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Re-evaluation of publicly available gene-expression databases using machine-learning
yields a maximum prognostic power in breast cancer

Supplementary Data
For downloading or preprocessing data, Bioconductor packages (https://www.bioconductor.org/) in R (https:
//www.r-project.org/) were used.

All datasets that are available in the NCBI Gene Expression Omnibus1 – i.e. all datasets except METABRIC, TCGA, and
NKI – were retrieved using the R package GEOquery2. If available and if not otherwise mentioned, we downloaded the raw
.CEL files, standardized them with the RMA procedure3, and filtered the data using the WGCNA procedure as described in4.

We used ComBat in the R package sva5 to adjust data for batch effects.
All scripts to download and prepare data are deposited in a Github repository: https://github.com/DiTscho/

LimitOfPrognosis.
In all datasets, estrogen-receptor positive (ER+) patients under the age 70 who did not receive cytotoxic chemotherapy were

selected.
In all datasets, genes without annotations were removed.

Datasets
Table 1 summarizes common important clinical parameters across all datasets.

METABRIC
Clinical and pathological annotations as well as gene expression of over 2000 breast cancer tumors were obtained by permission
from the METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) consortium6. These data can be
downloaded from the EuropeanGenome-Phenome Archive at http://www.ebi.ac.uk/ega under accession number
EGAS00000000083. The gene expression values were measured on the Illumina HT-12 v3 platform, already preprocessed and
log2-normalized, as reported in6. The function avereps in the R package limma7 was used to summarize genes with multiple
probes. The R package illuminaHumanv3.db was used to annotate genes8. From the initial 2136 samples, we selected 683
samples of patients, who either died due to the disease or are still alive.

TCGA (The Cancer Genome Atlas)
Breast cancer RNA Seq gene expression and clinical data were downloaded from the TCGA website (http://cancergenome.
nih.gov) using the package TCGAbiolinks9. Gene expressions were filtered and normalized w.r.t. normal solid tissue by the
TMM method from the edgeR R package10 and the voom method11. From the initial 1095 samples, we selected 169 using the
criteria mentioned above. The overall survival time and status were used for survival analysis.

GSE11121
The datasets contains 200 samples of consecutive lymph node-negative breast cancer patients treated at the Department of
Obstetrics and Gynecology of the Johannes Gutenberg University Mainz between 1988 and 199812. From the initial 200
samples, we selected 120 using the criteria mentioned above. The distant-metastasis-free survival time and status were used for
survival analysis.

https://www.bioconductor.org/
https://www.r-project.org/
https://www.r-project.org/
https://github.com/DiTscho/LimitOfPrognosis
https://github.com/DiTscho/LimitOfPrognosis
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http://cancergenome.nih.gov
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Table 1. Descriptive statistics of common important clinical parameters for all datasets used in this study.

GSE11121 (N=120) GSE7390 (N=134) GSE96058 (N=147) METABRIC (N=683)
age
- Median 58.000 47.000 64.000 58.140
- Q1,Q3 48.000, 63.250 42.250, 51.000 56.500, 67.000 50.255, 63.845
grade
- 1 18 (15.0%) 29 (22.0%) 39 (26.5%) 89 (13.5%)
- 2 86 (71.7%) 68 (51.5%) 81 (55.1%) 329 (49.9%)
- 3 16 (13.3%) 35 (26.5%) 27 (18.4%) 241 (36.6%)
tumor size
- Median 1.800 2.000 1.600 2.000
- Q1,Q3 1.400, 2.325 1.600, 2.500 1.200, 2.200 1.560, 2.700
node status
- 0 120 (100.0%) 134 (100.0%) 101 (68.7%) 433 (65.0%)
- 1 0 (0.0%) 0 (0.0%) 40 (27.2%) 233 (35.0%)
- NA 0 (0.0%) 0 (0.0%) 6 (4.1%) 0 (0.0%)
survival time in years
- Median 7.583 12.731 4.071 11.633
- Q1,Q3 5.500, 10.729 7.764, 15.504 3.110, 5.263 7.001, 17.683
event
- 0 97 (80.8%) 108 (80.6%) 94 (63.9%) 519 (76.0%)
- 1 23 (19.2%) 26 (19.4%) 53 (36.1%) 164 (24.0%)

