

Evaluation of Circulating Plasma Proteins in Breast Cancer: A Mendelian Randomization Analysis

Anders Mälarstig^{1,2}, Felix Grassmann^{1,3}, Leo Dahl⁴, Marios Dimitriou^{1,2}, Dianna McLeod¹, Marike Gabrielson¹, Karl Smith-Byrne⁵, Cecilia E. Thomas⁴, Tzu-Hsuan Huang⁶, Simon KG Forsberg⁷, Per Eriksson⁷, Mikael Ulfstedt⁷, Mattias Johansson⁸, Aleksandr V. Sokolov⁹, Helgi B. Schiöth⁹, Per Hall^{1,10}, Jochen M. Schwenk⁴, Kamila Czene¹, Åsa K. Hedman^{1,2}

1. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

2. Pfizer Worldwide Research, Development and Medical, Stockholm, Sweden

3. Institute of Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany

4. Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden

5. Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford

6. Cancer Immunology Discovery, Pfizer Inc., San Diego, California

7. Olink Proteomics AB, Uppsala, Sweden

8. Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France

9. Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.

10. Department of Oncology, Södersjukhuset, Stockholm, Sweden

Corresponding author:

Anders Malarstig, Ph.D.,

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet

Nobels väg 12A

171 65 Stockholm, Sweden

Phone: +46 (0) 8-55052514

E-mail: anders.malarstig@ki.se

32 **Abstract**

33

34 The blood proteome reflects homeostatic and dynamic cellular processes across human organs.

35 However, few blood proteomics studies of sufficient depth and size have been reported in breast

36 cancer. To comprehensively identify circulating proteins with a causal role in breast cancer we

37 measured 2,929 unique proteins in plasma from 598 women selected from the Karolinska

38 Mammography Project and explored associations between proteins levels, clinical characteristics,

39 and gene variants. The analysis revealed 812 cis-acting protein quantitative trait loci (pQTL), which

40 were used as instruments in Mendelian randomisation (MR) analysis of breast cancer. Five proteins

41 ($P < 1.7 \times 10^{-5}$, Bonferroni-corrected) with a potential causal role in breast cancer risk were revealed

42 (CD160, DNPH1, LAYN, LRRC37A2 and TLR1). Confirming the MR findings in independent cohorts

43 (FinnGen R9 and the UK Biobank), our study suggests that these proteins should be further explored

44 as potential drug targets in breast cancer.

45 **Introduction**

46
47 Breast cancer is globally the most common cancer in women and is associated with significant
48 morbidity and mortality¹. Genome-wide and exome-wide genetic association studies have
49 successfully identified over 300 breast cancer susceptibility loci²⁻⁴ but the mechanisms underpinning
50 most loci and specific gene variants remain uncharacterized, which limits translation of genetic
51 susceptibility loci to new therapies and precision medicine tools⁴.

52
53 Mendelian randomisation (MR) offers an alternative approach to the mapping and understanding of
54 etiologically important pathways in cancer risk and development. MR aims to elucidate causal
55 relationships between modifiable risk factors and disease based on the analysis of genetic variants in
56 observational data⁵. In comparison to genome-wide association studies (GWAS), MR exploits a more
57 confined test space, which increases statistical power, and inherently supports causal gene
58 identification. MR can be further supported by genetic colocalization analysis of exposure and
59 outcome⁶. The relevance of MR has been evaluated and supported by retrospective analyses of drug
60 targets with a proven aetiological or causal role in disease from randomised controlled trials (RCT)^{7,8}.

61
62 Circulating proteins possess many of the characteristics suitable for discovery of breast cancer
63 biology using MR. Firstly, the plasma proteome has been shown to reflect both normal physiology
64 and pathogenic biological processes in cancer⁹. Secondly, circulating proteins can be measured with
65 high throughput and precision a variety of advanced methods^{10 11}. Thirdly, recent studies have
66 shown that a majority of circulating proteins are associated with cis-acting protein quantitative trait
67 loci (pQTL) i.e. located within 1 Mbp from the protein-encoding gene^{12,13}. Fourthly, individual cis-
68 pQTL explain relatively large proportions of variance in the protein, making them statistically
69 powerful instrumental variables for causal inference using MR^{12 14}. Hundreds of pQTL for plasma
70 proteins have been identified, but so far no studies have reported pQTL in an entirely female
71 population^{7,12,13,15-19}.

72
73 Here, we measured a total of 2,929 unique proteins using the Olink PEA Explore assay in plasma
74 samples taken from 598 women who were free of a breast cancer diagnosis at the time of sampling.
75 We i) performed genetic association analysis of protein levels to identify cis-pQTL and ii) used the cis-
76 pQTL as instrumental variables in MR analysis of breast cancer in the BCAC case-control meta-analysis
77 of breast cancer risk, and iii), replicated MR findings in a second breast cancer case-control meta-
78 analysis of FinnGen²⁰ and the UK Biobank²¹. Lastly, we followed up on significant proteins identified
79 in the MR analysis by visualising and evaluating colocalization of the protein and breast

80 cancer genetic associations and evaluated potential causal relationships with established and
81 emerging breast cancer risk factors, also using MR (figure 1).

82
83 Out of 737 plasma proteins evaluated using MR, genetically elevated levels of five proteins were
84 associated with breast cancer risk, namely CD160, 2'-deoxynucleoside 5'-phosphate N-hydrolase 1
85 (DNPH1), layilin (LAYN), Leucine rich repeat containing 37 member A2 (LRRC37A2) and toll-like
86 receptor 1 (TLR1), which were confirmed in an independent set of data. Our results suggest that
87 these five proteins are aetiologically relevant for breast cancer development. Pending further
88 validation, these findings may point to novel drug target opportunities or stratification biomarkers in
89 breast cancer.

