
 39 rate was drastically improved in this system by inserting this in-between. Therefore, we compared two
 40 Z-scheme systems with ITO (STOR/ITO/BVOM) and without ITO (STOR/BVOM) to confirm the
 41 effect of the ITO binder. Figure S2 compares the responses of the refractive index change for
 42 STOR/ITO/BVOM and STOR/BVOM in ACN. From these responses, we could observe a delayed
 43 rising component of around 10 μ s in STOR/BVOM, and this component was similar to the Rh^{4+}
 44 formation for the STOR only in ACN (refer to Fig.S1).

45 Fig.S2 The comparison of the refractive index change responses between the Z-scheme sample
 46 systems with a charge mediator, ITO (STOR/ITO/BVOM) and without it (STOR/BVOM) in ACN
 47 until 100 μ s, obtained by the PI-PM image sequences.

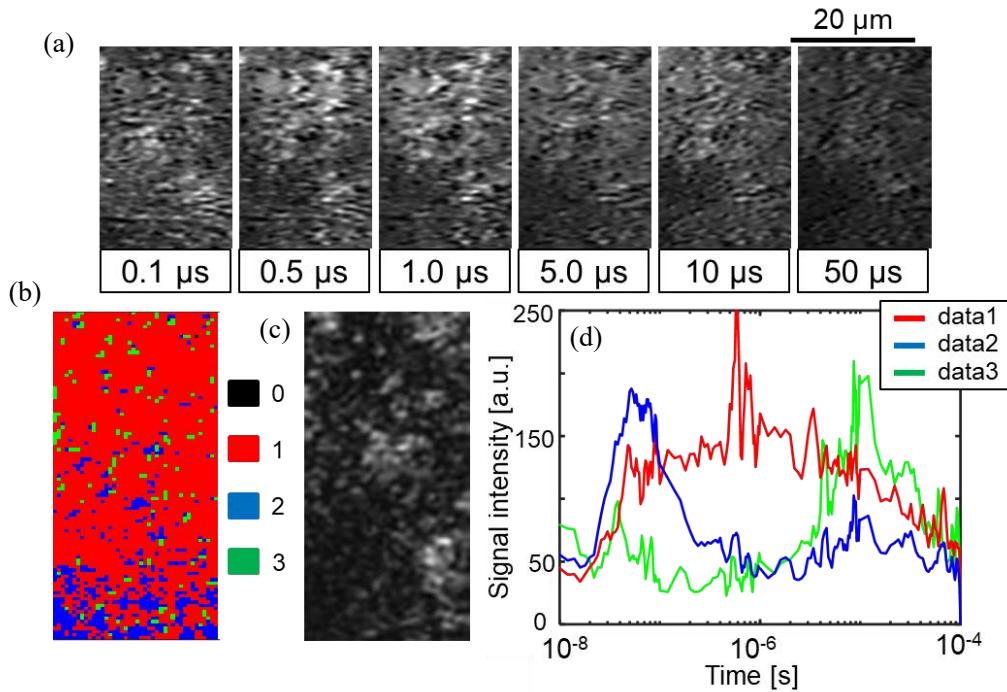

48

49

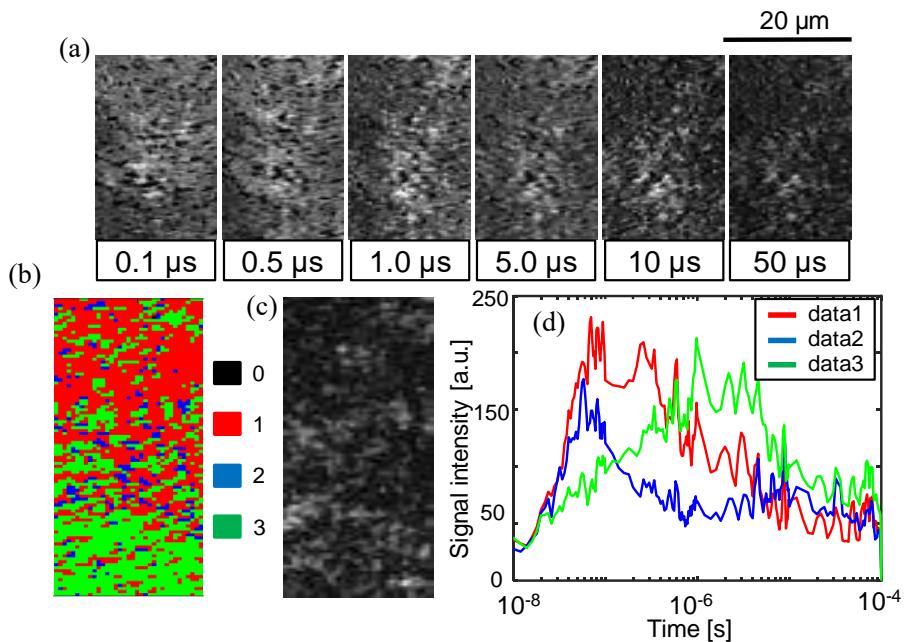
50 The difference between these two systems was only the insertion of the ITO binder. Hence,
 51 a possible factor for this difference originated from the charge transfer efficiency of electrons in
 52 BVOM and the holes in STOR because the recombination between the electrons in OEP and the holes
 53 in HEP was retarded, and they remained in each material without the ITO binder. Moreover, judging
 54 from the similarity in the responses between the STOR/BVOM and the STOR only, the rising
 55 component observed in STOR/BVOM must be related to the hole accumulation to the Rh^{3+} state (Rh^{4+}
 56 formation) in STOR. This component can possibly be scavenged by a hole scavenger (MeOH) if this
 57 assumption is correct. Figure S3 shows the refractive index change response for the STOR/BVOM
 58 system in ACN (inert solvent) and MeOH. The result clearly showed that the slow rising component
 59 until 10 μ s in STOR/BVOM in ACN disappeared in MeOH, and instead, the faster-rising response