GSE4922 (N=80) GSE9893 (N=86) NKI (N=179) TCGA (N=169)
age
- Median 57.000 60.550 46.000 61.038
- Q1,Q3 48.750, 66.250 55.325, 65.650 41.000, 50.000 51.712, 64.882
grade
- 1 33 (41.2%) 15 (18.1%) 52 (29.1%) 0
- 2 39 (48.8%) 55 (66.3%) 67 (37.4%) 0
- 3 8 (10.0%) 13 (15.7%) 60 (33.5%) 0
tumor size
- Median 1.700 2.000 2.000 NA
- Q1,Q3 1.200, 2.200 1.600, 2.500 1.500, 2.500 NA
node status
- 0 79 (98.8%) 46 (54.8%) 131 (73.2%) 109 (64.9%)
- 1 1 (1.2%) 38 (45.2%) 48 (26.8%) 59 (35.1%)
survival time in years
- Median 10.292 5.496 6.521 0.197
- Q1,Q3 5.688, 10.771 4.681, 6.567 4.711, 9.749 0.132, 0.366
event
- 0 54 (67.5%) 57 (66.3%) 123 (70.3%) 152 (89.9%)
- 1 26 (32.5%) 29 (33.7%) 52 (29.7%) 17 (10.1%)
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GSE96058
The available expression matrix contained preprocessed log2-normalized expression values of a prospective population-based
series of 3,273 BC patients with a median follow-up of 52 months (Sweden Cancerome Analysis Net- work—Breast [SCAN-B],
ClinicalTrials.gov identifier: NCT02306096), as described in13. No further standardization was conducted. From the initial
3,273 samples, we selected 1102 using the criteria mentioned above. We subsequently performed downsampling due to a low
amount of events (< 5%). For this, a subset of patients was randomly sampled with an event-to-patients-at-risk ratio of roughly
1:3. The overall survival time and status were used for survival analysis.

Data: A .csv file containing already standardized expression data.

GSE4922
In this dataset, two separate breast cancer cohorts can be accessed: the Uppsala (n=249) and the Singapore (n=40) data14. Thus,
from the initial 289 samples, we selected 80 using the criteria mentioned above. The recurrence-free survival time and status
were used for survival analysis.

GSE7390
Gene expression data of frozen samples from 198 lymph-node negative systemically untreated patients were collected at the
Bordet Institute15. From these data we selected 134 using the criteria mentioned above. The distant-metastasis-free survival
time and status were used for survival analysis.

GSE9893
This dataset contains samples from a cohort of 132 primary tumors from tamoxifen-treated patients whose expression profiles
were conducted at the whole genome level by 70-mer oligonucleotide microarrays containing 22,680 probes16. From the initial
132 samples, we selected 86 using the criteria mentioned above. The distant-metastasis-free survival time and status were used
for survival analysis.

Data: Already standardized ExpressionSet.

NKI
These are gene expression data of breast cancer tumors collected at the Netherlands Cancer Institute, as described in17 and18.
The R package BreastCancerNKI (https://bioconductor.org/packages/breastCancerNKI/) was employed
to download the data. From the initial 337 samples, we selected 179 using the criteria mentioned above. The recurrence-free
survival time and status were used for survival analysis.

Data: Already transformed ExpressionSet from BreastCancerNKI.

Supplementary Reported Gene Selections

The authors of19 collected gene lists of 33 reported signatures in breast cancer. They inquired PubMed for breast cancer gene
signatures or classifiers and collected the lists of gene names from the original publications. As a result, they prepared gene
lists containing the HUGO gene symbols. These lists and a detailed description of their procedure can be found in Additional
Files in their publication19.