90 91 Results

92 93 Sample characteristics

94
95 The KARMA study consented and recruited a total of 70,877 women during mammography screening
96 from two Swedish regions (Stockholm and Skåne). The aim of the project is identification of risk
97 factors for breast cancer ²². The sample for the present substudy was selected for the purpose of
98 evaluating plasma protein biomarkers in relation to incident breast cancer within 2 years from blood
99 sampling, which is described in our companion paper by Grassmann et al. The selection included
100 samples from 299 women in the Southern Sweden (Skåne) region who received a breast cancer
101 diagnosis within 2 years after blood draw and 299 random controls from the same region, who, as of
102 2021, had remained breast cancer free. No difference between cases and controls was seen for
103 median age, body mass index or percent women receiving hormone replacement therapy at time of
104 blood draw. The proportion of smokers and women with a family history of breast cancer were more
105 common among cases (Table 1).

106 107 Protein analysis, detectability, and quality control

108
109 We chose to analyse the plasma samples using an affinity proteomics approach. While targeted
110 methods, such as the Olink PEA approach, are inherently biased towards the subset of proteins that
111 are measured, we attempted to maximise the possibility for discovery by measuring as many
112 proteins as possible. Hence, we used the recently launched version of Olink's Explore I and II panels,
113 which includes 2,949 proteins (Supplementary table 5). Out of this set, 2,213 (75%) could be
114 detected in > 50% of the samples when judging their normalized protein expression levels (NPX)
115 above limit of detection (LOD) (Supplementary figure 1, Supplementary table 5). The ranges per

116 protein varied between 0.17 NPX and 9.27 NPX (Supplementary figure 2). The proportion of proteins
117 above LOD were lower for the most recent addition to the panels (Explore II). However, it is worth
118 noting that the set of proteins in Explore II are, on average, less abundant than those of the Explore I
119 panel, as shown in a comparison of average levels across proteins overlapping with a mass
120 spectrometry peptide-based analysis generated by the Human Protein Atlas effort (Supplementary
121 table 3, Supplementary figure 3) ²³.

122

123 Association between plasma protein levels and clinical characteristics

124

125 To examine observational relationships between protein levels and clinical characteristics of the
126 KARMA women, we regressed each measured protein against seven factors (age, alcohol
127 consumption, number of births, body mass index (BMI), hormone replacement therapy (HRT), peri-
128 and post-menopause and current smoking. In these analyses we included both women who
129 developed breast cancer and those who did not as there were no significant differences between
130 both groups in our companion paper, indicating that the protein levels are similar between both
131 groups at blood draw. All associations are shown in Supplementary table 6. A total of 684 proteins
132 were associated with BMI and 459 proteins were associated with age (Figure 2). Several of the
133 observed associations have previously been described such as higher plasma levels of leptin and
134 fatty-acid binding protein 4 (FABP4) with increasing BMI ²⁴, higher FSHB in post-menopausal women
135 and higher PLAP levels in smokers ²⁵. Some less described correlations included lower plasma levels
136 of glycodeulin (PAEP) and chordin like 2 (CHRD2) and higher levels of glycoprotein hormone alpha
137 polypeptide (CGA) in post- and peri-menopausal women, and lower levels of osteomodulin (OMD) in
138 women using hormone replacement therapy (HRT).

139

140 The replication of known trait-to-protein associations suggest that the data quality was satisfactory,
141 and that additional trait-to-protein associations are enabled by expansion of the number of
142 detectable proteins.

143

144 Identification of cis-pQTL

145

146 To identify genetic instruments for the downstream causality testing using MR, gene variants within a
147 range of 1Mbp up and downstream of genes encoding each of the 2,929 unique proteins were tested
148 for association with levels of the corresponding protein. Significant associations ($p < 2.2 \times 10^{-4}$) were
149 observed for a total of 812 independent variants ($R^2 > 0.1$) and 737 proteins, henceforth referred to as
150 cis-pQTL (supplementary table 1). Most of the pQTL were observed for proteins on Olink Explore I
151 panel (n=523) but several pQTL were also observed for Explore II proteins (n=289). Some of the cis-

152 pQTL showed effect sizes well above 1 standard deviation, including the nucleotidase NT5C
153 (missense, Pro68Leu, MAF 3 %), acylphosphatase (ACYP1) (~7 kbp upstream of gene, MAF 1.5 %) and
154 carboxypeptidase Q (CPQ) (intron, MAF 1.7 %).
155 We conclude that pQTL are readily detected for proteins on both Explore I and II panels, providing
156 potential MR instruments for 737 proteins.

157

158 Replication analysis

159
160 To investigate the validity of the cis-pQTL identified in KARMA, effect sizes were compared with cis-
161 pQTL previously reported for a subset of 90 proteins measured using Olink PEA in the SCALLOP CVD-I
162 study⁷. Measurements for all 90 proteins were available in the KARMA study. Of those 90, cis-pQTL
163 for 33 of the proteins reported by the SCALLOP CVD-I study were associated in KARMA at p<0.05. The
164 Pearson correlation coefficient between effect sizes for the 33 overlapping variants was 0.91
165 (supplementary figure 4).

166
167 To also investigate the generalisability of the identified cis-pQTL, the variants, or those in high linkage
168 disequilibrium (LD) (>0.8), were looked up in previously published studies reporting cis-pQTL based
169 on the Somascan proteomics platform^{26,27}. The overlap of Olink proteins available after quality
170 control in the KARMA study and proteins measured in previously published work based on the
171 Somascan platform was 569 proteins (supplementary table 1). Of the 603 significant cis-pQTL
172 observed in KARMA for the subset of overlapping proteins, we observed evidence of replication for
173 374 proteins at Bonferroni-corrected p<6.1x10⁻⁵ whereas a total of 229 cis-pQTL did not show
174 evidence of replication at the aforementioned p-value threshold.

