Supplementary Information for “Majority rule can
help groups solve difficult tasks even when
confident members opt out to serve individual

interests”

Kiri Kuroda, Mayu Takahashi, and Tatsuya Kameda

This PDF includes:
Supplementary Results
Supplementary Methods
Supplementary Figures S1-S8

Supplementary Tables S1-S4



Supplementary Results

Individual estimates of risk preference

For each participant, we estimated risk preference, p, from the gambling task (see Methods and
Supplementary Fig. S1b). If p is less (greater) than 1, the participant is risk averse (risk seeking).
The average of participants’ p was 0.81 and significantly less than 1, indicating that participants
were generally risk averse (Supplementary Fig. Slc; M = 0.81, SD = 0.22; one-sample ¢ test:
t62)=—7.00, P <.001, Cohen’s d = —0.88, 95% confidence interval [CI] [-1.18, —0.59]). This
risk-averse tendency is consistent with the results from a large-scale study on the methodology

of risk elicitation’.

No significant differences in accuracy in the orientation-judgment task

between the blocks

We checked whether there were differences in the accuracy of the perceptual judgments
between the solo and opt-in/out blocks (Supplementary Fig. S3b). The accuracy was calculated
for each block, each level of variance (Fig. 1c), and each participant. We analyzed these values
using a two-way (2 Blocks x 4 Levels of Variance) repeated-measures analysis of variance
(ANOVA) as in ref.2. The ANOVA (with Greenhouse—Geisser correction) showed that the main
effect of block was not significant, F(1.00, 62.00) = 0.67, P =417, np,> = 1.97¢—03, 95% CI [0.00,
0.02]; the interaction effect was also not significant, F2s0, 15503 = 0.52, P = .636, ny*> =
1.47e—03, 95% CI [0.00, 0.01]. The main effect of the variance level was significant, F(2 52,
156.04) = 424.63, P <.001, ny*> = 0.29, 95% CI [0.23, 0.35], indicating that the larger the variance,
the more difficult the task (see also Supplementary Fig. S2). Since there were no significant

differences between the blocks, we decided to use data from both blocks in fitting the stochastic

updating model? (Eq. 3) to participants’ perceptual judgments.



Participants’ confidence in the orientation-judgment task

Supplementary Fig. S3d shows that most participants were underconfident, which is in line
with previous studies on confidence using incentivized tasks*—. Furthermore, as shown in
Supplementary Table S4, our ¢ modeled by Eq. 4 (i.e., subjective accuracy)® predicts
participants’ confidence ratings better than p (i.e., the objective accuracy), which was
calculated from individual estimates of € and A. For 62 of 63 participants, g had a positive effect
on their confidence ratings (Supplementary Fig. S6). These results provide additional support

for our modeling of participants’ subjective accuracy and confidence calibration.

No significant correlations among the estimates of cognitive parameters

Supplementary Fig. S4 shows the 10 Pearson correlations among participants’ estimates of the
cognitive parameters: p (risk preference; Eq. 1), A (weighting of the past estimate relative to
the current input; Eq. 3), vy (= minus g, i.e., competence; Eq. 3), a (elevation of the probability
weighting function; Eq. 4), and B (distortion of the probability weighting function; Eq. 4). After

Holm—Bonferroni correction, we found no significant correlations among these estimates.

Effects of A and the task parameters on participants’ opt-in/out choices

In the logistic regression predicting participants’ opt-in/out choices (Eq. 6), we entered the
predictors: participants’ p, v, ¢, and A, the reward for the opt-out choice, and the variance of

orientations. For the coefficients for p, y, and ¢, see Results and Fig. 2b in the main text.

The parameter A, which is not a parameter of interest, had a positive effect on participants’
opt-in/out choices on average, but the 95% credible interval contained zero (B = 0.198, 95%
credible interval [—0.291, 0.694]). Supplementary Fig. S5 shows each participant’s posterior
distribution of the intercepts and the coefficients for the reward and variance. As seen in Fig.

2a, for most participants, the reward for opting out had a positive effect, and the variance (i.e.,



task difficulty) had a negative effect on their opt-in/out choices.