We downloaded these lists and adopted their procedure: not only several studies used different gene alias names, but
the used gene names differed also across datasets. Thus, we identified all gene names, i.e. aliases, as official gene symbols
individually in each dataset using the R package org.Hs.eg.db20.

For all datasets, since some gene names were missed in a particular dataset, we also identified the most coexpressed genes
in this dataset by querying COXPRESdb: a database of coexpressed genes21. Table 2 shows the resulting number of extracted
genes for all datasets. In the first column, the full names of reported signatures are listed. We adopted the exact gene names of
reported signatures from Additional file 2 in19. The second column provides the number of genes used in the signatures. Other
columns provide the number of extracted genes for each dataset. As mentioned in19, within some signatures the number of
reported genes is less than the number of extracted genes, since these genes are duplicated with different probe names. For the
sake of completeness, we decided to include all gene lists into our analysis.

All signatures except the following five signatures are used for prognosis: The GCN of MET and HGF, 28-gene expression
profile, 92 predictor, 85-gene signature, and 512-gene signatures are used for prediction, i.e. to predict the response to treatment
or drug.

Supplementary Machine Learning Models
Various machine learning models have been adapted or developed to handle censored data. These models can be divided into
feature selection models as well as prognostic models. Some prognostic models already include one or more selection models
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Table 2. Gene lists from published signatures considered in the analysis.

Signature gene # METABRIC GSE11121 GSE96058 GSE7390 GSE9893 NKI TCGA GSE4922
B-cell:IL8 ratio22 22 7 11 9 11 9 5 14 10
Breast cancer index23 7 7 7 7 7 7 7 7 7
Cell cycle pathway signature24 26 26 26 26 26 26 26 26 25
92-gene predictor25 92 80 80 80 80 80 80 80 78
EndoPredict assay26 8 8 8 8 8 8 8 8 8
GCNs of MET and HGF27 2 2 2 2 2 2 2 2 2
8-gene genomic grade index28 4 4 4 4 4 4 4 4 4
97-gene genomic grade index29 97 87 87 87 87 68 86 87 83
158-gene HER2-derived prognostic predictor30 158 152 151 152 151 152 152 152 151
HOXB13:IL17 BR ratio31 2 2 2 2 2 2 2 2 2
186-invasivenessgene signature32 186 151 150 153 150 149 150 152 145
IHC4 Score33 4 4 4 4 4 4 4 4 4
7-gene immune response module34 7 6 6 6 6 6 6 7 6
85-gene signature35 85 50 50 50 50 50 50 50 49
54-gene lung metastasis signature36 54 54 54 54 54 54 54 54 52
MAGE-A37 2 2 2 2 2 1 1 2 2
70-gene signature17 70 61 61 61 61 60 61 62 61
368-gene medullary breast cancer like signature38 368 359 354 363 354 336 350 361 336
14-gene metastasis score39 14 14 14 14 14 14 14 14 13
Multigene HRneg/Tneg signature40 14 14 14 14 14 14 14 14 14
26-gene signature41 26 19 18 19 18 17 18 19 18
264-gene signature41 264 210 206 210 206 186 198 211 203
512-gene signature42 512 352 350 353 350 345 349 353 343
32-gene p53 status signature43 32 19 19 19 19 19 19 19 19
PAM50 assay44 50 50 50 50 50 49 50 50 49
64-gene expression signature45 64 48 48 48 48 46 48 48 47
127-gene classifier46 127 123 123 124 123 112 123 124 118
21-gene signature47 16 16 16 16 16 16 16 16 16
26-gene stroma-derived prognostic predictor48 26 25 25 25 25 24 25 26 24
8-gene score49 8 8 8 8 8 8 8 8 8
T-cell metagene50 50 46 46 48 46 46 47 46 44
28-gene expression profile51 28 24 24 24 24 23 24 24 24
76-gene signature52 76 67 67 68 67 66 66 69 67

in the process of training. Below we provide a short description of the machine learning models used in our study. The Cox
proportional hazards model – while not a machine learning model – is used as a baseline.

