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Supplementary Results 

Individual estimates of risk preference 

For each participant, we estimated risk preference, ρ, from the gambling task (see Methods and 

Supplementary Fig. S1b). If ρ is less (greater) than 1, the participant is risk averse (risk seeking). 

The average of participants’ ρ was 0.81 and significantly less than 1, indicating that participants 

were generally risk averse (Supplementary Fig. S1c; M = 0.81, SD = 0.22; one-sample t test: 

t(62) = −7.00, P < .001, Cohen’s d = −0.88, 95% confidence interval [CI] [−1.18, −0.59]). This 

risk-averse tendency is consistent with the results from a large-scale study on the methodology 

of risk elicitation1. 

No significant differences in accuracy in the orientation-judgment task 

between the blocks 

We checked whether there were differences in the accuracy of the perceptual judgments 

between the solo and opt-in/out blocks (Supplementary Fig. S3b). The accuracy was calculated 

for each block, each level of variance (Fig. 1c), and each participant. We analyzed these values 

using a two-way (2 Blocks × 4 Levels of Variance) repeated-measures analysis of variance 

(ANOVA) as in ref.2. The ANOVA (with Greenhouse–Geisser correction) showed that the main 

effect of block was not significant, F(1.00, 62.00) = 0.67, P = .417, 𝜂p2 = 1.97e−03, 95% CI [0.00, 

0.02]; the interaction effect was also not significant, F(2.50, 155.03) = 0.52, P = .636,	 𝜂p2 = 

1.47e−03, 95% CI [0.00, 0.01]. The main effect of the variance level was significant, F(2.52, 

156.04) = 424.63, P < .001, 𝜂p2 = 0.29, 95% CI [0.23, 0.35], indicating that the larger the variance, 

the more difficult the task (see also Supplementary Fig. S2). Since there were no significant 

differences between the blocks, we decided to use data from both blocks in fitting the stochastic 

updating model2 (Eq. 3) to participants’ perceptual judgments. 
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Participants’ confidence in the orientation-judgment task 

Supplementary Fig. S3d shows that most participants were underconfident, which is in line 

with previous studies on confidence using incentivized tasks3–5. Furthermore, as shown in 

Supplementary Table S4, our q modeled by Eq. 4 (i.e., subjective accuracy)6 predicts 

participants’ confidence ratings better than p (i.e., the objective accuracy), which was 

calculated from individual estimates of ε and λ. For 62 of 63 participants, q had a positive effect 

on their confidence ratings (Supplementary Fig. S6). These results provide additional support 

for our modeling of participants’ subjective accuracy and confidence calibration. 

No significant correlations among the estimates of cognitive parameters 

Supplementary Fig. S4 shows the 10 Pearson correlations among participants’ estimates of the 

cognitive parameters: ρ (risk preference; Eq. 1), λ (weighting of the past estimate relative to 

the current input; Eq. 3), γ (= minus ε, i.e., competence; Eq. 3), α (elevation of the probability 

weighting function; Eq. 4), and β (distortion of the probability weighting function; Eq. 4). After 

Holm–Bonferroni correction, we found no significant correlations among these estimates. 

Effects of λ and the task parameters on participants’ opt-in/out choices 

In the logistic regression predicting participants’ opt-in/out choices (Eq. 6), we entered the 

predictors: participants’ ρ, γ, c, and λ, the reward for the opt-out choice, and the variance of 

orientations. For the coefficients for ρ, γ, and c, see Results and Fig. 2b in the main text. 

The parameter λ, which is not a parameter of interest, had a positive effect on participants’ 

opt-in/out choices on average, but the 95% credible interval contained zero (β = 0.198, 95% 

credible interval [−0.291, 0.694]). Supplementary Fig. S5 shows each participant’s posterior 

distribution of the intercepts and the coefficients for the reward and variance. As seen in Fig. 

2a, for most participants, the reward for opting out had a positive effect, and the variance (i.e., 
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task difficulty) had a negative effect on their opt-in/out choices. 

Supplementary Methods 

Payment procedure if the opt-in/out block was chosen 

At the end of the experiment, participants received a 300-JPY show-up fee with an additional 

amount based on three randomly selected trials from a randomly selected task. To implement 

the majority decision making in the opt-in/out block (Fig. 1d) and pay participants immediately 

after the experiment, we had conducted a separate experiment in which a different sample of 

24 university students also chose to opt in or opt out. If the opt-in/out block was chosen, the 

participant was grouped with these previous 24 participants. The data from the separate 

experiment were used only for the payment and were not included in the analysis. 