Supplementary Methods

Payment procedure if the opt-in/out block was chosen

At the end of the experiment, participants received a 300-JPY show-up fee with an additional
amount based on three randomly selected trials from a randomly selected task. To implement
the majority decision making in the opt-in/out block (Fig. 1d) and pay participants immediately
after the experiment, we had conducted a separate experiment in which a different sample of
24 university students also chose to opt in or opt out. If the opt-in/out block was chosen, the
participant was grouped with these previous 24 participants. The data from the separate

experiment were used only for the payment and were not included in the analysis.

Hierarchical Bayesian methods

We used Markov chain Monte Carlo (MCMC) and hierarchical Bayesian methods in the
analysis. These methods allowed us to evaluate individual differences while they are bounded
by hyper- (i.e., group-level) parameters. For each estimation, we obtained 8,000 posterior
samples per parameter (= 2,000 iterations x 4 chains) and checked the convergence of the
MCMC simulations (Rs < 1.1; Monte Carlo SEs < 0.1; effective sample sizes > 0.1). Stan’

2.28.0 in R® 4.1.0 was used for the analysis.

Cognitive models
Risky decision making (mean-variance utility function)

To model participants’ choices in the gambling task, we used the power utility function (Eq. 1)
and mean-variance utility function and then compared the performances of the models (see

“Model comparisons using LOOIC and WAIC” and Supplementary Table S2 below). In the



mean-variance utility function, the utility of option x, u(x), follows
u(x) = E(x) + pV(x), (S1)

where E(x) (= rpreward) is the expected value, and V(x) [= 7*preward(1 — Preward)] is the risk of the
option; 7 is the reward magnitude, and preward 1s the reward probability (Eq. 1). The participant’s

risk preference, p, is negative if risk averse and positive if risk seeking.

Confidence calibration

As mentioned in the Methods, we modeled participants’ confidence calibration and compared
the performance of six probability weighting functions [hereafter w(p)], which have been
widely used in experimental, behavioral, and neuro economics®'2. For the model comparison,

see “Model comparisons using LOOIC and WAIC” and Supplementary Table S3 below.

We first fitted the null model, in which the objective and subjective accuracy were perfectly

calibrated:
w(p) = p. (52)
The second candidate was ref.!*’s 1-parameter function:
w(p) = exp (=(=In(p))*. (S3)
The third candidate was ref.!*’s two-parameter function:
w(p) = exp(=B(=In(p))*). (54)
The fourth candidate was ref.!*’s function:

p* _
(P*+ (A —p)Ha

w(p) = (85)



The fifth candidate was ref.”’s function:

pO(
(p*+ (1 —p))F’

w(p) = (S6)

The sixth candidate was ref.®’s function (Eq. 4). This candidate outperformed the other

functions in terms of prediction (Supplementary Table S3).

Ordered logistic regression on confidence ratings

To confirm whether participants’ subjective accuracy (¢ in Eq. 4) explains the confidence
ratings in the solo block better than the objective accuracy (p calculated from individual
estimates of ¢ and A), we further performed an ordered logistic regression, which predicts

participant i’s probability of rating confidence as £ at trial #:

1- logit_l(m,t - Cl,i) ) ifk =1,
P(k);, = logit‘l(nilt — Ck—l,i) — logit‘l(ni,t — ck,i), if1 <k <6,and (S7)
logit‘l(nilt - cs'i), ifk =6,

where ci-s are the cut points and 1 is a predictor given by

Nie = Bxix,its (S8)

where x is g or p, Z is the normalized x for each participant, and B is the coefficient.

Settings of the prior distributions

For each parameter estimation, we set the priors as follows. In the priors, i indicates a

participant; p) and o(,) are the hyper parameters, which control individual differences.

Risky decisions in the gambling task

To stabilize the parameter estimation, we rescaled the magnitude of the reward (JPY) by



dividing it by 1,000.

Power utility function (Eqs. 1 and 2)

up~Cauchy(O, 5); 0p~StudentT(4, 0,1); pi~Normal(up, O'p);

w.~Cauchy(0, 5); o.~StudentT(4,0,1); t;~Normal(p, o).

