

Heterogeneity in spontaneous sleep arousals: positive or negative links with early amyloid-beta and cognition

Authors: Daphne O. Chylinski^{1†}, Maxime Van Egroo^{1,2†}, Justinas Narbutas^{1,3†}, Ekaterina Koshmanova¹, Christian Berthomier⁴, Pierre Berthomier⁴, Marie Brandewinder⁴, Eric Salmon^{1,3,5}, Mohamed A. Bahri¹, Christine Bastin^{1,3}, Fabienne Collette^{1,3}, Christophe Phillips^{1,6}, Pierre Maquet^{1,5}, Vincenzo Muto¹ & Gilles Vandewalle^{1*}

Online supplementary materials

Table S1. Post-hoc comparisons of the relative power for each arousal type within each frequency band

Table S2. Output of the GLMM with A β burden as dependent variable, and arousal types

Fig. S1. Absence of significant correlation between T-E+ arousals and T+E- arousals

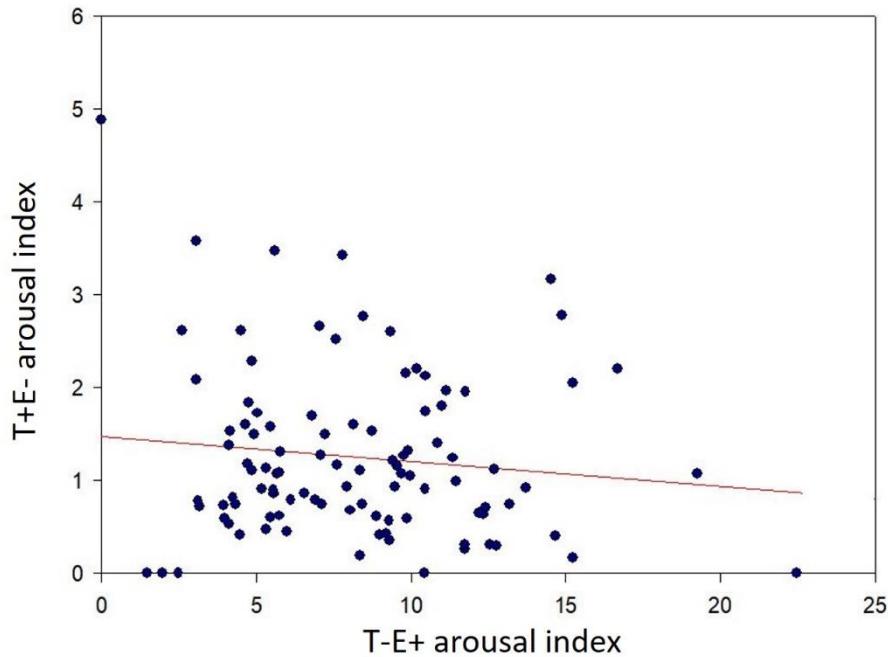
Fig. S2. Association between number of awakenings and cognition

Fig. S3. Association between WASO and cognition

Fig. S4. Association between early cortical A β burden and sleep macrostructure fragmentation

Contrast1		Contrast2		Frequency band					
				Theta		Alpha		Beta	
E	T	E	T	t value	Adj p	t value	Adj p	t value	Adj p
-	-	-	+	-1.03	0.73	-2.02	0.18	-10.26	<.0001
-	-	+	-	1.99	0.19	0.01	1.00	-18.92	<.0001
-	-	+	+	4.08	0.0003	-0.35	0.99	-20.91	<.0001
-	+	+	-	3.30	0.006	2.02	0.18	-11.41	<.0001
-	+	+	+	5.11	<.0001	1.39	0.51	-12.73	<.0001
+	-	+	+	2.61	0.005	-0.43	0.97	-3.29	0.006

Table S1. Post-hoc comparisons of the relative power for each arousal type within each frequency band. T: arousal associated (T+) or not (T-) with sleep stage transition; E: arousal associated (E+) or not (E-) with an increase in EMG tone. Indexes correspond to hourly prevalence. Significant associations are in bold.