175

176 Mendelian randomization analysis

177
178 We performed two-sample inverse-variance weighted or Wald-scores MR analysis using protein
179 exposures from the KARMA cis-pQTL to investigate potential causal effects on breast cancer risk
180 using outcome data from BCAC and from the FinnGen R8-UK-biobank meta-analysis⁵. We were
181 unable to identify genetic proxies for seven of the proteins with cis-pQTL in KARMA, resulting in the
182 testing of 730 protein exposures. Of those, seven proteins surpassed the statistical threshold for
183 significance (p<7.5x10⁻⁵) in the discovery study (Figure 3) of which five replicated in the independent
184 breast cancer case control study from FinnGen²⁰ and UK-biobank²¹ with consistent effect sizes and
185 directions (Table 2). The replicated proteins, shown here by the names of their encoding genes, were
186 CD160, DNPH1, LAYN, LRRC37A2 and TLR1. The full summary of MR results is provided in
187 Supplementary table 4.

188 We further investigated whether the five proteins with replicated MR evidence for all breast cancers
189 were equally associated in estrogen-receptor (ER) positive compared to ER negative breast cancer
190 (Table 3). However, the effect sizes were similar across ER+ and ER- breast cancer risk, suggesting
191 these five proteins associate equally with ER+ and ER- breast cancer risk.

192
193 It was also hypothesised that proteins with MR evidence for an etiologically important role in breast
194 cancer might influence breast cancer risk via a breast cancer risk factor. To test this, further MR
195 analysis was performed using GWAS of potential breast cancer risk factors as outcomes, including
196 age at menarche, age at menopause, waist-hip ratio, mammographic density, sex hormone binding
197 globulin and insulin growth factor 1 levels (IGF-1)²⁸. LRRC37A2 showed MR evidence for later age at
198 menarche and earlier age at menopause in two independent outcome datasets, and also for higher
199 IGF-1 levels (Supplementary table 2). CD160 showed nominal MR evidence for an etiological role
200 lower age at menarche.

201
202 To summarise, the MR analysis showed that genetic elevation of CD160, DNPH1, LAYN, LRRC37A2
203 and TLR1 associate with breast cancer risk, and with similar effects on ER+ and ER- cancer.

204
205 **Colocalisation analysis**

206
207 All imputed variants in proximity to the cis-pQTL for proteins with significant MR evidence were
208 visually inspected with the corresponding genomic region for breast cancer risk using mirror plots.
209 The cis-regions around DNPH1 and LRRC37A2 showed the strongest degree of concordance between
210 lead variants for protein levels and breast cancer risk (Supplementary figure 7 and 8). Lead pQTL in
211 cis-regions for CD160, LAYN and TLR1 were not the variants with the lowest p-values for breast
212 cancer risk but were localised in the same, size limited, genomic region. We considered the cis-pQTL
213 to be colocalised with breast cancer risk (Supplementary figure 6, 8 and 10).

214
215 **Systematic search for drugs targeting CD160, DNPH1, LAYN, LRRC37A2 and TLR1**
216
217 To investigate if any of the five proteins identified in the present investigation had been previously
218 explored as drug targets, we performed a systematic search across several databases, including NIH
219 Pharos Consortium, IUPHAR/BPS Guide to Pharmacology, DrugBank and ClinicalTrials.gov. With the
220 exception of LAYN, targeted by Hyaluronic acid, none of the proteins were registered as known drug
221 targets²⁹.

222 **Discussion**

223
224 We measured 2,949 circulating proteins in plasma from 598 women to identify 812 independent cis-
225 pQTL which were applied in MR to investigate associations between genetically predicted protein
226 levels and breast cancer risk. We found that genetically lower levels of CD160 and LRRC37A2 and
227 genetically higher levels of DNPH1, LAYN and TLR1 were associated with increased risk of breast
228 cancer. In addition, genetically higher levels of LRRC37A2 associated with age at menarche, which
229 adds to previous knowledge of its modest MR evidence for breast cancer risk²⁸. MR using cis-pQTL
230 instruments allowed us to model life-long genetic exposure to higher/lower protein levels, which
231 implies an aetiologically important role of associated proteins in disease. In our companion paper by
232 Grassmann et al., we found no circulating proteins associated with 2-year risk of incident breast
233 cancer. Indeed, none of the five proteins identified in the present investigation were significantly
234 associated with incident breast cancer. This indicates that genetically predicted protein levels did not
235 capture this short-term risk.

236
237 Among the five proteins identified in our study, DNPH1, also described as Rcl, encodes the enzyme
238 2'-deoxynucleoside 5'-phosphate N-hydrolase, which plays a role in nucleotide metabolism and is a
239 target of ETV1 -a transcription factor expressed in breast tumours³⁰. Two independent CRISPR
240 screens for modulators of BRCA-associated breast tumour sensitivity to PARP inhibitors, an
241 established treatment in BRCA-deficient breast cancer, have shown that genomic inhibition DNPH1
242 sensitizes BRCA-deficient cells to treatment with PARP inhibitors^{31,32}. The lead pQTL identified in
243 KARMA, rs75591122, is located ~18.2 kbp upstream from the DNPH1 gene on chromosome 6 and is
244 one of several variants proximal to the DNPH1 gene associated with DNPH1 gene expression levels
245 across multiple tissues³³. Genetically increased circulating protein levels of DNPH1 was in our study
246 associated with increased breast cancer risk, which is concordant with experimental studies
247 suggesting that DNPH1 inhibition in breast cancer may be promising avenue for drug development.

248
249 Another of the five proteins was CD160, which is a receptor expressed in immune cells that has been
250 described to play important roles in NK cell biology, predominantly functioning as an activating NK-
251 cell receptor³⁴. CD160 is predominantly expressed on healthy NK cells and is one of the driver genes
252 for a specific NK subset related to higher cytokine production³⁵. Reduction in CD160 expression led
253 to impaired NK cells and poor outcomes in Hepatocellular carcinoma patients³⁶ and since
254 dysfunctional NK cells also correlate with breast cancer progression³⁷ it can be hypothesized that
255 CD160 could have a similar protective role in breast cancer. Indeed, in our study, genetically elevated
256 circulating protein levels of CD160 associated with a protective effect in breast cancer, suggesting

257 that a drug activating CD160 specifically on NK cells may enhance anti-tumour immune responses in
258 breast cancer.