Mean-variance utility function (Eq. 2 and Supplementary Eq. S1)

up~Cauchy(O, 5); 0p~StudentT(4, 0,1); pi~Normal(up, O'p);

w.~Cauchy(0, 5); o.~StudentT(4,0,1); t;~Normal(p, o).
Stochastic updating model (Eq. 3)

ug~Cauchy(0,5); o.~StudentT(4,0,1); g;~Normal(y,, o¢);

uy~Cauchy(0, 5); o,~StudentT(4,0,1); A;~Normal(y,, o).

Confidence calibration

To stabilize the parameter estimation, we rescaled the magnitude of the reward (JPY) by

dividing it by 1,000.
Null model (Eq. 2 and Supplementary Eq. S2)

t.~Cauchy(0,5); o,~StudentT(4,0,1); A;~Normal(y, o).
Prelec one-parameter function (Eq. 2 and Supplementary Eq. S3)

tg~Cauchy(0,5); o,~StudentT(4,0,1); a;~Normal(u,, 6,);

t.~Cauchy(0,5); o,~StudentT(4,0,1); A;~Normal(y, o).

Prelec two-parameter function (Eq. 2 and Supplementary Eq. S4)



Uy ~Cauchy(0,5); o,~StudentT(4,0,1); a;~Normal(py, 0,);
uB~Cauchy(O, 5); 03~StudentT(4, 0,1); Bi~Normal(pB, GB);

w.~Cauchy(0,5); o.~StudentT(4,0,1); t;~Normal(p, o).
Tversky—Kahneman function (Eq. 2 and Supplementary Eq. S5)

He~Cauchy(0,5); o,~StudentT(4,0, 1); a;~LogNormal(yy, 04);

t.~Cauchy(0,5); o,~StudentT(4,0, 1); t;~Normal(l, o).
Wu-Gonzalez function (Eq. 2 and Supplementary Eq. S6)

Uy ~Cauchy(0, 1); o,~StudentT(10,0, 1); a;~Normal(u,, 6,);
uB~Cauchy(O, 1); GB~StudentT(1O, 0,1); Bi~N0rmal(uB, O'B);

w.~Cauchy(0,5); o.~StudentT (4,0, 1); t;~Normal(p, o).
Goldstein—Einhorn function (Egs. 2 and 4)

Ue~Cauchy(0, 1); o,~StudentT(10,0, 1); a;~Normal(u,, 6,);
uB~Cauchy(O, 1); GB~StudentT(1O, 0,1); Bi~N0rmal(uB, O'B);

w.~Cauchy(0,5); o.~StudentT(4,0,1); t;~Normal(p, o).
Statistical analyses
Logistic regression (Eq. 6)
ug, ~Cauchy(0,5); og, ~StudentT (4,0, 1); Bl,i~Normal(u31, 031);
g ~Cauchy(0,5); og_~StudentT(4,0, 1); Br,i~Normal(uBT, O'BT);

ug,~Cauchy(0,5); og ~StudentT (4,0, 1); Bvli~Normal(qu, O'BV);

B,~Cauchy(0, 5); B,~Cauchy(0,5); B.~Cauchy(0,5); By~Cauchy(0,5).



Ordered logistic regression (Supplementary Eqs. S7 and S8)

We, . ~Cauchy(0,5); o.,_~StudentT(4,0,1); 01_5,i~Normal(uCI_5,061_5);

qu~Cauchy(O, 5); 03x~StudentT(4, 0,1); Bx,i~Normal(qu, GBx).

Model comparisons using LOOIC and WAIC

To compare the prediction performances of the models, we computed (i) the information
criterion by approximate leave-one-out cross-validation (LOOIC)" and (ii) the widely
applicable information criterion (WAIC)!. In both indices, a lower value indicates a better
model performance in terms of prediction. The “loo” package!” 2.4.1 in R® was used to

calculate these indices.