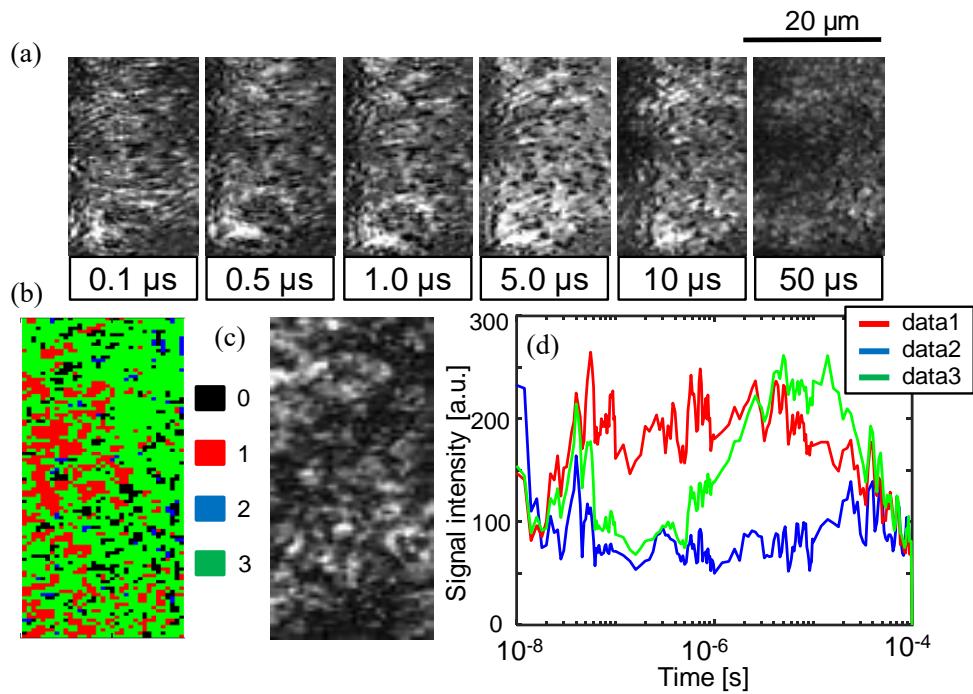

60 until 1 μ s showed up, which was similar to that of STOR/ITO/BVOM in ACN. It is supposed that
61 MeOH worked to reduce the Rh^{4+} state, instead that the electrons in BVOM were used to reduce it
62 with an ITO binder. These facts verified that the ITO mediator worked to prevent the increase in the
63 Rh^{4+} states in STOR and proceed the water-splitting reaction efficiently.

64

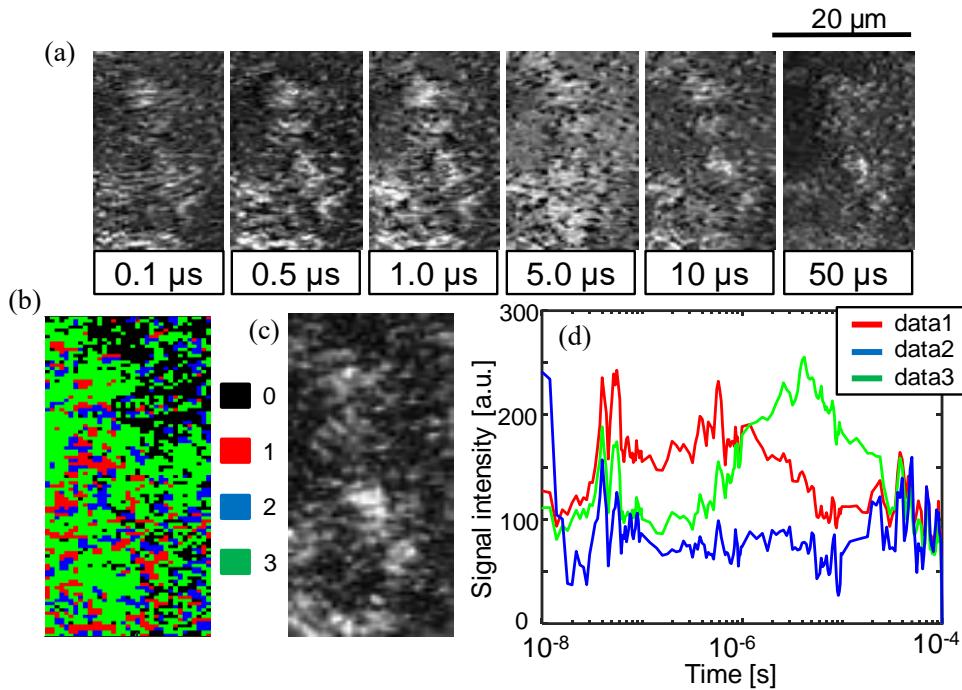


65 Fig.S3 The refractive index change responses for the Z-scheme system (STOR/BVOM) without the
66 ITO binder in ACN (red) and MeOH (blue) until 100 μ s, obtained by the PI-PM image sequences.


67


70 Fig. S4 (a) An image sequence of the refractive index response for STOR/ITO/BVOM in ACN in a
 71 square region ($20 \times 50 \mu\text{m}$) corresponding to No.2 in Fig.1(c) on the order from nanoseconds to
 72 microseconds. The scale bar corresponds to $20 \mu\text{m}$. (b) The categorized mapping of the charge carrier
 73 responses of (a). An outlier positioned far from all categories were colored in black (#0). (c) A
 74 microscopic image in the same area as (a). (d) The averaged responses for each category in (b) are
 75 shown.