259
260 Our search for drug targets highlighted the connection between LAYN and Hyaluronic Acid. LAYN
261 encodes Layilin, which is a talin-binding transmembrane and integral membrane protein functioning
262 as a receptor for Hyaluronic acid (HA), with a role in cell adhesion and motility^{38,39}. HA is an
263 extracellular matrix component that impacts tumor microenvironment where elevated HA levels has
264 been reported in multiple cancer types including breast cancer⁴⁰. Interestingly, targeted depletion of
265 HA controlled the breast cancer tumor growth in xenotransplant mouse models of
266 immunocompetent mice but not of immunodeficient mice, which indicates a potential tumor-
267 immunity role for its receptors i.e. Layilin⁴¹. Accordingly, high LAYN expression belongs to
268 transcriptomic signatures specific for regulatory T cells (Tregs) and exhausted CD8+ T cells for several
269 cancer types including breast cancer^{42 43}. In our study, genetic elevation of LAYN protein levels
270 associated with increased breast cancer risk, suggesting a LAYN inhibitor would be desired for
271 treatment of breast cancer. However, mechanistic studies will be required to confirm the direction of
272 effect proposed by the MR evidence and to validate LAYN as drug target in breast cancer.

273
274 Several other studies have investigated genetic elevation of circulating proteins to identify potential
275 aetiological or causal factors for breast cancer risk. Murphy et al. reported that genetically elevated
276 circulating insulin growth factor levels (IGF-1) were associated with a weak but significantly increased
277 risk of breast cancer whereas IGF-binding protein-3 was unassociated⁴⁴. Zhu et al. demonstrated
278 absence of association with breast cancer for genetically elevated levels of C-reactive protein⁴⁵ and
279 Shu et al. reported a wider MR analysis, instrumenting 1,469 proteins using Somascan-based pQTL in
280 the INTERVAL cohort, of which genetic instruments for 26 proteins were found to be associated^{45,46}.
281 Bouras et al. instrumented 47 inflammatory cytokines and reported that genetically increased levels
282 of CXCL1 and decreased levels of MIF associated with breast cancer⁴⁷. Our study included 10 of the 28
283 proteins previously reported in breast cancer MR studies, and while none of the reported proteins
284 surpassed statistical significance in our study, SCG3 and TFPI showed nominal significance in our
285 discovery MR (Supplementary table 4).

286
287 Our study has both strengths and limitations. One of the strengths is the large number of proteins
288 tested for cis-pQTL and that the cis-pQTL used to instrument genetic elevation using MR were
289 identified in women only, which should provide better estimates in MR for female breast cancer.
290 Another strength is that the protein exposures meeting statistical significance in our discovery MR,
291 using data from the BCAC consortium as outcome, were replicated in the independent case-control
292 analysis that combined breast cancer cases and controls in FinnGen and the UK-Biobank.

293 However, our study had limited sample size for discovering cis-pQTL with smaller effect sizes.
294 Therefore, we cannot exclude that additional proteins on the Olink Explore II panels harbour
295 significant cis-pQTL but remained undetected in the KARMA sample. To decrease the false-negative
296 error rate we only included variants in cis to decrease the multiple-test burden and corrected the p-
297 value threshold for significant for the number of independent variants in each cis-region. Effect-sizes
298 observed in KARMA were highly concordant with an overlapping set of 33 cis-pQTL for proteins
299 measured with Olink PEA that were previously reported. To evaluate the robustness of cis-pQTL
300 identified in KARMA, we sought replication for an overlapping set of 569 proteins measured with
301 Somascan. Of those, 2/3 (374/569) were replicated, which is on par with the expected replication
302 rate given differences in protein analysis methods ¹⁶.

303
304 In conclusion, by applying an MR approach for a broad range of circulating proteins we found that
305 genetically elevated CD160, DNPH1, LAYN, LRRC37A2 and TLR1 associate with breast cancer. This
306 suggests that these five proteins play an aetiological or causal role in breast cancer, providing a basis
307 for further functional evaluation of their potential as drug targets.

308
309 **Materials and methods**

310
311 **KARMA study collection**

312
313 We included 299 breast cancer cases and 299 breast cancer free controls from the Swedish KARMA
314 study in the analysis. The cohorts are thoroughly described elsewhere and previously analysed in
315 several BCAC studies. Briefly, the KARMA Cohort consists of 70,877 women performing a screening or
316 clinical mammogram at 4 hospitals in Sweden during the period October 2010–March 2013.

317
318 **Plasma protein measurements on Olink Explore**

319
320 Plasma proteomics was performed in samples from 299 BC cases and 299 BC free controls from the
321 Swedish KARMA study using the Olink Explore I and II panels (Olink Proteomics AB, Uppsala, Sweden)
322 according to the manufacturer's protocol. Explore combines the Proximity Extension Assay (PEA)
323 technology with Next generation sequencing (NGS).

324
325 In brief, the PEA technology uses matching pairs of oligonucleotide-labelled antibody probes. The
326 PEA probes bind to target antigens producing a binding complex where the complimentary
327 oligonucleotides exist in close proximity to each other, enabling the formation of a target sequence.
328 The dual targeting of probes has been proven to produce outstanding specificity enabling for a high
329 degree of multiplexing while maintaining sensitivity and a broad dynamic range. In the Olink Explore

330 protocol, target sequence is amplified in a double PCR reaction and purified before the NGS. The
331 sequence data is processed and normalized to produce Olinks relative quantification unit Normalized
332 Protein eXpression (NPX). The produced DNA signal functionally works as a proxy for the protein
333 levels present in the sample. Further details on the Olink Explore protocol and internal quality control
334 are available in the Supplementary methods 1 document.

