Unified Metal-Free Regioselective Heck-Type Sulfonylation,

Cyanation, Amination, Amidation of Alkenes by

Thianthrenation

Ming-Shang Liu[†], Huan Meng[†], and Wei Shu^{†,††,*}

†Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China.

*E-mail: shuw@sustech.edu.cn

Table of Contents

I. General Information	S2
II. Optimization of Reaction Conditions	S3
III. Substrate Synthesis and Characterization	S6
IV. General Procedure for the Alkene	S12
V. Gram Scale Synthesis	S14
VI. Characterization of Cross-Coupling Products	S15
VII. Mechanistic Study	S46
One-Pot Experiments	S46
Probe of Radical Experiments	S47
Assignment of Reaction Intermediate	S48
VIII. Crystallographic Data	S50
IX. References	S53
X. Copies of ¹ H, ¹³ C and ¹⁹ F NMR Spectra	S55

^{††}State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071 Tianjin, P. R. China

I. General Information

General remarks: Unless otherwise noted, all reactions of substrates preparation were conducted in flame-dried glassware under a nitrogen atmosphere using anhydrous solvent were re-distilled according to Purification of Laboratory Chemicals (Fifth Edition). Commercially available reagents were used without further purification. Thin layer chromatography (TLC) was performed using Jiangyou TLC silica gel plates HSG F254 and visualized using UV light, anisaldehyde or potassium permanganate. Flash column chromatography was performed over silica gel (300-400 mesh). ¹H and ¹³C NMR spectra were recorded in CDCl₃, unless otherwise noted, on a Bruker AVANCE 600 MHz or a Bruker AVANCE 400 MHz spectrometer. Chemical shifts in ¹H NMR spectra were reported in parts per million (ppm) on the δ scale from an internal standard of residual chloroform (7.26 ppm). Data for ¹H NMR were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant in Herts (Hz) and integration. Data for ¹³C NMR spectra were reported in terms of chemical shift in ppm from the central peak of CDCl₃ (77.16 ppm). MS experiments were performed on a Thermo Scientific Q Exactive.

Materials and methods: Unless otherwise noted, commercial reagents were purchased from Energy Chemical Limited, J&K, Adamas-beta®, TCI, Aladdin, MERYER, Macklin Reagent, Alfa Aesar, Bidepharm and used directly without further purification. DCE and CH₃CN were distilled over CaH₂ and stored under nitrogen atmosphere. Thianthrene was purchased from MERYER.

II. Optimization of Reaction Conditions

Table S1. Evaluation of solvent for sulfonylation

MeSO₂Na +
$$\overline{B}F_4$$
 S solvent (0.1M) Ph $\overline{SO_2}Me$ 1a 2a $\overline{SO_2}Me$

entry	solvent	conversion of 2a	yield of 3a ^a
1	DCE (0.1 M)	>95%	88% (83%)
2	DMF (0.1 M)	>95%	62%
3	DMA (0.1 M)	>95%	52%
4	THF (0.1 M)	>95%	75%
5	CH ₃ CN (0.1 M)	90%	56%
6	DCM (0.1 M)	>95%	78%
7	DMSO (0.1 M)	>95%	65%
8	DME (0.1 M)	>95%	77%
9	toluene (0.1 M)	>95%	76%

^a The reaction was conducted using sodium methanesulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv), (*E*)-5-(4-phenylbut-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (43.4 mg, 0.10 mmol, 1.0 equiv) for 10 h. The reaction was run in 1.0 mL solvent at room temperature. Yield was determined by ¹H NMR of the crude mixture using mesitylene (12.0 mg, 0.10 mmol, 1.0 equiv) as internal standard. Isolated yield after flash chromatography is shown in the parentheses. N.D. = not detected.

Table S2. Evaluation of additives for cyanation

3	KI (1.0 equiv)	13%	N.D.
4	KBr (1.0 equiv)	48%	7%
5	KCl (1.0 equiv)	34%	10%
6	NaF (1.0 equiv)	13%	N.D.
7	KF (1.0 equiv)	50%	35%
8	CsF (1.0 equiv)	64%	27%
9	KF (2.0 equiv)	88%	50%
10	KF (3.0 equiv)	>95%	77% (70%)
11	KF (4.0 equiv)	>95%	73%

^a The reaction was conducted using zinc cyanide **1u** (17.6 mg, 0.15 mmol, 1.5 equiv), (*E*)-5-(4-phenylbut-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (43.4 mg, 0.10 mmol, 1.0 equiv) and additives for 10 h. The reaction was run in 1.0 mL CH₃CN at room temperature. Yield was determined by ¹H NMR of the crude mixture using mesitylene (12.0 mg, 0.10 mmol, 1.0 equiv) as internal standard. Isolated yield after flash chromatography is shown in the parentheses. N.D. = not detected.