Hierarchical Bayesian methods 

We used Markov chain Monte Carlo (MCMC) and hierarchical Bayesian methods in the 

analysis. These methods allowed us to evaluate individual differences while they are bounded 

by hyper- (i.e., group-level) parameters. For each estimation, we obtained 8,000 posterior 

samples per parameter (= 2,000 iterations × 4 chains) and checked the convergence of the 

MCMC simulations (𝑅$s < 1.1; Monte Carlo SEs < 0.1; effective sample sizes > 0.1). Stan7 

2.28.0 in R8 4.1.0 was used for the analysis. 

Cognitive models 

Risky decision making (mean-variance utility function) 

To model participants’ choices in the gambling task, we used the power utility function (Eq. 1) 

and mean-variance utility function and then compared the performances of the models (see 

“Model comparisons using LOOIC and WAIC” and Supplementary Table S2 below). In the 
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mean-variance utility function, the utility of option x, u(x), follows 

𝑢(𝑥) = 𝐸(𝑥) + ρ𝑉(𝑥), (S1) 

where E(x) (= rpreward) is the expected value, and V(x) [= r2preward(1 − preward)] is the risk of the 

option; r is the reward magnitude, and preward is the reward probability (Eq. 1). The participant’s 

risk preference, ρ, is negative if risk averse and positive if risk seeking. 

Confidence calibration 

As mentioned in the Methods, we modeled participants’ confidence calibration and compared 

the performance of six probability weighting functions [hereafter w(p)], which have been 

widely used in experimental, behavioral, and neuro economics9–12. For the model comparison, 

see “Model comparisons using LOOIC and WAIC” and Supplementary Table S3 below. 

We first fitted the null model, in which the objective and subjective accuracy were perfectly 

calibrated: 

𝑤(𝑝) = 𝑝. (S2) 

The second candidate was ref.13’s 1-parameter function: 

𝑤(𝑝) = exp	(−(− ln(𝑝))!). (S3) 

The third candidate was ref.13’s two-parameter function: 

𝑤(𝑝) = exp(−β(− ln(𝑝))!). (S4) 

The fourth candidate was ref.14’s function: 

𝑤(𝑝) =
𝑝!

(𝑝! + (1 − 𝑝)!)
"
!
. (S5) 
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The fifth candidate was ref.9’s function: 

𝑤(𝑝) =
𝑝!

(𝑝! + (1 − 𝑝)!)#
. (S6) 

The sixth candidate was ref.6’s function (Eq. 4). This candidate outperformed the other 

functions in terms of prediction (Supplementary Table S3). 

Ordered logistic regression on confidence ratings 

To confirm whether participants’ subjective accuracy (q in Eq. 4) explains the confidence 

ratings in the solo block better than the objective accuracy (p calculated from individual 

estimates of ε and λ), we further performed an ordered logistic regression, which predicts 

participant i’s probability of rating confidence as k at trial t: 

𝑃(𝑘)$,& = B
1 − logit'"Gη$,& − 𝑐",$J , if	𝑘 = 1,
logit'"Gη$,& − 𝑐('",$J − logit'"Gη$,& − 𝑐(,$J , if	1 < 𝑘 < 6, and
logit'"Gη$,& − 𝑐),$J , if	𝑘 = 6,

(S7) 

where c1–5 are the cut points and η is a predictor given by 

η$,& = β*,$𝑍*,$,& , (S8) 

where x is q or p, Z is the normalized x for each participant, and βx is the coefficient. 

Settings of the prior distributions 

For each parameter estimation, we set the priors as follows. In the priors, i indicates a 

participant; μ(.) and σ(.) are the hyper parameters, which control individual differences. 

Risky decisions in the gambling task 

To stabilize the parameter estimation, we rescaled the magnitude of the reward (JPY) by 
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dividing it by 1,000. 

Power utility function (Eqs. 1 and 2) 

µ+~Cauchy(0, 5);	σ+~StudentT(4, 0, 1);	ρ$~NormalGµ+, σ+J;	

µ,~Cauchy(0, 5);	σ,~StudentT(4, 0, 1);	τ$~Normal(µ,, σ,). 