335

336 Olink analysis quality control

337

338 The Olink QC-system includes negative controls, used to monitor the background noise and to set the
339 limit of detection (LOD). Supplementary figure 1 and Supplementary table 5 show the percentage of
340 samples with NPX above LOD.

341

342 Association with clinical characteristics

343

344 For each of the 2,949 measured protein levels, the following linear regression model was fitted: *NPX*
345 *~ age + bmi + menopause_preVSperi + menopause_preVSpost + birth_times + hrt_status +*
346 *alcohol_gram_week + smoking_status* where menopause_preVSperi contrasts pre- versus peri-
347 menopausal patients, menopause_pre VS post contrasts pre- versus post-menopausal patients,
348 hrt_status contrasts current users of hormone replacement therapy versus patients who have never
349 used it or who have used it in the past, and smoking_status contrast current smokers versus those
350 who have never smoked or smoked in the past. All p-values were FDR corrected for the 2,949 x 7
351 performed tests.

352

353 Protein QTL mapping

354

355 Genome-wide genotyping in the KARMA study was performed using the Illumina iSelect or Oncoarray
356 arrays, followed by imputation using the Wellcome Trust Sanger Institute imputation service using
357 the 1000 genomes phase 3 as reference. Standard quality control was applied as previously
358 described. Variants with a minor allele frequency < 0.01 were filtered out prior to analysis. The final
359 dataset included 9,087 million variants.

360 Proteins >75 % of NPX values below LOD were filtered out before the pQTL analysis, yielding a total
361 of 2,476 proteins in the analysis. Values below LOD were included. The pQTL discovery analysis was
362 performed using an additive model with adjustments for age, BMI and 10 genetic PCs in PLINK 2.0 .
363 To preserve statistical power for pQTL identification, only variants within a 1 mega-base pair window
364 of the protein coding gene were tested for association with respective circulating protein level. To
365 manage multiple test correction, while limiting false-negatives, the total number of variants per cis-

366 region were calculated as well as the number of independent variants ($R^2 < 0.1$). The average number
367 of variants per cis-region was 6,249 (Supplementary Figure 5) and 180 independent variants (min,max
368 12-511). Statistical significance was therefore defined as an alpha of 0.05 divided by 180 to
369 account for average number of independent variants tested per cis-region ($p = 2.77E-04$). A false-
370 discovery rate (FDR) at 5 % provided a similar estimate ($p < 5.54E-04$).

371

372 Mendelian Randomization analysis

373

374 We performed Two-sample MR using the R package Two-Sample MR to test for proteins with a
375 potential causal role in breast cancer. Independent cis-pQTL ($r^2 < 0.001$) were used as instrumental
376 variables (IV), and GWAS of breast cancer risk from the BCAC consortium were used as outcome,
377 which included data from 122,977 breast cancer cases and 105,974 controls. In the case of a single
378 independent IV Wald Ratio was applied, otherwise inverse-variance weighted estimates were
379 reported. The threshold for statistical significance was defined as (7.5×10^{-5}) to account for multiple
380 testing. The replication analysis was performed in a meta-analysis of FinnGen R9 and the UK-biobank,
381 which included 25,807 cases and 355,307 controls. Only the seven proteins that met statistical
382 significance in the BCAC discovery analysis were included in the replication analysis, and hence a
383 nominal p-value of 0.05 was considered statistically significant.

384

385 Acknowledgements

386

387 We thank all the participants in the Karma study and the study personnel for their devoted work
388 during data collection. We also want to acknowledge the participants and investigators of the
389 FinnGen study. The data handling and analysis were enabled by resources provided by the Swedish
390 National Infrastructure for Computing (SNIC), partially funded by the Swedish Research Council
391 through grant agreement no. 2018-05973.

392

393 Conflicts of interest

394

395 AM, AH and TH are employees of Pfizer Inc. SKF, PE and MU are employees of Olink Proteomics AB.
396

397

398 Disclaimer

399 Where authors are identified as personnel of the International Agency for Research on Cancer /
400 World Health Organization, the authors alone are responsible for the views expressed in this article
401 and they do not necessarily represent the decisions, policy or views of the International Agency for
402 Research on Cancer / World Health Organization.

403 **Funding**
404
405 This work was financed by the Swedish Research Council (Grant 2022-00584), the Swedish Cancer
406 Society (Grants 22 2207, 19 0267 and 20 0990), the Stockholm County Council (Grant 20200102) and
407 the Karolinska Institutet's Research Foundation (Grant 2018-02146). This work was also supported by
408 a grant from the Stockholm County Council (FoU-954555), Olink Proteomics AB and Pfizer Inc.

409
410
411
412 **Data availability**
413 Access to phenotypes, biospecimen and genotypes from the KARMA study can be requested from
414 <https://karmastudy.org/contact/data-access/>. Access to scripts and pipelines will be provided
415 through GitHub.
416

417

Tables

418

Table 1

419

420

421

Variable	Controls (BC negative)	Cases (incident BC)
Number of individuals	299	299
Age at baseline (S.D) [years]	58.83 (9.26)	58.11 (9.49)
Body mass index at interview (S.D) [kg/m ²]	25.20 (4.16)	25.73 (4.14)
Hormone replacement therapy ever [%]	35.66	37.76
Current smoker at interview [%]	11.23	16.32
Family history of BC [%]	11.27	20.92