Table S3. Evaluation of solvent for cyanation

	Zn(CN) ₂	Ph BF ₄ S	KF (3.0 equiv) solvent (0.1 M) r.t., 10 h	Ph CN
entry		solvent	Conversion of 2a	yield of
1		CH ₃ CN	>95%	77% (70

entry	solvent	Conversion of 2a	yield of 5a ^a
1	CH ₃ CN	>95%	77% (70%)
2	DCM	>95%	8%
3	DCE	>95%	7%
4	THF	>95%	trace
5	DMF	>95%	31%
6	DMSO	>95%	15%
7	toluene	75%	11%

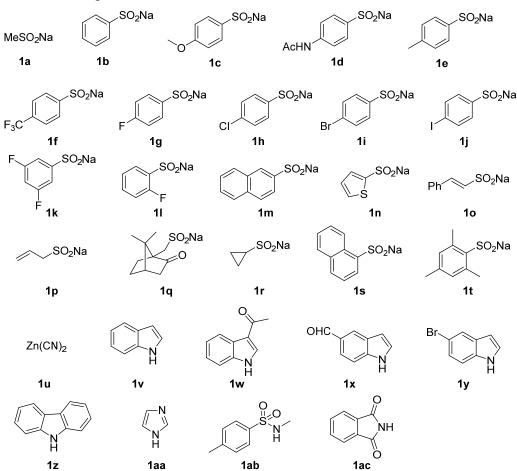
^a The reaction was conducted using zinc cyanide **1u** (17.6 mg, 0.15 mmol, 1.5 equiv), (*E*)-5-(4-phenylbut-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (43.4 mg, 0.10 mmol, 1.0 equiv) and KF (17.4 mg, 0.3 mmol, 3.0 equiv) for 10 h. The reaction was run in 1.0 mL solvent at room temperature. Yield was determined by ¹H NMR of the crude mixture using mesitylene (12.0 mg, 0.10 mmol, 1.0 equiv) as internal

standard. Isolated yield after flash chromatography is shown in the parentheses. N.D. = not detected.

Table S4. Evaluation of base for amination

entry	base	Conversion of 2q	yield of 6a ^a
1	K ₂ CO ₃ (1.0 equiv)	>95%	84% (82%)
2	Cs ₂ CO ₃ (1.0 equiv)	>95%	69%
3	Na ₂ CO ₃ (1.0 equiv)	25%	N.D.
4	K ₃ PO ₄ (1.0 equiv)	>95%	59%
5	KOH (1.0 equiv)	>95%	62%

^a The reaction was conducted using indole **1v** (17.6 mg, 0.15 mmol, 1.5 equiv), (E)-5-(4-fluorostyryl)-5*H*-thianthren-5-ium tetrafluoroborate **2q** (42.4 mg, 0.10 mmol, 1.0 equiv) and base (0.1 mmol, 1.0 equiv) for 10 h. The reaction was run in 1.0 mL CH₃CN at room temperature. Yield was determined by ¹H NMR of the crude mixture using mesitylene (12.0 mg, 0.10 mmol, 1.0 equiv) as internal standard. Isolated yield after flash chromatography is shown in the parentheses. N.D. = not detected.


Table S5. Evaluation of solvent for amination

entry	solvent	Conversion of 2q	yield of 6a ^a
1	CH ₃ CN (0.1 M)	>95%	84% (82%)
2	DCM (0.1 M)	79%	32%
3	DCE (0.1 M)	86%	40%
4	THF (0.1 M)	>95%	61%
5	DMF (0.1 M)	>95%	36%
6	toluene (0.1 M)	58%	18%

^a The reaction was conducted using indole **1v** (17.6 mg, 0.15 mmol, 1.5 equiv), (E)-5-(4-fluorostyryl)-5*H*-thianthren-5-ium tetrafluoroborate **2q** (42.4 mg, 0.10 mmol, 1.0 equiv) and K₂CO₃ (13.8 mg, 0.1 mmol, 1.0 equiv) for 10 h. The reaction was run in 1.0 mL solvent at room temperature. Yield was determined by ¹H NMR of the crude mixture using mesitylene (12.0 mg, 0.10 mmol, 1.0 equiv) as internal standard. Isolated yield after flash chromatography is shown in the parentheses. N.D. = not detected.

III. Substrate Synthesis and Characterization

Table S6. Nucleophiles used for the reaction.

