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Abstract

The blood proteome reflects homeostatic and dynamic cellular processes across human organs.
However, few blood proteomics studies of sufficient depth and size have been reported in breast
cancer. To comprehensively identify circulating proteins with a causal role in breast cancer we
measured 2,929 unique proteins in plasma from 598 women selected from the Karolinska
Mammography Project and explored associations between proteins levels, clinical characteristics,
and gene variants. The analysis revealed 812 cis-acting protein quantitative trait loci (pQTL), which
were used as instruments in Mendelian randomisation (MR) analysis of breast cancer. Five proteins
(P < 1.7x10-5, Bonferroni-corrected) with a potential causal role in breast cancer risk were revealed
(CD160, DNPH1, LAYN, LRRC37A2 and TLR1). Confirming the MR findings in independent cohorts
(FinnGen R9 and the UK Biobank), our study suggests that these proteins should be further explored

as potential drug targets in breast cancer.
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Introduction

Breast cancer is globally the most common cancer in women and is associated with significant
morbidity and mortality . Genome-wide and exome-wide genetic association studies have
successfully identified over 300 breast cancer susceptibility loci 2* but the mechanisms underpinning
most loci and specific gene variants remain uncharacterized, which limits translation of genetic

susceptibility loci to new therapies and precision medicine tools *.

Mendelian randomisation (MR) offers an alternative approach to the mapping and understanding of
etiologically important pathways in cancer risk and development. MR aims to elucidate causal
relationships between modifiable risk factors and disease based on the analysis of genetic variants in
observational data °. In comparison to genome-wide association studies (GWAS), MR exploits a more
confined test space, which increases statistical power, and inherently supports causal gene
identification. MR can be further supported by genetic colocalization analysis of exposure and
outcome ®. The relevance of MR has been evaluated and supported by retrospective analyses of drug
targets with a proven aetiological or causal role in disease from randomised controlled trials (RCT) ”2.
Circulating proteins possess many of the characteristics suitable for discovery of breast cancer
biology using MR. Firstly, the plasma proteome has been shown to reflect both normal physiology
and pathogenic biological processes in cancer °. Secondly, circulating proteins can be measured with
high throughput and precision a variety of advanced methods 1° 1. Thirdly, recent studies have
shown that a majority of circulating proteins are associated with cis-acting protein quantitative trait
loci (pQTL) i.e. located within 1 Mbp from the protein-encoding gene >3, Fourthly, individual cis-
pQTL explain relatively large proportions of variance in the protein, making them statistically
powerful instrumental variables for causal inference using MR 2 14, Hundreds of pQTL for plasma
proteins have been identified, but so far no studies have reported pQTL in an entirely female

population 712131519,

Here, we measured a total of 2,929 unique proteins using the Olink PEA Explore assay in plasma
samples taken from 598 women who were free of a breast cancer diagnosis at the time of sampling.
We i) performed genetic association analysis of protein levels to identify cis-pQTL and ii) used the cis-
pQTL as instrumental variables in MR analysis of breast cancer in the BCAC case-control meta- analysis
of breast cancer risk, and iii), replicated MR findings in a second breast cancer case-control meta-
analysis of FinnGen %° and the UK Biobank 2. Lastly, we followed up on significant proteins identified

in the MR analysis by visualising and evaluating colocalization of the protein and breast
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cancer genetic associations and evaluated potential causal relationships with established and

emerging breast cancer risk factors, also using MR (figure 1).

Out of 737 plasma proteins evaluated using MR, genetically elevated levels of five proteins were
associated with breast cancer risk, namely CD160, 2'-deoxynucleoside 5'-phosphate N-hydrolase 1
(DNPH1), layilin (LAYN), Leucine rich repeat containing 37 member A2 (LRRC37A2) and toll-like
receptor 1 (TLR1), which were confirmed in an independent set of data. Our results suggest that
these five proteins are aetiologically relevant for breast cancer development. Pending further
validation, these findings may point to novel drug target opportunities or stratification biomarkers in

breast cancer.