422

423

424

425

426

427

428

Table 2

Exposures	BCAC, all breast cancer			FinnGen and UK-Biobank		
Protein	nsnp	beta	pval	nsnp	beta	pval
CD160	1	-0.09	1.70E-06	1	-0.07	1.50E-02
DNPH1	1	0.08	3.80E-07	1	0.05	3.50E-02
LAYN	1	0.13	1.40E-05	1	0.12	8.40E-03
LRRC37A2	1	-0.05	5.70E-10	1	-0.05	6.80E-05
MST1	1	0.03	7.20E-05	1	0.02	6.60E-02
TLR1	1	0.07	6.40E-06	1	0.11	7.40E-05
TXK	1	0.07	3.10E-06	1	0.03	3.40E-01

429

430

431

432

Table 3

	ER+ breast cancer				ER- breast cancer			
Exposures	BCAC		FinnGen		BCAC		FinnGen	
Protein	beta	pval	beta	pval	beta	pval	beta	pval
CD160	-0.08	5.10E-04	-0.14	6.90E-03	-0.06	9.30E-02	-0.07	2.80E-01
DNPH1	0.08	6.20E-06	0.07	8.80E-02	0.09	6.00E-04	0.05	3.40E-01
LAYN	0.12	5.50E-04	0.13	1.20E-01	0.12	2.60E-02	0.17	1.00E-01
LRRC37A2	-0.04	1.80E-06	-0.06	3.50E-02	-0.04	7.90E-03	-0.01	8.30E-01
TLR1	0.07	1.60E-04	0.11	4.10E-02	0.09	2.30E-03	0.11	9.40E-02

433 **References**

434

435 1. Allahqoli, L. *et al.* The Global Incidence, Mortality, and Burden of Breast Cancer in 2019: Correlation With Smoking, Drinking, and Drug Use. *Front Oncol* **12**, 921015 (2022).

436

437 2. Michailidou, K. *et al.* Association analysis identifies 65 new breast cancer risk loci. *Nature* **551**, 92-94 (2017).

438

439 3. Dumont, M. *et al.* Uncovering the Contribution of Moderate-Penetrance Susceptibility Genes to Breast Cancer by Whole-Exome Sequencing and Targeted Enrichment Sequencing of Candidate Genes in Women of European Ancestry. *Cancers (Basel)* **14**(2022).

440

441 4. Romualdo Cardoso, S., Gillespie, A., Haider, S. & Fletcher, O. Functional annotation of breast cancer risk loci: current progress and future directions. *Br J Cancer* **126**, 981-993 (2022).

442

443 5. Lawlor, D.A., Harbord, R.M., Sterne, J.A., Timpson, N. & Davey Smith, G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. *Stat Med* **27**, 1133-63 (2008).

444

445 6. Schmidt, A.F. *et al.* Genetic drug target validation using Mendelian randomisation. *Nat Commun* **11**, 3255 (2020).

446

447 7. Folkersen, L. *et al.* Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. *Nat Metab* **2**, 1135-1148 (2020).

448

449 8. Henry, A. *et al.* Therapeutic Targets for Heart Failure Identified Using Proteomics and Mendelian Randomization. *Circulation* **145**, 1205-1217 (2022).

450

451 9. Hanash, S.M., Pitteri, S.J. & Faca, V.M. Mining the plasma proteome for cancer biomarkers. *Nature* **452**, 571-9 (2008).

452

453 10. Deutsch, E.W. *et al.* Advances and Utility of the Human Plasma Proteome. *J Proteome Res* **20**, 5241-5263 (2021).

454

455 11. Suhre, K., McCarthy, M.I. & Schwenk, J.M. Genetics meets proteomics: perspectives for large population-based studies. *Nat Rev Genet* **22**, 19-37 (2021).

456

457 12. Folkersen, L. *et al.* Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease. *PLoS Genet* **13**, e1006706 (2017).

458

459 13. Sun, B.B. *et al.* Genetic regulation of the human plasma proteome in 54,306 UK Biobank participants. *bioRxiv*, 2022.06.17.496443 (2022).

460

461 14. Macdonald-Dunlop, E. *et al.* Mapping genetic determinants of 184 circulating proteins in 26,494 individuals to connect proteins and diseases. *medRxiv*, 2021.08.03.21261494 (2021).

462

463 15. Yang, Z. *et al.* Genetic Landscape of the ACE2 Coronavirus Receptor. *Circulation* **145**, 1398-1411 (2022).

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481 16. Katz, D.H. *et al.* Proteomic profiling platforms head to head: Leveraging genetics and clinical
482 traits to compare aptamer- and antibody-based methods. *Sci Adv* **8**, eabm5164 (2022).

483

484 17. Png, G. *et al.* Mapping the serum proteome to neurological diseases using whole genome
485 sequencing. *Nat Commun* **12**, 7042 (2021).

486

487 18. Zhernakova, D.V. *et al.* Individual variations in cardiovascular-disease-related protein levels
488 are driven by genetics and gut microbiome. *Nat Genet* **50**, 1524-1532 (2018).

489

490 19. Enroth, S., Johansson, A., Enroth, S.B. & Gyllensten, U. Strong effects of genetic and lifestyle
491 factors on biomarker variation and use of personalized cutoffs. *Nat Commun* **5**, 4684 (2014).

492

493 20. Kurki, M.I. *et al.* FinnGen provides genetic insights from a well-phenotyped isolated
494 population. *Nature* **613**, 508-518 (2023).

495

496 21. Sudlow, C. *et al.* UK biobank: an open access resource for identifying the causes of a wide
497 range of complex diseases of middle and old age. *PLoS Med* **12**, e1001779 (2015).

498

499 22. Gabrielson, M. *et al.* Cohort Profile: The Karolinska Mammography Project for Risk Prediction
500 of Breast Cancer (KARMA). *Int J Epidemiol* **46**, 1740-1741g (2017).

501

502 23. Uhlen, M. *et al.* The human secretome. *Sci Signal* **12**(2019).

503

504 24. Lind, L. *et al.* Changes in Proteomic Profiles are Related to Changes in BMI and Fat
505 Distribution During 10 Years of Aging. *Obesity (Silver Spring)* **28**, 178-186 (2020).