	Age	Sex	T-E-	T-E+	T+E-	T+E+
Aβ burden	F = 11.98	F = 2.11	F = 0.00	F = 15.22	F = 3.22	F = 2.02
	p = 0.0008	p = 0.15	p = 0.99	p = 0.0002	p = 0.076	p = 0.16

$R^2_{\beta^*}=0.11$ $R^2_{\beta^*}=0.14$

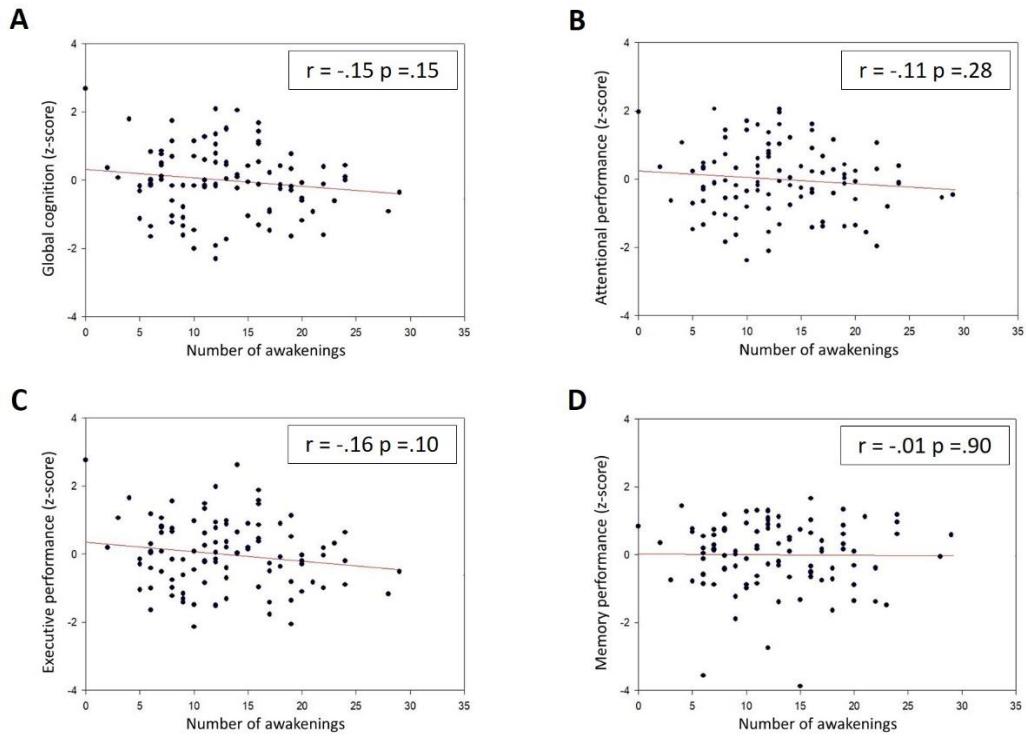
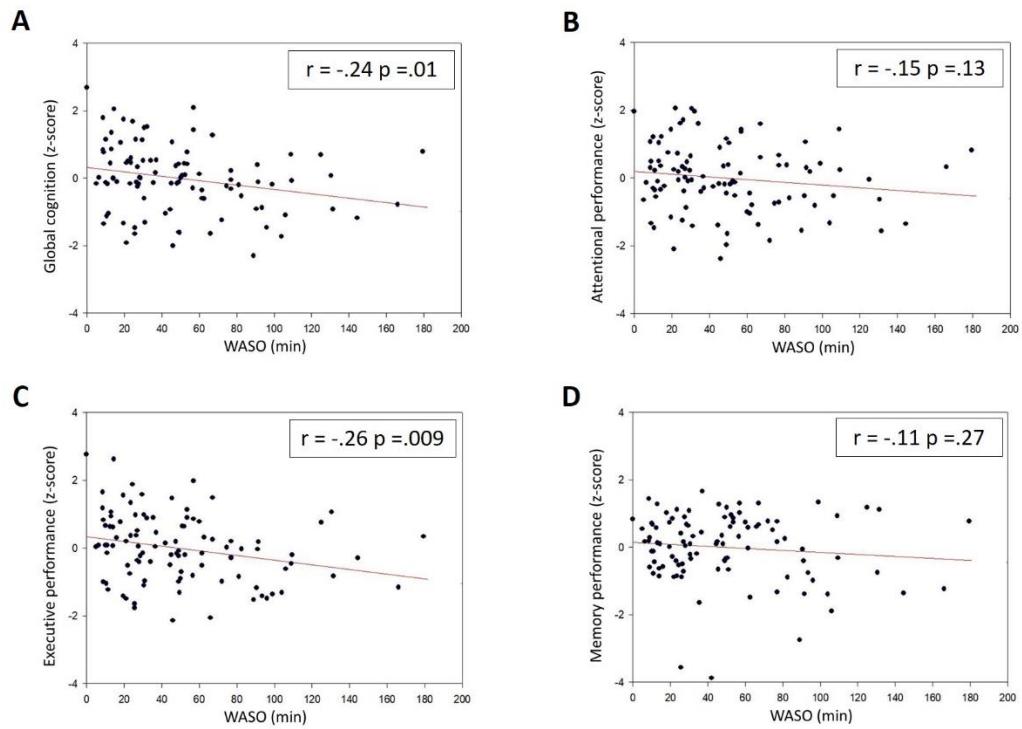

T-E+ T+E- contrast: t = -2.71, p = 0.008, adjusted = 0.048, estimate = -2.87

Table S2. Output of the GLMM with A β burden as dependent variable, and arousal types.