Results

Sample characteristics

The KARMA study consented and recruited a total of 70,877 women during mammography screening
from two Swedish regions (Stockholm and Skane). The aim of the project is identification of risk
factors for breast cancer 2. The sample for the present substudy was selected for the purpose of
evaluating plasma protein biomarkers in relation to incident breast cancer within 2 years from blood
sampling, which is described in our companion paper by Grassmann et al. The selection included
samples from 299 women in the Southern Sweden (Skane) region who received a breast cancer
diagnosis within 2 years after blood draw and 299 random controls from the same region, who, as of
2021, had remained breast cancer free. No difference between cases and controls was seen for
median age, body mass index or percent women receiving hormone replacement therapy at time of
blood draw. The proportion of smokers and women with a family history of breast cancer were more

common among cases (Table 1).

Protein analysis, detectability, and quality control

We chose to analyse the plasma samples using an affinity proteomics approach. While targeted
methods, such as the Olink PEA approach, are inherently biased towards the subset of proteins that
are measured, we attempted to maximise the possibility for discovery by measuring as many
proteins as possible. Hence, we used the recently launched version of Olink’s Explore | and Il panels,
which includes 2,949 proteins (Supplementary table 5). Out of this set, 2,213 (75%) could be
detected in > 50% of the samples when judging their normalized protein expression levels (NPX)

above limit of detection (LOD) (Supplementary figure 1, Supplementary table 5). The ranges per
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protein varied between 0.17 NPX and 9.27 NPX (Supplementary figure 2). The proportion of proteins
above LOD were lower for the most recent addition to the panels (Explore Il). However, it is worth
noting that the set of proteins in Explore Il are, on average, less abundant than those of the Explore |
panel, as shown in a comparison of average levels across proteins overlapping with a mass
spectrometry peptide-based analysis generated by the Human Protein Atlas effort (Supplementary

table 3, Supplementary figure 3) Z.

Association between plasma protein levels and clinical characteristics

To examine observational relationships between protein levels and clinical characteristics of the
KARMA women, we regressed each measured protein against seven factors (age, alcohol
consumption, number of births, body mass index (BMI), hormone replacement therapy (HRT), peri-
and post-menopause and current smoking. In these analyses we included both women who
developed breast cancer and those who did not as there were no significant differences between
both groups in our companion paper, indicating that the protein levels are similar between both
groups at blood draw. All associations are shown in Supplementary table 6. A total of 684 proteins
were associated with BMI and 459 proteins were associated with age (Figure 2). Several of the
observed associations have previously been described such as higher plasma levels of leptin and
fatty-acid binding protein 4 (FABP4) with increasing BMI 2%, higher FSHB in post-menopausal women
and higher PLAP levels in smokers 2°. Some less described correlations included lower plasma levels
of glycodelin (PAEP) and chordin like 2 (CHRDL2) and higher levels of glycoprotein hormone alpha
polypeptide (CGA) in post- and peri-menopausal women, and lower levels of osteomodulin (OMD) in

women using hormone replacement therapy (HRT).

The replication of known trait-to-protein associations suggest that the data quality was satisfactory,
and that additional trait-to-protein associations are enabled by expansion of the number of

detectable proteins.

Identification of cis-pQTL

To identify genetic instruments for the downstream causality testing using MR, gene variants within a
range of 1Mbp up and downstream of genes encoding each of the 2,929 unique proteins were tested
for association with levels of the corresponding protein. Significant associations (p<2.2x10%) were
observed for a total of 812 independent variants (R>>0.1) and 737 proteins, henceforth referred to as
cis-pQTL (supplementary table 1). Most of the pQTL were observed for proteins on Olink Explore |

panel (n=523) but several pQTL were also observed for Explore Il proteins (n=289). Some of the cis-
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pQTL showed effect sizes well above 1 standard deviation, including the nucleotidase NT5C
(missense, Pro68Leu, MAF 3 %), acylphosphatase (ACYP1) (~7 kbp upstream of gene, MAF 1.5 %) and
carboxypeptidase Q (CPQ) (intron, MAF 1.7 %).