506

507 25. Rasmuson, T. *et al.* Tumor markers in mammary carcinoma. An evaluation of
508 carcinoembryonic antigen, placental alkaline phosphatase, pseudouridine and CA-50. *Acta
509 Oncol* **26**, 261-7 (1987).

510

511 26. Pietzner, M. *et al.* Synergistic insights into human health from aptamer- and antibody-based
512 proteomic profiling. *Nat Commun* **12**, 6822 (2021).

513

514 27. Sun, B.B. *et al.* Genomic atlas of the human plasma proteome. *Nature* **558**, 73-79 (2018).

515

516 28. Chen, F. *et al.* Mendelian randomization analyses of 23 known and suspected risk factors and
517 biomarkers for breast cancer overall and by molecular subtypes. *Int J Cancer* **151**, 372-380
518 (2022).

519

520 29. Bono, P., Rubin, K., Higgins, J.M. & Hynes, R.O. Layilin, a novel integral membrane protein, is
521 a hyaluronan receptor. *Mol Biol Cell* **12**, 891-900 (2001).

522

523 30. Shin, S., Bosc, D.G., Ingle, J.N., Spelsberg, T.C. & Janknecht, R. Rcl is a novel ETV1/ER81 target
524 gene upregulated in breast tumors. *J Cell Biochem* **105**, 866-74 (2008).

525

526 31. Fugger, K. *et al.* Targeting the nucleotide salvage factor DNPH1 sensitizes BRCA-deficient cells
527 to PARP inhibitors. *Science* **372**, 156-165 (2021).

528

529 32. Zimmermann, M. *et al.* CRISPR screens identify genomic ribonucleotides as a source of PARP-
530 trapping lesions. *Nature* **559**, 285-289 (2018).

531 33. GTEx_Consortium. GTEx. (2023).

532

533 34. Le Bouteiller, P. *et al.* CD160: a unique activating NK cell receptor. *Immunol Lett* **138**, 93-6 (2011).

534

535

536 35. Crinier, A. *et al.* Single-cell profiling reveals the trajectories of natural killer cell differentiation in bone marrow and a stress signature induced by acute myeloid leukemia. *Cell Mol Immunol* **18**, 1290-1304 (2021).

537

538

539

540 36. Sun, H. *et al.* Reduced CD160 Expression Contributes to Impaired NK-cell Function and Poor

541 Clinical Outcomes in Patients with HCC. *Cancer Res* **78**, 6581-6593 (2018).

542

543 37. Mamessier, E. *et al.* Human breast cancer cells enhance self tolerance by promoting evasion

544 from NK cell antitumor immunity. *J Clin Invest* **121**, 3609-22 (2011).

545

546 38. Borowsky, M.L. & Hynes, R.O. Layilin, a novel talin-binding transmembrane protein

547 homologous with C-type lectins, is localized in membrane ruffles. *J Cell Biol* **143**, 429-42 (1998).

548

549

550 39. Sedy, J.R. *et al.* CD160 activation by herpesvirus entry mediator augments inflammatory

551 cytokine production and cytolytic function by NK cells. *J Immunol* **191**, 828-36 (2013).

552

553 40. Henke, E., Nandigama, R. & Ergun, S. Extracellular Matrix in the Tumor Microenvironment

554 and Its Impact on Cancer Therapy. *Front Mol Biosci* **6**, 160 (2019).

555

556 41. Zamloot, V., Ebelt, N.D., Soo, C., Jinka, S. & Manuel, E.R. Targeted Depletion of Hyaluronic

557 Acid Mitigates Murine Breast Cancer Growth. *Cancers (Basel)* **14**(2022).

558

559 42. De Simone, M. *et al.* Transcriptional Landscape of Human Tissue Lymphocytes Unveils

560 Uniqueness of Tumor-Infiltrating T Regulatory Cells. *Immunity* **45**, 1135-1147 (2016).

561

562 43. Zheng, C. *et al.* Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell

563 Sequencing. *Cell* **169**, 1342-1356 e16 (2017).

564

565 44. Murphy, N. *et al.* Insulin-like growth factor-1, insulin-like growth factor-binding protein-3,

566 and breast cancer risk: observational and Mendelian randomization analyses with

567 approximately 430 000 women. *Ann Oncol* **31**, 641-649 (2020).

568

569 45. Zhu, M. *et al.* C-reactive protein and cancer risk: a pan-cancer study of prospective cohort

570 and Mendelian randomization analysis. *BMC Med* **20**, 301 (2022).

571

572 46. Shu, X. *et al.* Evaluation of associations between genetically predicted circulating protein

573 biomarkers and breast cancer risk. *Int J Cancer* **146**, 2130-2138 (2020).

574

575 47. Bouras, E. *et al.* Circulating inflammatory cytokines and risk of five cancers: a Mendelian

576 randomization analysis. *BMC Med* **20**, 3 (2022).

577 **Figures**

578

579

580

581 **Figure 1**

582

583

2,949 proteins measured using Olink Explore I and II in n=598 samples from women in the KARMA study

Correlation analysis between proteins and 7 clinical characteristics collected at time of blood draw