The Machine Learning in R package (mlr)53 was employed to benchmark models and perform cross-validation. All results
are based on 5 repeats of 5-fold cross-validation. All results below correspond to the tuned number of features: We tuned the
number of features during each cross-validation fold so that a tuned (optimal) number of features was used for the eventual
prediction. Other hyper-parameters are listed in Table 3.

Cox proportional hazards model
The Cox proportional hazards model can be regarded as the standard model for analyzing survival data54. In this model, the
effect of variables – also called covariates x1,x2, ...,xn – on the time to an event of interest is evaluated. For example, an event
might be the death of the patient or a relapse of the disease. Formally, the Cox model is expressed by the following hazard
function:

h(t) = h0 × exp(x1β1 + x2β2 + ...+ xnβn),

where β1,β2, ...,βn of n patients denote the regression coefficients, i.e. weights of the covariates: the larger the coefficient
the larger effect its covariate has on the prognosis of survival times. They are estimated by maximizing the partial likelihood.
The baseline hazard function h(t) remains unspecified since it is divided out by computing the proportional hazard.

The Cox model remains a highly robust model if applied to linearly independent data and under the assumption that the
proportional hazard does not change over time. However, this model loses its robustness when applied to high-dimensional
data.

Lasso, Ridge, and Elastic-Net Regressions
Since the Cox model generalizes poorly to high dimensional data, some penalizing constraints are often used in the process of
maximizing the partial likelihood. As a consequence, the regression coefficients shrink toward zero, their variances reduce as
well, and the less important covariates tend to have less effect in the model.

L1 and L2 regularizations are two standard forms of regularization:

L1 = λ × (|β1|+ |β2|+ ...+ |βn|),
L2 = λ × (β 2

1 +β
2
2 + ...+β

2
n ),
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where λ is the regularization constant. The L1 regularization is also known as LASSO regression and produces models with
a smaller set of coefficients since several coefficients are completely reduced to zero. Thus, variable selection is also performed
during the fitting process.

The L2 regularization is also known as ridge regression and shrinks all coefficients by the same factor. As a result, all
coefficients are reduced but none is eliminated.

The L1 regularization cannot select more variables than the number of samples. Moreover, it is biased toward the selection
of groups of correlated variables55.

To overcome these limitations, one can use a linear combination of L1 and L2 penalties, which is then called the elastic net
regression. The elastic net regression is especially useful when the number of variables is larger than the number of samples55.
In our study, we evaluated the extensions of the lasso, ridge, and elastic net regressions to the Cox model56, 57.

Boosted models
Boosting is an ensemble learning technique that combines the so-called weak i.e. base learners into stronger learners that are
trained sequentially58. During each iteration, a new model is added to the ensemble correcting the errors of the previous model.
Boosting has been adapted to survival analysis59, 60.

We used the gradient boosting in our study61. This type of boosting trains on the residual errors (gradients) of the entire
ensemble model at each step. It can also be trained with linear models as base learners as well as with decision trees as base
learners. In this study, both methods were assessed.

Survival Trees and Random Survival Forests
Survival trees62 and random survival forests63 are an extension of decision trees64, 65 and the random forests algorithm developed
by Leo Breiman66 to censored survival data. Decision trees and random forests, in turn, are nonparametric regression and
classification methods that are well suited for the case, where the number of variables is greater than the number of samples, for
example in genetics.

Survival Trees
In the general description of decision trees, the space spanned by predictor variables, i.e. by the covariates, is recursively
partitioned into several groups such that observations with similar responses are grouped together. In the case of numeric
variables such as gene expression values, binary splits are conducted. For the splitting a variable and selecting a splitting
threshold, decision trees follow the principle of impurity reduction. Following this principle, each split in the tree results in
daughter nodes whose impurity is reduced in comparison to the parent nodes. The impurity can be measured with the Shannon
entropy or the Gini index or other statistics. Finally, in an ensemble of trees predictions are made by means of averaging and
combining the results of each decision tree.