Mean-variance utility function (Eq. 2 and Supplementary Eq. S1) 

µ+~Cauchy(0, 5);	σ+~StudentT(4, 0, 1);	ρ$~NormalGµ+, σ+J;	

µ,~Cauchy(0, 5);	σ,~StudentT(4, 0, 1);	τ$~Normal(µ,, σ,). 

Stochastic updating model (Eq. 3) 

µ-~Cauchy(0, 5);	σ-~StudentT(4, 0, 1);	ε$~Normal(µ-, σ-);	

µ.~Cauchy(0, 5);	σ.~StudentT(4, 0, 1);	λ$~Normal(µ., σ.). 

Confidence calibration 

To stabilize the parameter estimation, we rescaled the magnitude of the reward (JPY) by 

dividing it by 1,000. 

Null model (Eq. 2 and Supplementary Eq. S2) 

µ,~Cauchy(0, 5);	σ,~StudentT(4, 0, 1);	λ$~Normal(µ,, σ,). 

Prelec one-parameter function (Eq. 2 and Supplementary Eq. S3) 

µ!~Cauchy(0, 5);	σ!~StudentT(4, 0, 1);	α$~Normal(µ!, σ!);	

µ,~Cauchy(0, 5);	σ,~StudentT(4, 0, 1);	λ$~Normal(µ,, σ,). 

Prelec two-parameter function (Eq. 2 and Supplementary Eq. S4) 
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µ!~Cauchy(0, 5);	σ!~StudentT(4, 0, 1);	α$~Normal(µ!, σ!);	

µ#~Cauchy(0, 5);	σ#~StudentT(4, 0, 1);	β$~NormalGµ#, σ#J;	

µ,~Cauchy(0, 5);	σ,~StudentT(4, 0, 1);	τ$~Normal(µ,, σ,). 

Tversky–Kahneman function (Eq. 2 and Supplementary Eq. S5) 

µ!~Cauchy(0, 5);	σ!~StudentT(4, 0, 1);	α$~LogNormal(µ!, σ!);	

µ,~Cauchy(0, 5);	σ,~StudentT(4, 0, 1);	τ$~Normal(µ,, σ,). 

Wu–Gonzalez function (Eq. 2 and Supplementary Eq. S6) 

µ!~Cauchy(0, 1);	σ!~StudentT(10, 0, 1);	α$~Normal(µ!, σ!);	

µ#~Cauchy(0, 1);	σ#~StudentT(10, 0, 1);	β$~NormalGµ#, σ#J;	

µ,~Cauchy(0, 5);	σ,~StudentT(4, 0, 1);	τ$~Normal(µ,, σ,). 

Goldstein–Einhorn function (Eqs. 2 and 4) 

µ!~Cauchy(0, 1);	σ!~StudentT(10, 0, 1);	α$~Normal(µ!, σ!);	

µ#~Cauchy(0, 1);	σ#~StudentT(10, 0, 1);	β$~NormalGµ#, σ#J;	

µ,~Cauchy(0, 5);	σ,~StudentT(4, 0, 1);	τ$~Normal(µ,, σ,). 

Statistical analyses 

Logistic regression (Eq. 6) 

µ#!~Cauchy(0, 5);	σ#!~StudentT(4, 0, 1);	β",$~NormalGµ#! , σ#!J;	

µ#"~Cauchy(0, 5);	σ#"~StudentT(4, 0, 1);	β/,$~NormalGµ#" , σ#"J;	

µ##~Cauchy(0, 5);	σ##~StudentT(4, 0, 1);	β0,$~NormalGµ## , σ##J;	

β+~Cauchy(0, 5);	β1~Cauchy(0, 5);	β2~Cauchy(0, 5);	β.~Cauchy(0, 5). 
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Ordered logistic regression (Supplementary Eqs. S7 and S8) 

µ2!–%~Cauchy(0, 5);	σ2!–%~StudentT(4, 0, 1);	𝑐"–),$~NormalGµ2!–% , σ2!–%J;	

µ#&~Cauchy(0, 5);	σ#&~StudentT(4, 0, 1);	β*,$~NormalGµ#& , σ#&J. 