We conclude that pQTL are readily detected for proteins on both Explore | and Il panels, providing

potential MR instruments for 737 proteins.

Replication analysis

To investigate the validity of the cis-pQTL identified in KARMA, effect sizes were compared with cis-
pQTL previously reported for a subset of 90 proteins measured using Olink PEA in the SCALLOP CVD-I
study 7. Measurements for all 90 proteins were available in the KARMA study. Of those 90, cis-pQTL
for 33 of the proteins reported by the SCALLOP CVD-I study were associated in KARMA at p<0.05. The
Pearson correlation coefficient between effect sizes for the 33 overlapping variants was 0.91

(supplementary figure 4).

To also investigate the generalisability of the identified cis-pQTL, the variants, or those in high linkage
disequilibrium (LD) (>0.8), were looked up in previously published studies reporting cis-pQTL based
on the Somascan proteomics platform 227, The overlap of Olink proteins available after quality
control in the KARMA study and proteins measured in previously published work based on the
Somascan platform was 569 proteins (supplementary table 1). Of the 603 significant cis-pQTL
observed in KARMA for the subset of overlapping proteins, we observed evidence of replication for
374 proteins at Bonferroni-corrected p<6.1x10®° whereas a total of 229 cis-pQTL did not show

evidence of replication at the aforementioned p-value threshold.

Mendelian randomization analysis

We performed two-sample inverse-variance weighted or Wald-scores MR analysis using protein
exposures from the KARMA cis-pQTL to investigate potential causal effects on breast cancer risk
using outcome data from BCAC and from the FinnGen R8-UK-biobank meta-analysis °. We were
unable to identify genetic proxies for seven of the proteins with cis-pQTL in KARMA, resulting in the
testing of 730 protein exposures. Of those, seven proteins surpassed the statistical threshold for
significance (p<7.5x107) in the discovery study (Figure 3) of which five replicated in the independent
breast cancer case control study from FinnGen 2° and UK-biobank ! with consistent effect sizes and
directions (Table 2). The replicated proteins, shown here by the names of their encoding genes, were
CD160, DNPH1, LAYN, LRRC37A2 and TLR1. The full summary of MR results is provided in

Supplementary table 4.



188 We further investigated whether the five proteins with replicated MR evidence for all breast cancers

189 were equally associated in estrogen-receptor (ER) positive compared to ER negative breast cancer
190 (Table 3). However, the effect sizes were similar across ER+ and ER- breast cancer risk, suggesting
191 these five proteins associate equally with ER+ and ER- breast cancer risk.

192

193 It was also hypothesised that proteins with MR evidence for an etiologically important role in breast
194 cancer might influence breast cancer risk via a breast cancer risk factor. To test this, further MR

195 analysis was performed using GWAS of potential breast cancer risk factors as outcomes, including
196 age at menarche, age at menopause, waist-hip ratio, mammographic density, sex hormone binding

197 globulin and insulin growth factor 1 levels (IGF-1) 2. LRRC37A2 showed MR evidence for later age at

198 menarche and earlier age at menopause in two independent outcome datasets, and also for higher
199 IGF-1 levels (Supplementary table 2). CD160 showed nominal MR evidence for an etiological role
200 lower age at menarche.

201

202 To summarise, the MR analysis showed that genetic elevation of CD160, DNPH1, LAYN, LRRC37A2
203 and TLR1 associate with breast cancer risk, and with similar effects on ER+ and ER- cancer.

204

205 Colocalisation analysis

206

207 All imputed variants in proximity to the cis-pQTL for proteins with significant MR evidence were
208 visually inspected with the corresponding genomic region for breast cancer risk using mirror plots.