Identification of 812 cis-pQTL for 737 proteins

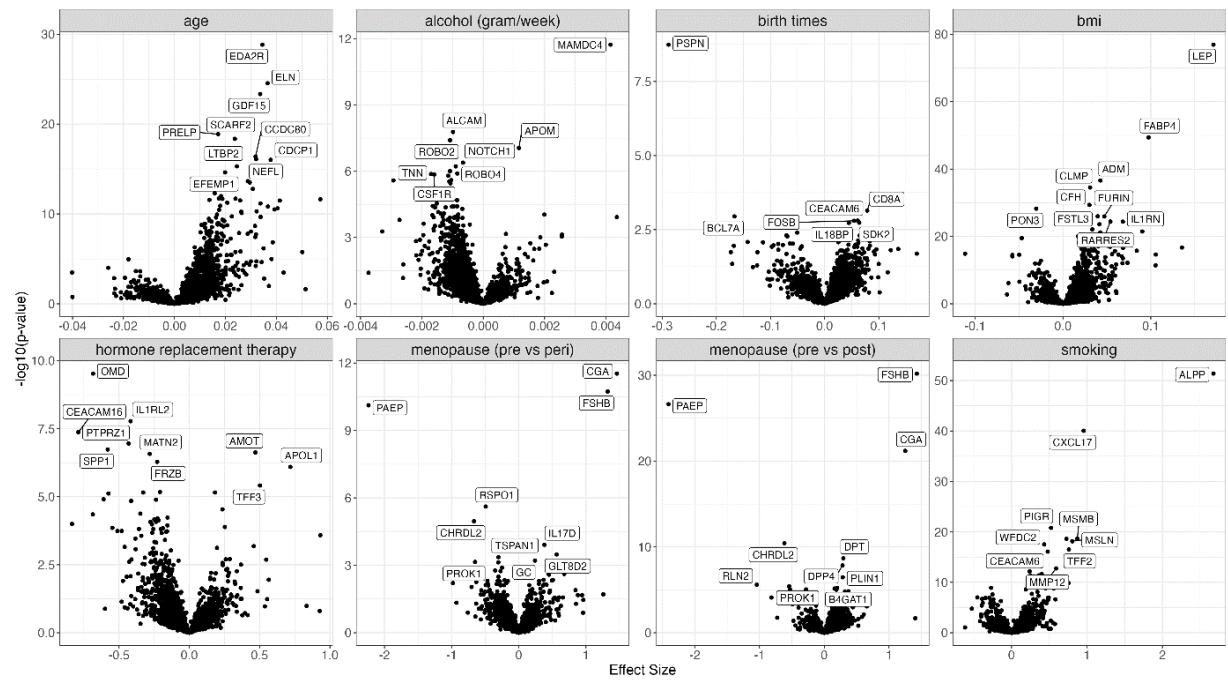
Wald-ratio or Inverse-variance weighted Mendelian randomization (MR) analysis of 730 protein exposures with breast cancer (BC) as outcome, using BCAC

Replication of 5 proteins reaching statistical significance in BCAC using BC case-control genetic data from FinnGen R9 and the UK-biobank

Assessment of colocalisation using mirror plots of exposure and outcome traits

MR analysis for significant 5 proteins using a) ER- and ER+ BC as outcome data and b) BC risk factors

584

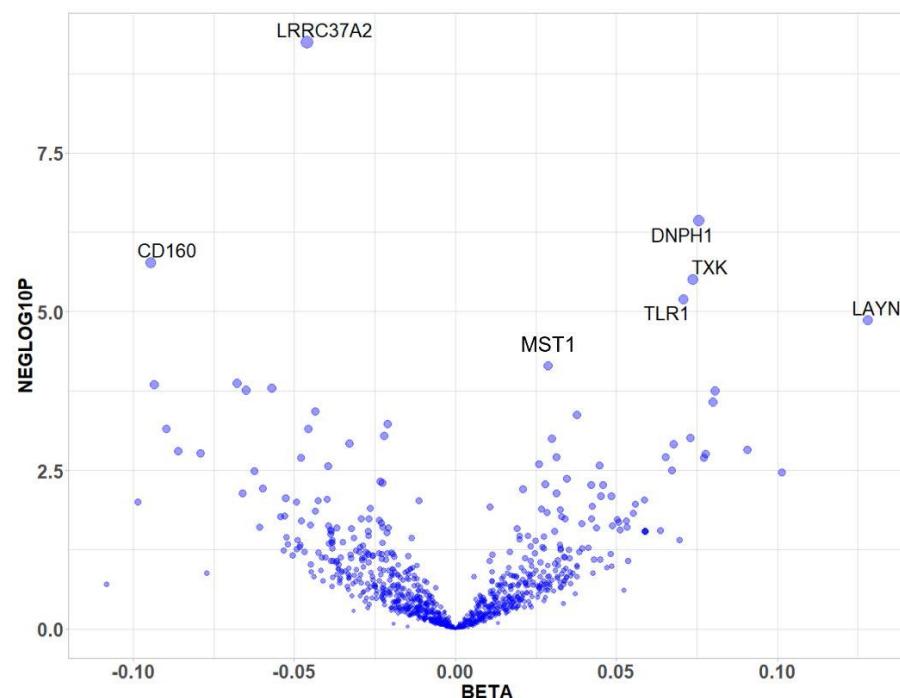

585

586

587 Figure 1. Flow chart of study design, analyses and main results

588
589
590

Figure 2



591
592

593 Figure 2: Volcano plots showing estimated effect sizes (x-axis) and the corresponding non-adjusted –
594 $-\log_{10}(p\text{-value})$ (y-axis). Effect sizes were given by a linear regression model per protein, including all 7
595 traits. Each panel shows one of the investigated baseline traits, corresponding to one term in the
596 regression model. The names of the topmost significant proteins per trait are indicated in each
597 panel. The number of proteins reaching FDR corrected statistical significance were for age:459,
598 Alcohol consumption:172, Birth times:7, BMI:684, HRT:93, Menopause pre vs. peri:18, Menopause
599 pre vs post:127, Current smoking:213.

600
601
602

Figure 3

603
604

605 Figure 3: Mendelian randomization analysis on breast cancer risk in the BCAC study was performed
606 by modelling exposure to genetically higher plasma levels of 730 proteins with at least one cis-pQTL.
607 The Y-axis shows the -log10 p-value of the Wald-score or IVW and the X-axis shows the beta-
608 estimates of the MR result for each protein that was tested.