79 Fig. S5 (a) An image sequence of the refractive index response for STOR/ITO/BVOM in ACN in a
 80 square region ($20 \times 50 \mu\text{m}$) corresponding to the region No.3 in Fig.1(c) on the order from nanoseconds
 81 to microseconds. The scale bar corresponds to $20 \mu\text{m}$. (b) The categorized mapping of the charge
 82 carrier responses of (a). An outlier positioned far from all categories were colored in black (#0). (c) A
 83 microscopic image in the same area as (a). (d) The averaged responses for each category in (b) are
 84 shown.



89 Fig. S6 (a) An image sequence of the refractive index response for STOR/ITO/BVOM in ACN in a
 90 square region ($18 \times 50 \mu\text{m}$) corresponding to the region No.4 in Fig.1(c) on the order from nanoseconds
 91 to microseconds. The scale bar corresponds to $20 \mu\text{m}$. (b) The categorized mapping of the charge
 92 carrier responses of (a). An outlier positioned far from all categories were colored in black (#0). (c) A
 93 microscopic image in the same area as (a). (d) The averaged responses for each category in (b) are
 94 shown.

101 Fig. S7 (a) An image sequence of the refractive index response for STOR/BVOM in ACN in a square
 102 region (18×50 μm) corresponding to No.2 in Fig.1(c) on the order from nanoseconds to microseconds.
 103 The scale bar corresponds to 20 μm. (b) The categorized mapping of the charge carrier responses of
 104 (a). An outlier positioned far from all categories were colored in black (#0). (c) A microscopic image
 105 at the same area as (a). (d) The averaged responses for each category in (b) are shown.
 106

107
108

109
110 Fig. S8 (a) An image sequence of the refractive index response for STOR/BVOM in ACN in a square
111 region ($18 \times 50 \mu\text{m}$) corresponding to the region No.3 in Fig.1(c) on the order from nanoseconds to
112 microseconds. The scale bar corresponds to $20 \mu\text{m}$. (b) The categorized mapping of the charge carrier
113 responses of (a). An outlier positioned far from all categories were colored in black (#0). (c) A
114 microscopic image in the same area as (a). (d) The averaged responses for each category in (b) are
115 shown.
116
117

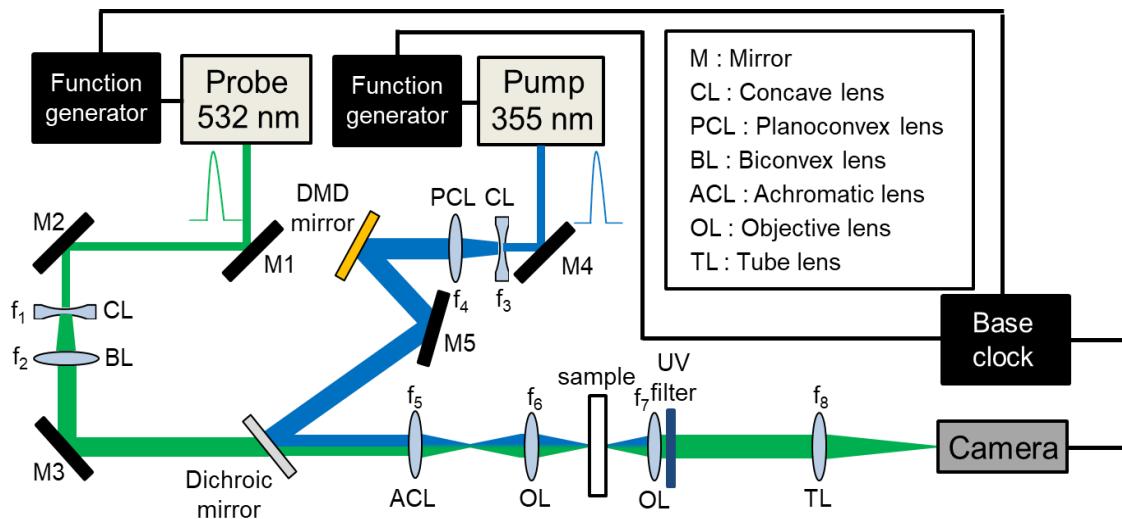
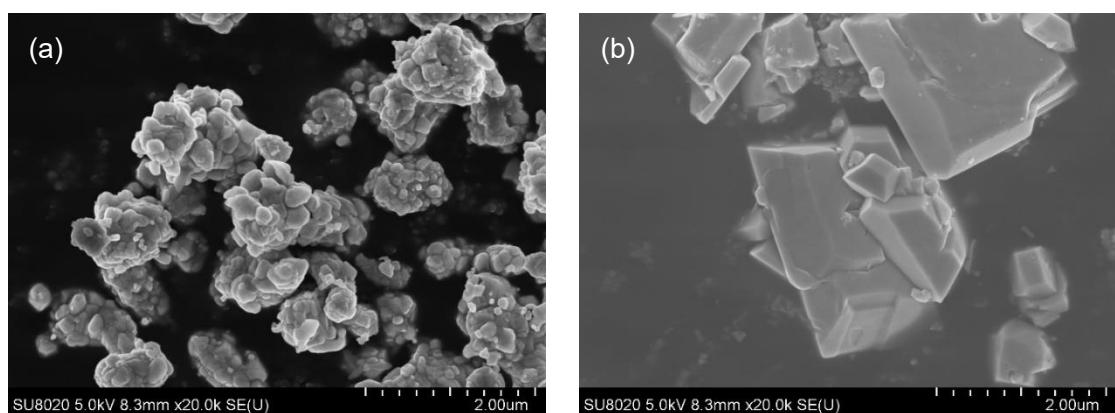