All F tests had 1 (main effect) and 93 (error) degrees of freedom. Significant associations are in bold and are accompanied by their corresponding Semi-partial R^2 ($R^2_{\beta^*}$).

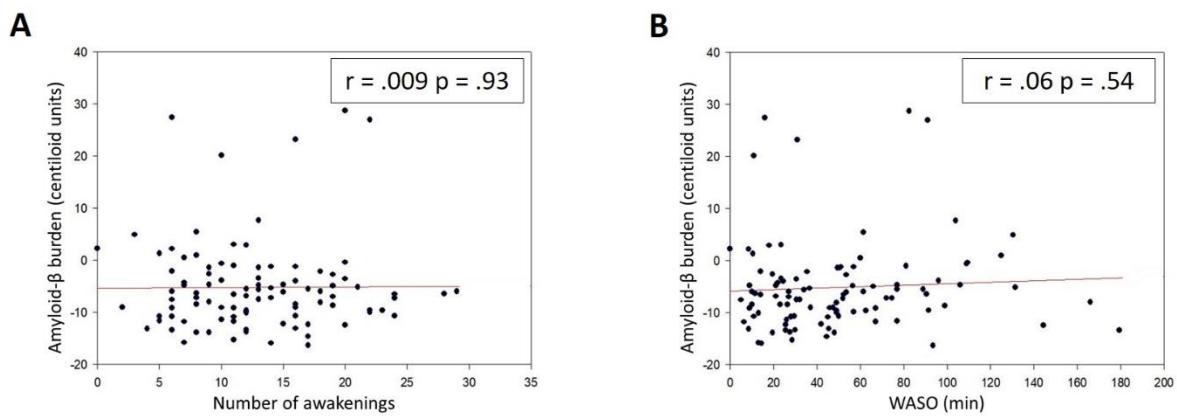

Fig. S1. Absence of significant correlation between T-E+ arousals and T+E- arousals (Pearson $r=-.12$ $p=.24$). T: arousal associated (T+) or not (T-) with sleep stage transition; E: arousal associated (E+) or not (E-) with an increase in EMG tone. Indexes correspond to hourly prevalence.

Fig. S2. Association between number of awakenings and cognition. (A) Global cognitive performance (Pearson $r=-0.15$, $p=0.15$; GLMM $F_{1,95}=2.21$, $p=0.14$); (B) attentional (Pearson $r=-0.11$, $p=0.28$; GLMM $F_{1,95}=0.89$ $p=0.35$); (C) executive (Pearson $r=-0.16$, $p=0.10$; GLMM $F_{1,95}=3.53$, $p=0.06$); (D) memory performances (Pearson $r=-0.01$, $p=0.90$; GLMM $F_{1,95}=0.00$, $p=0.98$). Insets correspond to Pearson's r and associated p -values.

Fig. S3. Association between WASO and cognition. (A) Global cognitive performance (Pearson: $r=-0.24$, $p=0.01$; GLMM $F_{1,95}=4.66$, $p=0.03$); (B) attentional (Pearson: $r=-0.15$, $p=0.13$; GLMM: $F_{1,95}=0.56$, $p=0.46$); (C) executive (Pearson: $r=-0.26$, $p=0.009$; GLMM: $F_{1,95}=7.58$, $p=0.007$); (D) memory performances (Pearson: $r=-0.11$, $p=0.27$; GLMM: $F_{1,95}=1.11$, $p=0.30$). Inserts correspond to Pearson's r and associated p-values.

Fig. S4. Association between early cortical A β burden and sleep macrostructure fragmentation. (A) Association between number of awakenings and early cortical A β burden (Pearson: $r=0.009$, $p=0.93$; GLMM $F_{1,95}=0.22$, $p=0.64$); (B) association between WASO and early cortical A β burden (Pearson: $r=0.06$, $p=0.54$; GLMM $F_{1,95}=0.05$, $p=0.83$) (panel B). Inserts correspond to Pearson's r and associated p -values.