Supplementary Table S2 shows that for the risky choices in the gambling task, the power
utility function (Eq. 1) was better than the mean-variance utility function (Supplementary Eq.
S1). Supplementary Table S3 shows that participants’ confidence calibration was predicted best
by ref.®’s function (Eq. 4). Supplementary Table S4 shows that the subjective accuracy (g in
Eq. 4) predicts participants’ confidence ratings better than the objective accuracy (p estimated
from individual estimates of ¢ and A). The statistical results remained unchanged between the

LOOIC and the WAIC.

Posterior predictive checking

To check the fit of the best models selected above to participants’ behavior, we performed
posterior predictive checking!®2° by generating posterior predictive samples and comparing
them to the actual participants’ behavior in the experiment (Supplementary Figs. S7 and S8).
As shown in the figures, the posterior predictive samples do not deviate significantly from the

actual data, thus providing support for the validity of our models.
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Figure S1. Gambling task and the model for risky decisions. (a) An example of stimuli in the
gambling task. The pie chart indicates the reward magnitude and probability of the risky
option. The yellow area shows the reward probability, which is 30% in this example. The left
and right positions of the options were randomized across trials. Participants chose the left
(right) option with the Q (P) key on a keyboard. (b) Model for risky decisions in the gambling
task and the solo block of the orientation-judgment task. The utility function is assumed to
be a power function (Eq. 1), and the probability of choosing the risky option is assumed to
follow a softmax (logistic) function (Eq. 2). (¢) Distribution of participants’ risk preferences.

Fifty-two participants (i.e., 83% of participants) were risk averse. Each dot indicates one

participant’s data.
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Figure S2. Distribution of individual accuracy as a function of the level of task difficulty. For
Levels 1-3, no participants’ accuracy was less than chance level, 0.5; however, for Level 4,
there were nine participants whose accuracy was less than 0.5, and three participants whose
accuracy was exactly 0.5. Each dot indicates one participant’s data, and the accuracy is

collapsed across the solo and opt-in/out blocks.
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Figure S3. Estimating competence and confidence. (a) Illustrations of the stochastic
updating model and confidence calibration. Participants updated the noisy estimate of the
orientation (Eq. 3). Since the updating process involves random noise, it takes different paths
probabilistically (i.e., the gray lines in the left panel). Because the random noise from the
normal distribution is repeatedly added in this updating process, the final outputs (u30: the green
or black dots) also follow the normal distribution (the center panel). We assumed that
participants could compute the probability of being correct (i.e., the objective accuracy, p)
according to the cumulative probability of the distribution (the green-filled area; see ref.? for
details). Participants were also assumed to perceive the objective accuracy with biases, which
were modeled using the probability weighting function, w(p) (Eq. 4). The index of each
participant’s confidence was computed by integrating the area surrounded by w(p) and the 45-
degree line (¢ = p, which indicates perfect calibration between the objective and subjective
accuracy; the right panel). The blue (orange) area shows whether the participant perceived their
own objective accuracy as lower (higher) than it actually was. The sum of these areas, ¢, was
used as the index of the participant’s overall confidence. In this example, ¢ = —0.037 indicates
that the participant was a little underconfident. (b) Accuracy as a function of block and

variance of orientations (M = SEM across participants). No significant difference was
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observed between the blocks, whereas the accuracy decreased as the variance increased. (c)
Positive correlation between y and accuracy. Clearly, y is a good indicator of participants’
competence. The accuracy is collapsed across blocks and levels of task difficulty. (d)

Participants’ confidence calibration. Each curve indicates each participant’s confidence

calibration curve. A line color closer to yellow indicates that the participant’s c is larger.
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Figure S4. Correlations among the estimates of cognitive parameters. The diagonal panels

show the distributions of the estimates, and the upper panels show the Pearson correlations. P

values are adjusted by the Holm—Bonferroni method.
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Figure S5. Individual coefficients for each variable in the logistic regression on the opt-in/out

choices. The points indicate the median of the posterior samples, and the error bars indicate the

95% credible intervals.
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Figure S6. Individual coefficients for the subjective accuracy in the ordered logistic regression
on confidence ratings. The points indicate the medians of the posterior samples, and the error

bars indicate the 95% credible intervals. For 62 of 63 participants, the subjective accuracy had

a positive effect on their confidence ratings.