209 The cis-regions around DNPH1 and LRRC37A2 showed the strongest degree of concordance between
210 lead variants for protein levels and breast cancer risk (Supplementary figure 7 and 8). Lead pQTL in

211 cis-regions for CD160, LAYN and TLR1 were not the variants with the lowest p-values for breast

212 cancer risk but were localised in the same, size limited, genomic region. We considered the cis-pQTL
213 to be colocalised with breast cancer risk (Supplementary figure 6, 8 and 10).

214

215 Systematic search for drugs targeting CD160, DNPH1, LAYN, LRRC37A2 and TLR1
216

217 To investigate if any of the five proteins identified in the present investigation had been previously
218 explored as drug targets, we performed a systematic search across several databases, including NIH

219 Pharos Consortium, IUPHAR/BPS Guide to Pharmacology, DrugBank and ClinicalTrials.gov. With the
220 exception of LAYN, targeted by Hyaluronic acid, none of the proteins were registered as known drug

221 targets 2.
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Discussion

We measured 2,949 circulating proteins in plasma from 598 women to identify 812 independent cis-
pQTL which were applied in MR to investigate associations between genetically predicted protein
levels and breast cancer risk. We found that genetically lower levels of CD160 and LRRC37A2 and
genetically higher levels of DNPH1, LAYN and TLR1 were associated with increased risk of breast
cancer. In addition, genetically higher levels of LRRC37A2 associated with age at menarche, which
adds to previous knowledge of its modest MR evidence for breast cancer risk 2. MR using cis-pQTL
instruments allowed us to model life-long genetic exposure to higher/lower protein levels, which
implies an aetiologically important role of associated proteins in disease. In our companion paper by
Grassmann et al., we found no circulating proteins associated with 2-year risk of incident breast
cancer. Indeed, none of the five proteins identified in the present investigation were significantly
associated with incident breast cancer. This indicates that genetically predicted protein levels did not

capture this short-term risk.

Among the five proteins identified in our study, DNPH1, also described as Rcl, encodes the enzyme
2'-deoxynucleoside 5'-phosphate N-hydrolase, which plays a role in nucleotide metabolism and is a
target of ETV1 -a transcription factor expressed in breast tumours %, Two independent CRISPR
screens for modulators of BRCA-associated breast tumour sensitivity to PARP inhibitors, an
established treatment in BRCA-deficient breast cancer, have shown that genomic inhibition DNPH1
sensitizes BRCA-deficient cells to treatment with PARP inhibitors 332, The lead pQTL identified in
KARMA, rs75591122, is located ~18.2 kbp upstream from the DNPH1 gene on chromosome 6 and is
one of several variants proximal to the DNPH1 gene associated with DNPH1 gene expression levels
across multiple tissues . Genetically increased circulating protein levels of DNPH1 was in our study
associated with increased breast cancer risk, which is concordant with experimental studies

suggesting that DNPH1 inhibition in breast cancer may be promising avenue for drug development.

Another of the five proteins was CD160, which is a receptor expressed in immune cells that has been
described to play important roles in NK cell biology, predominantly functioning as an activating NK-
cell receptor 3. CD160 is predominantly expressed on healthy NK cells and is one of the driver genes
for a specific NK subset related to higher cytokine production *. Reduction in CD160 expression led
to impaired NK cells and poor outcomes in Hepatocellular carcinoma patients 3¢ and since
dysfunctional NK cells also correlate with breast cancer progression ¥ it can be hypothesized that
CD160 could have a similar protective role in breast cancer. Indeed, in our study, genetically elevated

circulating protein levels of CD160 associated with a protective effect in breast cancer, suggesting
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that a drug activating CD160 specifically on NK cells may enhance anti-tumour immune responses in

breast cancer.