Model comparisons using LOOIC and WAIC 

To compare the prediction performances of the models, we computed (i) the information 

criterion by approximate leave-one-out cross-validation (LOOIC)15 and (ii) the widely 

applicable information criterion (WAIC)16. In both indices, a lower value indicates a better 

model performance in terms of prediction. The “loo” package17 2.4.1 in R8 was used to 

calculate these indices. 

Supplementary Table S2 shows that for the risky choices in the gambling task, the power 

utility function (Eq. 1) was better than the mean-variance utility function (Supplementary Eq. 

S1). Supplementary Table S3 shows that participants’ confidence calibration was predicted best 

by ref.6’s function (Eq. 4). Supplementary Table S4 shows that the subjective accuracy (q in 

Eq. 4) predicts participants’ confidence ratings better than the objective accuracy (p estimated 

from individual estimates of ε and λ). The statistical results remained unchanged between the 

LOOIC and the WAIC. 

Posterior predictive checking 

To check the fit of the best models selected above to participants’ behavior, we performed 

posterior predictive checking18–20 by generating posterior predictive samples and comparing 

them to the actual participants’ behavior in the experiment (Supplementary Figs. S7 and S8). 

As shown in the figures, the posterior predictive samples do not deviate significantly from the 

actual data, thus providing support for the validity of our models.  
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Figure S1. Gambling task and the model for risky decisions. (a) An example of stimuli in the 

gambling task. The pie chart indicates the reward magnitude and probability of the risky 

option. The yellow area shows the reward probability, which is 30% in this example. The left 

and right positions of the options were randomized across trials. Participants chose the left 

(right) option with the Q (P) key on a keyboard. (b) Model for risky decisions in the gambling 

task and the solo block of the orientation-judgment task. The utility function is assumed to 

be a power function (Eq. 1), and the probability of choosing the risky option is assumed to 

follow a softmax (logistic) function (Eq. 2). (c) Distribution of participants’ risk preferences. 

Fifty-two participants (i.e., 83% of participants) were risk averse. Each dot indicates one 

participant’s data. 
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Figure S2. Distribution of individual accuracy as a function of the level of task difficulty. For 

Levels 1–3, no participants’ accuracy was less than chance level, 0.5; however, for Level 4, 

there were nine participants whose accuracy was less than 0.5, and three participants whose 

accuracy was exactly 0.5. Each dot indicates one participant’s data, and the accuracy is 

collapsed across the solo and opt-in/out blocks. 
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Figure S3. Estimating competence and confidence. (a) Illustrations of the stochastic 

updating model and confidence calibration. Participants updated the noisy estimate of the 

orientation (Eq. 3). Since the updating process involves random noise, it takes different paths 

probabilistically (i.e., the gray lines in the left panel). Because the random noise from the 

normal distribution is repeatedly added in this updating process, the final outputs (μ30: the green 

or black dots) also follow the normal distribution (the center panel). We assumed that 

participants could compute the probability of being correct (i.e., the objective accuracy, p) 

according to the cumulative probability of the distribution (the green-filled area; see ref.2 for 

details). Participants were also assumed to perceive the objective accuracy with biases, which 

were modeled using the probability weighting function, w(p) (Eq. 4). The index of each 

participant’s confidence was computed by integrating the area surrounded by w(p) and the 45-

degree line (q = p, which indicates perfect calibration between the objective and subjective 

accuracy; the right panel). The blue (orange) area shows whether the participant perceived their 

own objective accuracy as lower (higher) than it actually was. The sum of these areas, c, was 

used as the index of the participant’s overall confidence. In this example, c = −0.037 indicates 

that the participant was a little underconfident. (b) Accuracy as a function of block and 

variance of orientations (M ± SEM across participants). No significant difference was 
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observed between the blocks, whereas the accuracy decreased as the variance increased. (c) 

Positive correlation between γ and accuracy. Clearly, γ is a good indicator of participants’ 

competence. The accuracy is collapsed across blocks and levels of task difficulty. (d) 

Participants’ confidence calibration. Each curve indicates each participant’s confidence 

calibration curve. A line color closer to yellow indicates that the participant’s c is larger. 
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Figure S4. Correlations among the estimates of cognitive parameters. The diagonal panels 

show the distributions of the estimates, and the upper panels show the Pearson correlations. P 

values are adjusted by the Holm–Bonferroni method. 
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Figure S5. Individual coefficients for each variable in the logistic regression on the opt-in/out 

choices. The points indicate the median of the posterior samples, and the error bars indicate the 