16



Level 1 Level 2
Level 3 Level 4

20 30 40 20 30 40

0 10 20 30 40
Frequency of risky choices Frequency of correct judgments
c Level 1 Level 2 d Level 1 Level 2
Level 3 Level 4 Level 3 Level 4

_—/./\___/—\

"% rrquencyof isky choices . Froquency of choosing the optout
Figure S7. Posterior predictive checking. In each density plot, a bold line indicates the actual
data from the experiment, and the 20 gray lines indicate samples generated from the posterior
distributions. The “level” on the top of each panel indicates the level of task difficulty. (a)
Frequency of risky choices in the gambling task. The samples are generated from the power
utility function and softmax function (Egs. 1 and 2; Supplementary Fig. S1b). (b) Frequency
of correct judgments in the orientation-judgment task. The samples are generated from the
stochastic updating model (Eq. 3; the left panel in Supplementary Fig. S3a). (¢) Frequency of
risky choices in the solo block. The samples are generated from the probability weighting
function (Eq. 4) and the models on risky choices (Egs. 1 and 2). (d) Frequency of the opt-out

choice in the opt-in/out block. The samples are generated from the logistic regression (Eq. 6).
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Figure S8. Posterior predictive checking on the ordered logistic regression predicting
participants’ confidence ratings from the subjective accuracy. Each panel shows one
participant’s data. The pink triangles indicate the actual frequency of rating confidence as 1-6,
the gray circles indicate the medians of the posterior predictive samples, and the gray lines

indicate the 95% credible intervals.
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Table S1. Forty-seven risky options in the gambling task

Reward Reward Reward Reward Reward Reward Reward Reward
probability JPY) probability JPY) probability JPY) probability JPY)
3 970 4 830 5 730 1.0 300
3 1,040 4 870 5 760 1.0 700
3 1,120 4 920 5 800
3 1,220 4 990 5 840
3 1,340 4 1,060 5 880
3 1,490 4 1,150 5 940
3 1,670 4 1,250 5 1,000
3 1,890 4 1,380 5 1,080
3 2,180 4 1,530 5 1,170
3 2,540 4 1,720 5 1,270
3 3,010 4 1,960 5 1,410
3 3,640 4 2,260 5 1,570
3 4,480 4 2,650 5 1,770
3 5,650 4 3,160 5 2,020
3 7,290 4 3,840 5 2,340

Note. Trial order was randomized across participants. As in ref.?!, we did not use probabilities

less than .3 to reduce the confounding effects of a distorted subjective probability. The two

catch trials, in which the winning probability was 1.0, were excluded from the analysis.
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Table S2. LOOIC and WAIC for the models on participants’ risky choices in the gambling

task
Model LOOIC WAIC
Power utility (Eq. 1) 1,945.0 1,937.1
Mean-variance (Eq. S1) 2,305.7 2,275.3

Note. LOOIC = The information criterion by approximate leave-one-out cross-validation;

WAIC = the widely applicable information criterion.

Table S3. LOOIC and WAIC for the models on participants’ confidence calibration

Model LOOIC WAIC
Goldstein—Einhorn (Eq. 4) 5,376.4 5,375.8
Prelec two-parameter (Eq. S4) 5,394.2 5,393.6
Tversky—Kahneman (Eq. S5) 5,428.9 5,428.4
Wu-Gonzalez (Eq. S6) 5,448.6 5,448.2
Prelec one-parameter (Eq. S3) 5,874.3 5,873.8
Null (Eq. S2) 7,373.0 7,372.9

Note. LOOIC = The information criterion by approximate leave-one-out cross-validation;

WAIC = the widely applicable information criterion.

Table S4. LOOIC and WAIC for the models on participants’ confidence ratings in the solo
block

Model LOOIC WAIC
g (subjective accuracy) 18,553.6 18,552.9
p (objective accuracy) 18,662.3 18,661.7

Note. LOOIC = The information criterion by approximate leave-one-out cross-validation;

WAIC = the widely applicable information criterion.
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