Fig. S9 The schematic overview of the optical setup of patterned-illumination time-resolved phase microscopy (PI-PM). For the pattern illumination, a digital micromirror device (DMD) (Light Crafter 4500, Texas Instruments) was used. The pump light was reflected at the DMD mirror to change the intensity pattern the same as the pattern on a computer. The image of the DMD mirror was relayed with a lens ($f = 100$ mm) and an objective lens (LUCPLFLN20x, Olympus) to irradiate the same pattern reduced in size (1/14) onto a sample. The pulsed illumination light was collimated with the pump light at the dichroic mirror and illuminated onto a sample. The transmitted light was imaged by an objective lens (LUCPLFLN20x, Olympus) and a tube lens (TTL180-A. Thorlabs). A CMOS camera (MV1-D1024E-160, Photon Focus) had a sensor area of 10.9x10.9mm (1024x1024 pixel), and the central region in the vertical direction (200x1024 pixel) was recorded to reduce the burden of the computer processing. The diameter of the irradiated area by the pump pulse was 0.5 mm. A sequence of images was stored in a computer by varying the time delay between the pump and probe pulse. The time resolution was limited only by the pulse width of the pump and probe lights, 5 ns. The pump light was the third harmonics of a Nd:YAG pulse laser (pulse width: 5 ns, wavelength: 355 nm) (GAIA, Rayture Systems). The probe light was the second harmonics of an Nd:YAG pulse laser (pulse width: 5 ns, wavelength: 532 nm) (GAIA, Rayture Systems). The timing of these pulses was controlled by two function generators (WF1968, NF) triggered by a base clock (DF1906, NF). Each function generator controlled both the timing of the flash lamp and the Q-switch with a time resolution of 100 ps. The pump light intensity was 2.23 mJ/pulse, and the probe light intensity was 0.02 mJ/pulse, respectively.