Our search for drug targets highlighted the connection between LAYN and Hyaluronic Acid. LAYN
encodes Layilin, which is a talin-binding transmembrane and integral membrane protein functioning
as a receptor for Hyaluronic acid (HA), with a role in cell adhesion and motility 333, HA is an
extracellular matrix component that impacts tumor microenvironment where elevated HA levels has
been reported in multiple cancer types including breast cancer “°. Interestingly, targeted depletion of
HA controlled the breast cancer tumor growth in xenotransplant mouse models of
immunocompetent mice but not of immunodeficient mice, which indicates a potential tumor-
immunity role for its receptors i.e. Layilin #*. Accordingly, high LAYN expression belongs to
transcriptomic signatures specific for regulatory T cells (Tregs) and exhausted CD8+ T cells for several
cancer types including breast cancer 2%, In our study, genetic elevation of LAYN protein levels
associated with increased breast cancer risk, suggesting a LAYN inhibitor would be desired for
treatment of breast cancer. However, mechanistic studies will be required to confirm the direction of

effect proposed by the MR evidence and to validate LAYN as drug target in breast cancer.

Several other studies have investigated genetic elevation of circulating proteins to identify potential
aetiological or causal factors for breast cancer risk. Murphy et al. reported that genetically elevated
circulating insulin growth factor levels (IGF-1) were associated with a weak but significantly increased
risk of breast cancer whereas IGF-binding protein-3 was unassociated *. Zhu et al. demonstrated
absence of association with breast cancer for genetically elevated levels of C-reactive protein * and
Shu et al. reported a wider MR analysis, instrumenting 1,469 proteins using Somascan-based pQTL in
the INTERVAL cohort, of which genetic instruments for 26 proteins were found to be associated %%,
Bouras et al. instrumented 47 inflammatory cytokines and reported that genetically increased levels
of CXCL1 and decreased levels of MIF associated with breast cancer #’. Our study included 10 of the 28
proteins previously reported in breast cancer MR studies, and while none of the reported proteins
surpassed statistical significance in our study, SCG3 and TFPI showed nominal significance in our

discovery MR (Supplementary table 4).

Our study has both strengths and limitations. One of the strengths is the large number of proteins
tested for cis-pQTL and that the cis-pQTL used to instrument genetic elevation using MR were
identified in women only, which should provide better estimates in MR for female breast cancer.
Another strength is that the protein exposures meeting statistical significance in our discovery MR,
using data from the BCAC consortium as outcome, were replicated in the independent case-control

analysis that combined breast cancer cases and controls in FinnGen and the UK-Biobank.
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However, our study had limited sample size for discovering cis-pQTL with smaller effect sizes.
Therefore, we cannot exclude that additional proteins on the Olink Explore Il panels harbour
significant cis-pQTL but remained undetected in the KARMA sample. To decrease the false-negative
error rate we only included variants in cis to decrease the multiple-test burden and corrected the p-
value threshold for significant for the number of independent variants in each cis-region. Effect-sizes
observed in KARMA were highly concordant with an overlapping set of 33 cis-pQTL for proteins
measured with Olink PEA that were previously reported. To evaluate the robustness of cis-pQTL
identified in KARMA, we sought replication for an overlapping set of 569 proteins measured with
Somascan. Of those, 2/3 (374/569) were replicated, which is on par with the expected replication

rate given differences in protein analysis methods *°.

In conclusion, by applying an MR approach for a broad range of circulating proteins we found that
genetically elevated CD160, DNPH1, LAYN, LRRC37A2 and TLR1 associate with breast cancer. This
suggests that these five proteins play an aetiological or causal role in breast cancer, providing a basis

for further functional evaluation of their potential as drug targets.

Materials and methods

KARMA study collection

We included 299 breast cancer cases and 299 breast cancer free controls from the Swedish KARMA
study in the analysis. The cohorts are thoroughly described elsewhere and previously analysed in
several BCAC studies. Briefly, the KARMA Cohort consists of 70,877 women performing a screening or

clinical mammogram at 4 hospitals in Sweden during the period October 2010—March 2013.