Random Forests
Random survival forests aggregate the results from ensembles of decision trees, whereas each tree is generated from a bootstrap
sample of the data. At each node, a random subset of predictor variables is sampled and one variable is selected to split on. The
selected variable maximizes the difference in survival between daughter nodes. Mathematically, the log-rank statistic over all
available split points and variables is maximized. For prediction, an average over the predictions of the single trees is used (a
vote is used for a classification problem).

Both survival trees and random survival are able to robustly handle high-dimensional non-linear data and detect interactions
among them. Provided the depth of trees is chosen carefully, they also reduce the tendency of overfitting the data. However,
both algorithms are biased towards selecting more heterogeneous variables, i.e. variables with many possible split points
are preferred. To overcome this problem, one can use the conditional inference forests67 that select the split points based on
linear rank statistics. Nonetheless, to detect non-linear effects in the predictor variable space, selecting the split points using
maximally selected rank statistics can be conducted68.

Alongside survival trees, we evaluated both the standard random survival forests and the maximally selected rank statistics
random survival forests.

The full names of the prognostic models, respective hyper-parameters as well as packages and functions used in this study
are shown in Table 3.

Supplementary Gene Selection Methods
During variable selection, a subset of for the survival outcome relevant variables is selected. We applied 5 different gene
selection methods and measured the performance of the survival models described above.

In a univariate model, a univariable Cox proportional hazards model is fitted to the expression values of each gene and the
genes are ranked by the resulting C-index of the corresponding model.
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Table 3. Machine learning prognostic models and respective hyper-parameters used in this study.

Survival model Full name of the survival model Package and function Hyper-parameters
CoxPH Cox proportional hazards model survival, coxph
Lasso Lasso regression glmnet, cv.glmnet alpha = 1, nfolds = 5
Ridge Ridge regression glmnet, cv.glmnet alpha = 0, nfolds = 5
Elastic-Net Elastic net survival regression glmnet, cv.glmnet alpha = 0.5, nfolds = 5
GB-Linear Gradient boosting with linear learners mboost, gamboost baselearner = "bols"
GB-Tree Gradientboosting with tree-based learners mboost, gamboost baselearner = "btree"

RSF Random survival forests randomForestSRC, rfsrc
mtry: from (number of genes)/3 to 100
nodesize: 5 to 30, ntree=500

Rank-RF Maximally selected rank statistics random forests ranger, ranger
splitrule = "maxstat",
importance = "permutation"

STree Survival trees rpart, rpart

The variable importance of the random forests algorithm is computed by permuting the column containing the expression
values of each gene and calculating the difference between the performances of the survival model before and after permutation.
Subsequently, the genes are ranked based on these differences.

The survival random forests variable hunting method, on the other hand, use a different importance score. First, the
standard variable importance is conducted on the entire dataset. Second, a random subset of genes is selected with probability
proportional to the calculated variable importance, and a forest is fitted. Third, the selected genes are ordered by the shortest
distance from the tree root to the largest subtree including this gene as its root; they are added successively to the fitting model
until the joint importance does not increase anymore. These steps are iterated a specified number of times. Eventually, the
variable importances result from the ranking of the variables based on the frequency of occurrence in these iterations.

The Minimum Redundancy Maximum Relevance algorithm69 selects variables that are mutually far away from each other:
variables that are mutually close to each other might be redundant. Thus, the algorithm minimizes redundancy by removing the
potentially redundant variables. At the same time, the selected variables are highly correlated with the response variable such as
survival time, meaning that they exhibit maximum relevance.

The Conditional Variable Importance for Random Forests utilizes the linear rank statistics of conditional random forests
described above.