1a, 1b, 1e, 1g, 1h, 1u, 1v, 1w, 1x, 1y, 1z, 1aa, 1ab, 1ac were purchased from Alfa Aesar, Energy Chemical, Bidepharm, Adamas, Aladdin and TCI.

1c, 1d, 1f, 1i, 1j, 1k, 1l, 1m, 1n, 1o, 1p, 1q, 1r, 1s and 1t were synthesized following reported method.¹⁻³

Sodium sulfite (1.25 g, 10.0 mmol, 2.0 equiv), sodium bicarbonate (0.84 g, 10.0 mmol, 2.0 equiv) and the corresponding aryl sulfonyl chloride (5.0 mmol, 1.0 equiv) were dissolved in distilled water (5.0 mL). The reaction mixture was stirred for 4 h at 80 °C. After cooling to rt, water was removed by lyophilization overnight. The white residue was extracted with ethanol (20.0 mL) to obtain the desired aryl sulfinate as white crystalline powder.

Sodium 4-acetamidobenzenesulfinate (1d, CAS: 15898-43-8)

4-Acetamidobenzenesulfonyl chloride was used for the reaction to afford 1d as white solid. ^{1}H NMR (400 MHz, D₂O) δ 7.63 – 7.57 (m, 2H), 7.53 – 7.47 (m, 2H), 2.13 (s, 3H). The characterization data are consistent with literature.²

Sodium 4-bromobenzenesulfinate (1i, CAS: 34176-08-4)

4-Bromobenzenesulfonyl chloride was used for the reaction to afford

1i as white solid. ¹H NMR (400 MHz, D₂O) δ 7.71 – 7.65 (m, 1H),

7.55 – 7.48 (m, 1H). The characterization data are consistent with literature. ¹

Sodium 4-iodobenzenesulfinate (1j, CAS: 61404-98-6)

4-Iodobenzenesulfonyl chloride was used for the reaction to afford 11 as white solid. ¹H NMR (400 MHz, D₂O) δ 7.90 (d, J = 8.3 Hz, 2H), 7.38 (d, J = 8.3 Hz, 2H). The characterization data are consistent with literature.²

Sodium naphthalene-2-sulfinate (1m, CAS: 63735-42-2)

Naphthalene-2-sulfonyl chloride was used for the reaction to afford **1m** as white solid. **¹H NMR** (600 MHz, D₂O) δ 8.05 (s, 1H), 7.97 (s, 2H), 7.91 (s, 2H), 7.69 (s, 1H), 7.55 (s, 2H). The characterization data are consistent with literature. ¹⁻³

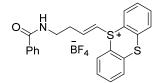
Sodium (E)-2-phenylethene-1-sulfinate (1r, CAS: 130665-83-7)

 $_{Ph}$ $_{SO_2Na}$ (*E*)-2-phenylethene-1-sulfonyl chloride was used for the reaction to afford **1r** as white solid. 1 **H NMR** (400 MHz, D₂O) δ 7.61 – 7.52 (m, 2H), 7.48 – 7.37 (m, 3H), 7.01 (d, J = 16.1 Hz, 1H), 6.86 (d, J = 16.1 Hz, 1H). The characterization data are consistent with literature.³

Sodium 2,4,6-trimethylbenzenesulfinate (1t, CAS: 50827-54-8)

 $_{SO_2Na}$ 2,4,6-Trimethylbenzenesulfonyl chloride was used for the reaction to afford 1r as white solid. 1H NMR (400 MHz, D₂O) δ 7.01 (s, 1H), 6.88 (s, 2H), 2.54 (s, 6H), 2.23 (s, 3H). The characterization data are consistent with literature. 3

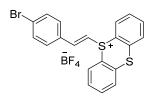
Table S7. Alkenyls thianthrenium salt used for the reaction.


Alkenyl thianthren-5-ium tetrafluoroborate were synthesized following reported procedure.⁴⁻⁸

(E)-5-(5-(1,3-Dioxoisoindolin-2-yl)pent-1-en-1-yl)-5H-thianthren-5-ium tetra-fluoroborate (2c, CAS: 2411696-52-9)

2-(Pent-4-en-1-yl)isoindoline-1,3-dione was used for the reaction to afford **2c** as white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 8.39 (dd, J = 7.8, 1.2 Hz, 2H), 7.81 (ddd, J = 11.6, 6.6, 2.2 Hz, 4H), 7.75 – 7.64 (m, 6H), 7.33 – 7.21