95% credible intervals. 
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Figure S6. Individual coefficients for the subjective accuracy in the ordered logistic regression 

on confidence ratings. The points indicate the medians of the posterior samples, and the error 

bars indicate the 95% credible intervals. For 62 of 63 participants, the subjective accuracy had 

a positive effect on their confidence ratings. 
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Figure S7. Posterior predictive checking. In each density plot, a bold line indicates the actual 

data from the experiment, and the 20 gray lines indicate samples generated from the posterior 

distributions. The “level” on the top of each panel indicates the level of task difficulty. (a) 

Frequency of risky choices in the gambling task. The samples are generated from the power 

utility function and softmax function (Eqs. 1 and 2; Supplementary Fig. S1b). (b) Frequency 

of correct judgments in the orientation-judgment task. The samples are generated from the 

stochastic updating model (Eq. 3; the left panel in Supplementary Fig. S3a). (c) Frequency of 

risky choices in the solo block. The samples are generated from the probability weighting 

function (Eq. 4) and the models on risky choices (Eqs. 1 and 2). (d) Frequency of the opt-out 

choice in the opt-in/out block. The samples are generated from the logistic regression (Eq. 6). 
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Figure S8. Posterior predictive checking on the ordered logistic regression predicting 

participants’ confidence ratings from the subjective accuracy. Each panel shows one 

participant’s data. The pink triangles indicate the actual frequency of rating confidence as 1–6, 

the gray circles indicate the medians of the posterior predictive samples, and the gray lines 

indicate the 95% credible intervals. 
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Table S1. Forty-seven risky options in the gambling task 

Reward 
probability 

Reward 
(JPY) 

Reward 
probability 

Reward 
(JPY) 

Reward 
probability 

Reward 
(JPY) 

Reward 
probability 

Reward 
(JPY) 

.3 970 .4 830 .5 730 1.0 300 

.3 1,040 .4 870 .5 760 1.0 700 

.3 1,120 .4 920 .5 800   

.3 1,220 .4 990 .5 840   

.3 1,340 .4 1,060 .5 880   

.3 1,490 .4 1,150 .5 940   

.3 1,670 .4 1,250 .5 1,000   

.3 1,890 .4 1,380 .5 1,080   

.3 2,180 .4 1,530 .5 1,170   

.3 2,540 .4 1,720 .5 1,270   

.3 3,010 .4 1,960 .5 1,410   

.3 3,640 .4 2,260 .5 1,570   

.3 4,480 .4 2,650 .5 1,770   

.3 5,650 .4 3,160 .5 2,020   

.3 7,290 .4 3,840 .5 2,340   

Note. Trial order was randomized across participants. As in ref.21, we did not use probabilities 

less than .3 to reduce the confounding effects of a distorted subjective probability. The two 

catch trials, in which the winning probability was 1.0, were excluded from the analysis.  
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Table S2. LOOIC and WAIC for the models on participants’ risky choices in the gambling 

task 

Model LOOIC WAIC 

Power utility (Eq. 1) 1,945.0 1,937.1 

Mean-variance (Eq. S1) 2,305.7 2,275.3 
Note. LOOIC = The information criterion by approximate leave-one-out cross-validation; 

WAIC = the widely applicable information criterion. 

 

 

Table S3. LOOIC and WAIC for the models on participants’ confidence calibration 

Model LOOIC WAIC 

Goldstein–Einhorn (Eq. 4) 5,376.4 5,375.8 

Prelec two-parameter (Eq. S4) 5,394.2 5,393.6 

Tversky–Kahneman (Eq. S5) 5,428.9 5,428.4 

Wu–Gonzalez (Eq. S6) 5,448.6 5,448.2 

Prelec one-parameter (Eq. S3) 5,874.3 5,873.8 

Null (Eq. S2) 7,373.0 7,372.9 
Note. LOOIC = The information criterion by approximate leave-one-out cross-validation; 

WAIC = the widely applicable information criterion. 

 

 

Table S4. LOOIC and WAIC for the models on participants’ confidence ratings in the solo 

block 

Model LOOIC WAIC 

q (subjective accuracy) 18,553.6 18,552.9 

p (objective accuracy) 18,662.3 18,661.7 
Note. LOOIC = The information criterion by approximate leave-one-out cross-validation; 

WAIC = the widely applicable information criterion.  
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