The full names of the selection methods, respective hyper-parameters as well as packages and functions used in this study
are shown in Table 4.

Table 4. Machine learning selection methods and respective hyper-parameters used in this study.

Selection method Full name of the selection method Package and function Hyper-parameters
CF Conditional variable importance for random forests party, varimp conditional = TRUE

SRC Random survival forests with variable importance randomForestSRC, rfsrc
ntree = 500, nsplit = 10
mtry = (number of features)/3,
nodesize=5

SRC-VH Random survival forests with variable hunting randomForestSRC, var.select
method = "vh", ntree=500,
nodesize=5, splitrule="logrank",
nsplit=10, K=5

MRMR Minimum redundancy maximum relevance filter mRMRe, mrmr
UM Univariate model mlr, various

Supplementary Random Signature Size
According to the rule of thumb that Cox proportional hazards models should be used with a minimum of 10 events per predictor
variable (EPV), we should use 2 to 16 random genes in our datasets, since TCGA and METABRIC contain the smallest and
largest numbers of 17 and 164 events, respectively. However, this rule is based on two simulation studies and may be relaxed70.
Moreover, a study investigating this rule of thumb in 2 million anonymized patient records suggested that sample size for
developing prognostic models is not simply related to EPV and that EPV should be dataset dependent.

For these reasons, we randomly sampled gene sets containing a different number of genes ranging from 1-101 for each
dataset. The sampling was repeated 100 times for each number of genes, Cox models were fitted, and the median C-index
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was calculated. As can be seen in the top Figure 1, the prognostic power is indeed dataset dependent. For all datasets except
METABRIC, we could investigate a limited number of genes, since the Cox model does not converge with a smaller number of
events. Nonetheless, we see that prognostic power reaches a plateau if a sufficient number of events is considered (METABRIC).
For the rest datasets, the optimal number of genes seems to be in the range of 15-25 genes. In the bottom Figure 1, this range
can be inspected more closely. As can be seen, the distribution of the median C-indices increases in the range from 1-15 genes
in a gene set, after which it seems to fluctuate around a constant value. Chou et. al. have shown that the optimal number
of genes in a signature lies around 20 and that with a larger number of genes, a model tends to overfit data (Figure 4 in71).
Moreover, most clinically relevant gene-expression signatures tend to contain a smaller number of genes varying from 2-50
(Supplementary Reported Gene Selections). Thus, we chose to sample 20 random genes in all datasets.

Figure 1. Relationship of median C-index and the number of genes in a random gene set. The median C-index was
calculated based on 100 genes set sampled at random for each data point. The Cox proportional hazards model was used as a
prognostic model. (top) Median C-indices computed based on the individual dataset. (bottom) Distribution of C-indices for all
datasets in the range from 1-20 genes in a gene set.

Supplementary Random Signature Superiority
In order to examine whether Random Signature Superiority (RSS) is present in this study, we we calculated the number of
random signatures performing above the C-index of the reported 26-gene signature41 (which has roughly the same size as
random signatures, see Supplementary Reported Gene Selections) for each prognostic model and averaged this value over all
datasets. The results are shown in Figure 5. We found (Supplementary Random Signature Superiority) that more than 60% of
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random signatures outperform the aforementioned reported signature in 4 of 8 datasets, exactly 49% in one dataset, and less
than 22% in the remaining 3 datasets. Averaging across datasets, 44% of random signatures outperform the aforementioned
reported signature.

Table 5. Evaluation of the Random Signature Superiority.

Dataset Average [%]
GSE11121 62
GSE4922 67
GSE7390 8
GSE96058 22
GSE9893 49
METABRIC 64
NKI 19
TCGA 60

All datasets 49

Supplementary Difference Between Selection Methods
In order to inspect the differences in prognostic power between random and reported selection methods, we plot the distributions
in form of the violin plots for each model and each dataset in Figure 2. The distributions are compared using the Wilcoxon rank
sum test. The significance levels are shown below the violin plots. As can be inspected here, reported signatures tend to have
higher C-indices than random signatures, although the level of statistical significance varies across models and datasets.