(m, 1H), 6.64 (d, J = 14.8 Hz, 1H), 3.60 (t, J = 6.8 Hz, 2H), 2.31 (q, J = 6.9 Hz, 2H), 1.80 (p, J = 7.0 Hz, 2H). The characterization data are consistent with literature.⁴


(E)-5-(4-Benzamidobut-1-en-1-yl)-5H-thianthren-5-ium tetrafluoroborate (2h, CAS: 2411696-66-5)

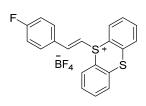
N-(but-3-en-1-yl)benzamide was used for the reaction to afford **2h** as white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 8.20 (dd, J = 7.9, 1.1 Hz, 2H), 7.77 - 7.70 (m, 4H), 7.65 (td, J = 7.7, 1.2 Hz, 2H), 7.57 (td, J = 7.7, 1.3 Hz, 2H), 7.47 - 7.39

(m, 2H), 7.33 (t, J = 7.5 Hz, 2H), 6.66 (d, J = 14.7 Hz, 1H), 3.62 (dt, J = 6.0, 5.7 Hz, 2H), 2.66 (dt, J = 6.0, 5.7 Hz, 2H). The characterization data are consistent with literature.⁴


(E)-5-(4-Bromostyryl)-5H-thianthren-5-ium tetrafluoroborate (20, CAS: 2829324-90-3)

4-Bromostyrene was used for the reaction to afford **20** as lightly yellow solid. ¹**H NMR** (400 MHz, CDCl₃) δ 8.40 (d, J = 7.7 Hz, 2H), 8.05 (d, J = 15.0 Hz, 1H), 7.85 (d, J = 7.8 Hz, 2H), 7.74 (t, J = 7.6 Hz, 2H), 7.67 (t, J = 7.6 Hz, 2H), 7.45 (d,

J = 7.2 Hz, 2H), 7.37 (d, J = 8.5 Hz, 2H), 7.12 (d, J = 15.0 Hz, 1H). The characterization data are consistent with literature.⁸


(E)-5-(4-Chlorostyryl)-5H-thianthren-5-ium tetrafluoroborate (2p, CAS: 2829324-86-7)

4-Chlorostyrene was used for the reaction to afford **2p** as lightly yellow solid. ¹**H NMR** (400 MHz, CDCl₃) δ 8.41 (d, J = 7.8 Hz, 2H), 8.08 (d, J = 15.1 Hz, 1H), 7.85 (dd, J = 7.8, 1.2 Hz, 2H), 7.74 (t, J = 7.2 Hz, 2H), 7.67 (t, J = 7.6 Hz, 2H), 7.45

(d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 7.10 (d, J = 15.1 Hz, 1H). The characterization data are consistent with literature.⁸

(E)-5-(4-Fluorostyryl)-5H-thianthren-5-ium tetrafluoroborate (2q, CAS: 2829324-84-5)

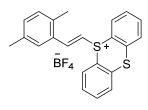
4-Fluorostyrene was used for the reaction to afford **2q** as lightly yellow solid. ¹**H NMR** (400 MHz, CDCl₃) δ 8.47 – 8.39 (m, 2H), 8.16 (d, J = 15.1 Hz, 1H), 7.85 (dd, J = 7.8, 1.3 Hz, 2H), 7.74 (td, J = 7.8, 1.3 Hz, 2H), 7.68 (td, J = 7.8, 1.3 Hz, 2H),

7.58 - 7.51 (m, 2H), 7.10 - 6.99 (m, 3H). The characterization data are consistent with literature.⁸

(E)-5-(4-Acetoxystyryl)-5H-thianthren-5-ium tetrafluoroborate (2r)

4-Acetoxystyrene was used for the reaction to afford **2r** as lightly yellow solid (0.81 g, 58% yield, 3.0 mmol scale).

¹**H NMR** (400 MHz, CDCl₃) δ 8.42 (d, J = 7.0 Hz, 2H), 8.11 (d, J = 15.1 Hz, 1H), 7.84 (dd, J = 7.8, 1.3 Hz, 2H),


7.73 (td, J = 7.7, 1.2 Hz, 2H), 7.67 (td, J = 7.7, 1.2 Hz, 2H), 7.52 (d, J = 7.8 Hz, 2H), 7.12 – 7.02 (m, 3H), 2.27 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 168.9, 153.7, 150.8, 135.8, 134.5, 134.0, 130.6, 130.5, 130.2, 129.8, 122.6, 120.9, 106.2, 21.2;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -150.05, -150.10;

HRMS-ESI (m/z) $[M-BF_4]^+$ calc'd for $C_{22}H_{17}O_2S_2^+$, 377.0664, found 377.0663.