Plasma protein measurements on Olink Explore

Plasma proteomics was performed in samples from 299 BC cases and 299 BC free controls from the
Swedish KARMA study using the Olink Explore | and Il panels (Olink Proteomics AB, Uppsala, Sweden)
according to the manufacturer's protocol. Explore combines the Proximity Extension Assay (PEA)

technology with Next generation sequencing (NGS).

In brief, the PEA technology uses matching pairs of oligonucleotide-labelled antibody probes. The
PEA probes bind to target antigens producing a binding complex where the complimentary
oligonucleotides exist in close proximity to each other, enabling the formation of a target sequence.
The dual targeting of probes has been proven to produce outstanding specificity enabling for a high

degree of multiplexing while maintaining sensitivity and a broad dynamic range. In the Olink Explore
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protocol, target sequence is amplified in a double PCR reaction and purified before the NGS. The
sequence data is processed and normalized to produce Olinks relative quantification unit Normalized
Protein eXpression (NPX). The produced DNA signal functionally works as a proxy for the protein
levels present in the sample. Further details on the Olink Explore protocol and internal quality control

are available in the Supplementary methods 1 document.

Olink analysis quality control

The Olink QC-system includes negative controls, used to monitor the background noise and to set the
limit of detection (LOD). Supplementary figure 1 and Supplementary table 5 show the percentage of
samples with NPX above LOD.

Association with clinical characteristics

For each of the 2,949 measured protein levels, the following linear regression model was fitted: NPX
~age + bmi + menopause_preVSperi + menopause_preVSpost + birth_times + hrt_status +
alcohol_gram_week + smoking_status where menopause_preVSperi contrasts pre- versus peri-
menopausal patients, menopause_pre VS post contrasts pre- versus post-menopausal patients,
hrt_status contrasts current users of hormone replacement therapy versus patients who have never
used it or who have used it in the past, and smoking_status contrast current smokers versus those
who have never smoked or smoked in the past. All p-values were FDR corrected for the 2,949 x 7

performed tests.

Protein QTL mapping

Genome-wide genotyping in the KARMA study was performed using the Illumina iSelect or Oncoarray
arrays, followed by imputation using the Wellcome Trust Sanger Institute imputation service using
the 1000 genomes phase 3 as reference. Standard quality control was applied as previously
described. Variants with a minor allele frequency < 0.01 were filtered out prior to analysis. The final
dataset included 9,087 million variants.

Proteins >75 % of NPX values below LOD were filtered out before the pQTL analysis, yielding a total
of 2,476 proteins in the analysis. Values below LOD were included. The pQTL discovery analysis was
performed using an additive model with adjustments for age, BMI and 10 genetic PCs in PLINK 2.0 .
To preserve statistical power for pQTL identification, only variants within a 1 mega-base pair window
of the protein coding gene were tested for association with respective circulating protein level. To

manage multiple test correction, while limiting false-negatives, the total number of variants per cis-
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region were calculated as well as the number of independent variants (R2<0.1). The average number
of variants per cis-region was 6,249 (Supplementary Figure 5) and 180 independent variants (min,max
12-511). Statistical significance was therefore defined as an alpha of 0.05 divided by 180 to

account for average number of independent variants tested per cis-region (p=2.77E-04). A false-

discovery rate (FDR) at 5 % provided a similar estimate (p< 5.54E-04).
Mendelian Randomization analysis

We performed Two-sample MR using the R package Two-Sample MR to test for proteins with a
potential causal role in breast cancer. Independent cis-pQTL (r2 < 0.001) were used as instrumental
variables (IV), and GWAS of breast cancer risk from the BCAC consortium were used as outcome,
which included data from 122,977 breast cancer cases and 105,974 controls. In the case of a single
independent IV Wald Ratio was applied, otherwise inverse-variance weighted estimates were
reported. The threshold for statistical significance was defined as (7.5x10) to account for multiple
testing. The replication analysis was performed in a meta-analysis of FinnGen R9 and the UK-biobank,
which included 25,807 cases and 355,307 controls. Only the seven proteins that met statistical
significance in the BCAC discovery analysis were included in the replication analysis, and hence a

nominal p-value of 0.05 was considered statistically significant.
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Tables