141

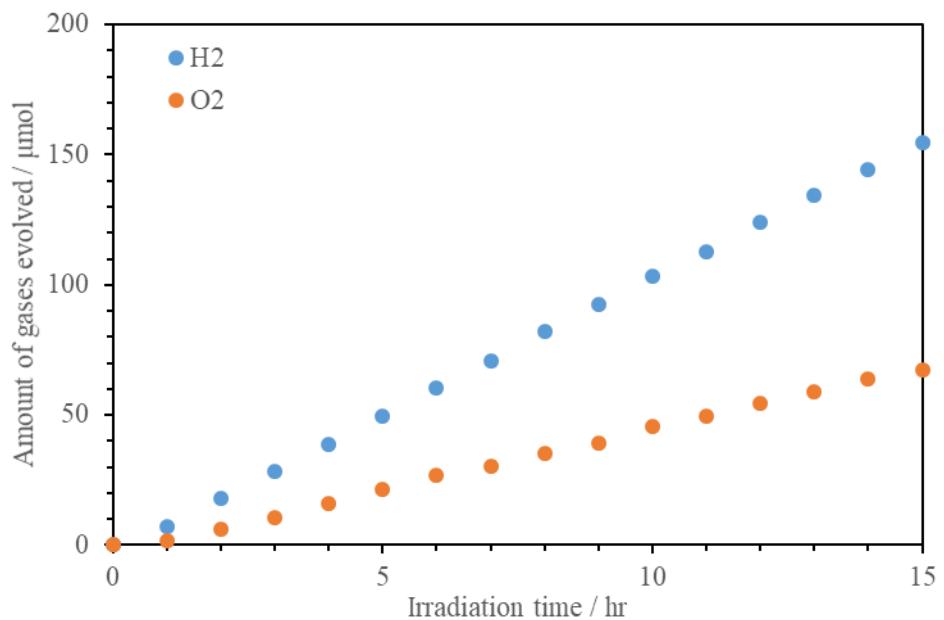
142 **Preparation of photocatalyst sheets**

143 Printed photocatalyst sheets were prepared as follows. Photocatalysts used, Rh-doped SrTiO₃
144 (Rh/(Rh+Ti) = 4 mol%) and Mo-doped BiVO₄ (Mo/(Mo+V) = 0.05 mol%), were prepared by the
145 previous methods.^{R1,R2} ITO nanoparticles (ca. 20 nm) were purchased from Koshin Chemical.
146 SrTiO₃:Rh, BiVO₄:Mo, and ITO were dispersed at a 2:2:1 mass ratio in the organic medium (α -
147 terpineol: 2-(2-butoxyethoxy)ethanol: SPB-TE1 = 4:10:2 (mass ratio). The mass ratio of the powder
148 mixture to the organic medium was 1:19. Then the resulting paste was coated onto a glass substrate
149 by screen-printing using a metal mask (60 μ m thick), and finally calcined in air at 573 K for 30 min.
150 The film thickness was approximately 1 μ m.


151

152 (R1) Konta, R.; Ishii, T.; Kato, H.; Kudo, A. Photocatalytic Activities of Noble Metal Ion Doped
153 SrTiO₃ under Visible Light Irradiation. *J. Phys. Chem. B* **2004**, *108* (26), 8992–8995.
154 <https://doi.org/10.1021/jp049556p>.

155 (R2) Iwase, A.; Kudo, A. Photoelectrochemical Water Splitting Using Visible-Light-Responsive
156 BiVO₄ Fine Particles Prepared in an Aqueous Acetic Acid Solution. *J. Mater. Chem.* **2010**, *20* (35),
157 7536–7542. <https://doi.org/10.1039/C0JM00961J>.


158

159

160

161 Fig.S10 SEM images of (a) STOR and (b) BVOM. The average diameters of particles were 300 nm
162 and 2 μ m, respectively.

164 Fig.S11 Time courses of amounts of gas evolution on a photocatalyst sheet under visible light
165 irradiation. Sheet size, 2.5 × 2.5 cm; reactant solution, 40 mL of pure water at 288 K; reaction cell,
166 top-irradiated separable cell; light source, 300 W Xe lamp with cut-off filters ($\lambda > 410$ nm) .
167