Figure 2. Comparison of C-indices for random and reported selection methods.
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Supplementary Dataset Dependency

We investigated whether the median of the sample medians (MOM) and the median absolute deviation (MAD) correlates with
the number of subjects as well as with the event rate in a dataset. Figures 3, 4, 5, 6 plot the results for each prognostic model
along with the corresponding Spearman’s rank correlation coefficients and their p-values. As can be inspected in these plots,
the MOM and MAD seem to be uncorrelated with both the number of subjects and the event rate.

Figure 3. Median of the sample medians in relation to the number of subjects.

Figure 4. Median of the sample medians in relation to the event rate.
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Figure 5. Median absolute deviation in relation to the number of subjects.

Figure 6. Median absolute deviation in relation to the event rate.
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Supplementary Combined Dataset
In order to investigate large sample sizes, we combined the 8 datasets into one large dataset resulting in 2553 subjects
(683+86+134+1102+120+179+80+169 = 2553). As can be seen from the number of subjects, all 1102 subjects from the
GSE96058 dataset were integrated without downsampling, since the resulting event rate of 0.15 seemed to be sufficient. The
datasets were standardized, normalized, and annotated as described in section Supplementary Data. A list of genes common to
all datasets (3969 genes) was extracted in order to combine the datasets based on this list. The Z-score transformation was
applied to a single dataset72. Subsequently, the single datasets were combined into one large dataset. The following sampling
procedure was applied: 20 genes were selected at random, and the dataset identification was included as covariate in the Cox
proportional hazards model in order to directly correct for batch effects and the median C-index was measured. This sampling
procedure was repeated 1000 times – resulting in 1000 different random signatures – and the median of the sample medians
was computed. We resampled the data with different sample sizes ranging from 800 to 2500 subjects. We kept the event rate
constant (event rate = 0.15) in each sample in order to investigate the relation between sample size and prognostic performance
since then we have already shown (Supplementary Dataset Dependency) that larger event rates do not increase prognostic
power. As can be seen in Figure 7, the performance does not increase with larger sample sizes (Pearson correlation coefficient
R = 0.24, p = 0.33).

Figure 7. Median of the sample medians (MOM) of each dataset. Each data point represents the MOM computed for each
prognostic model.

Supplementary Event Type
There are differences in C-indices between datasets, which may be related to the inter-platform and inter-cohort variability.
In order to investigate this in more detail, we computed the median of the sample medians, i.e. the median C-index for each
prognostic model, as already described above. Figure 8 shows the results for each selection method – random reported and
using machine learning – for all datasets. Only GSE96058 and TCGA include the overall survival, whereas other datasets
include disease-free (METABRIC), distant-metastasis-free (GSE9893, GSE7390, GSE11121), or recurrence-free survival (NKI,
GSE4922). The prediction of these event types is more specific than the prediction of the overall survival, which may include
events that are not related to the disease. Figure 8 shows that both GSE96058 and TCGA exhibit the lowest performances
for selections from reported signatures, as well as comparably lowest performances for random selections. As expected, the
differences in C-indices that follow almost the same pattern for random and reported selections to disappear in the case of
selections with machine learning, since the algorithms were trained to specifically select genes that best predict the target
(event): irrespective of how the target is defined.
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Figure 8. Median of the sample medians (MOM) across datasets. Each data point represents the MOM for each prognostic
model. Only GSE96058 and TCGA (in bold) include the overall survival, whereas other datasets include disease-free
(METABRIC), distant-metastasis-free (GSE9893, GSE7390, GSE11121), or recurrence-free survival (NKI, GSE4922).
Boxplots are shown for each selection method: random selection (Random), selections from reported signatures (Reported),
and selections using machine learning (ML).
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