Table 1
Variable Controls (BC negative)
Number of individuals 299
Age at baseline (S.D) [years] 58.83(9.26)
Body mass index at interview (S.D) [kg/m2] 25.20(4.16)
Hormone replacement therapy ever [%] 35.66
Current smoker at interview [%] 11.23
Family history of BC [%] 11.27
Table 2
Exposures BCAC, all breast cancer
Protein nsnp beta pval nsnp
CD160 1 -0.09 1.70E-06 1
DNPH1 1 0.08 3.80E-07 1
LAYN 1 0.13 1.40E-05 1
LRRC37A2 1 -0.05 5.70E-10 1
MST1 1 0.03 7.20E-05 1
TLR1 1 0.07 6.40E-06 1
TXK 1 0.07 3.10E-06 1
Table 3

ER+ breast cancer
Exposures BCAC FinnGen BCAC
Protein beta pval beta pval beta
CD160 -0.08 5.10E-04 -0.14 6.90E-03 -0.06
DNPH1 0.08  6.20E-06 0.07  8.80E-02 0.09
LAYN 0.12  5.50E-04 0.13  1.20€E-01 0.12
LRRC37A2 = -0.04 1.80E-06 -0.06 3.50E-02  -0.04
TLR1 0.07 1.60E-04 0.11 4.10E-02 0.09

Cases (incident BC)
299

58.11(9.49)
25.73 (4.14)
37.76
16.32
20.92

FinnGen and UK-Biobank

beta
-0.07
0.05
0.12
-0.05
0.02
0.11
0.03

pval

1.50E-02
3.50E-02
8.40E-03
6.80E-05
6.60E-02
7.40E-05
3.40E-01

ER- breast cancer

pval

9.30E-02
6.00E-04
2.60E-02
7.90E-03
2.30E-03

FinnGen

beta pval

-0.07  2.80E-01
0.05  3.40E-01
0.17  1.00E-01
-0.01 = 8.30E-01
0.11  9.40E-02
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Figures

Figure 1

2,949 proteins measured using Olink Explare I and Il in
n=598 samples from women in the KARMA study

Caorrelation analysis between proteins and 7 clinical
characteristics collected at time of blood draw

Identification of 812 cis-pQTL for 737 proteins

Wald-ratio or Inverse-variance weighted Mendelian
randomization (MR) analysis of 730 protein exposures with

L breast cancer (BC) as outcome, using BCAC

( Replication of 5 proteins reaching statistical significance in h
BCAC using BC case-control genetic data from FinnGen R9

L and the UK-biobank )

4 I
Assessment of colocalisation using mirror plots of exposure
and outcome traits

\, v

MR analysis for significant 5 proteins using a) ER- and ER+
BC as outcome data and b) BC risk factors

Figure 1. Flow chart of study design, analyses and main results
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Figure 2: Volcano plots showing estimated effect sizes (x-axis) and the corresponding non-adjusted —
log10(p-value) (y-axis). Effect sizes were given by a linear regression model per protein, including all 7
traits. Each panel shows one of the investigated baseline traits, corresponding to one term in the
regression model. The names of the topmost significant proteins per trait are indicated in each
panel. The number of proteins reaching FDR corrected statistical significance were for age:459,
Alcohol consumption:172, Birth times:7, BMI:684, HRT:93, Menopause pre vs. peri:18, Menopause
pre vs post:127, Current smoking:213.
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Figure 3: Mendelian randomization analysis on breast cancer risk in the BCAC study was performed
by modelling exposure to genetically higher plasma levels of 730 proteins with at least one cis-pQTL.
The Y-axis shows the -log10 p-value of the Wald-score or IVW and the X-axis shows the beta-
estimates of the MR result for each protein that was tested.
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