(E)-5-(2,5-Dimethylstyryl)-5H-thianthren-5-ium tetrafluoroborate (2s)

2,5-Dimethylstyrene was used for the reaction to afford **2s** as lightly yellow solid (0.60 g, 46% yield, 3.0 mmol scale). ¹**H NMR** (400 MHz, CDCl₃) δ 8.48 (d, J = 7.8 Hz, 2H), 8.33 (dd, J = 15.0, 3.0 Hz, 1H), 7.84 (d, J = 7.1 Hz, 2H), 7.73 (t, J = 7.1

Hz, 2H), 7.68 (t, J = 7.6 Hz, 2H), 7.16 (s, 1H), 7.13 - 7.00 (m, 3H), 2.40 (s, 3H), 2.24 (s, 3H);

¹³C **NMR** (101 MHz, CDCl₃) δ 149.7, 136.7, 136.1, 135.7, 134.4, 134.2, 133.2, 131.4, 130.9, 130.5, 130.1, 128.9, 127.8, 127.2, 121.3, 106.3, 20.9, 19.3;

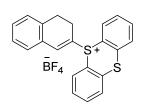
¹⁹**F NMR** (376 MHz, CDCl₃) δ -150.23, -150.29;

HRMS-ESI (m/z) [M-BF₄]⁺ calc'd for C₂₂H₁₉S₂⁺, 347.0923, found 347.0920.

5-((E)-4-(((4R)-4-((3R,8R,9S,10S,13R,14S,17R)-3-Acetoxy-10,13-dimethylhexa-de cahydro-1<math>H-cyclopenta[a]phenanthren-17-yl)pentanoyl)oxy)but-1-en-1-yl)-5H-th ianthren-5-ium tetrafluoroborate (2y, CAS: 2700216-11-9)

But-3-en-1-yl (4R)-4-((3R,8R,9S,10S,13R,14S,17R)-3-acetoxy-10,13-di-met hylhexadecahydro-1*H*-cyclo-penta[*a*]p henanthren-17-yl)penta-noate was

used for the reaction to afford **2y** as white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 8.41 (d, J = 7.6 Hz, 2H), 7.83 (dd, J = 7.7, 1.4 Hz, 2H), 7.76 – 7.65 (m, 4H), 7.24 – 7.17


(m, 1H), 6.65 (d, J = 14.8 Hz, 1H), 4.72 (dt, J = 11.2, 6.5 Hz, 2H), 4.12 (t, J = 6.3 Hz, 2H), 2.60 (q, J = 6.0 Hz, 2H), 2.25 - 2.18 (m, 1H), 2.14 - 2.06 (m, 2H), 2.03 (s, 3H), 1.98 - 1.91 (m, 2H), 1.87 - 1.75 (m, 4H), 1.71 - 1.63 (m, 2H), 1.55 - 1.50 (m, 1H), 1.47 - 1.33 (m, 6H), 1.27 - 1.15 (m, 4H), 1.10 - 0.99 (m, 5H), 0.93 (s, 3H), 0.85 (d, J) = 6.5 Hz, 3H), 0.63 (s, 3H). The characterization data are consistent with literature.⁴

(Z)-5-(Oct-4-en-4-vl)-5H-thianthren-5-ium tetrafluoroborate (2z,CAS: 2813345-90-1)

(E)-oct-4-ene was used for the reaction to afford 2z as white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 7.2 Hz, 2H), 7.77 - 7.63(m, 6H), 6.34 (t, J = 7.6 Hz, 1H), 2.68 (q, J = 7.4 Hz, 2H), 2.14 (t, J= 7.4 Hz, 2H, 1.49 (h, J = 7.4 Hz, 2H), 1.35 (h, J = 7.4 Hz, 2H),

0.99 (t, J = 7.4 Hz, 3H), 0.75 (t, J = 7.4 Hz, 3H). The characterization data are consistent with literature.4

5-(3,4-Dihydronaphthalen-2-yl)-5H-thianthren-5-ium tetrafluoroborate (2aa)

1,2-Dihydronaphthalene was used for the reaction to afford 2z as white solid (0.90 g, 69% yield, 3.0 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 7.7 Hz, 2H), 7.80 (q, J = 7.8, 7.1 Hz, 4H), 7.75 (t, J = 7.3 Hz, 2H), 7.23 (d, J = 7.5 Hz, 1H), 7.15 (t, J

= 7.5 Hz, 1H, 7.07 (d, J = 7.4 Hz, 1H), 7.02 (d, J = 7.5 Hz, 1H), 6.58 (s, 1H), 2.91 (t, 1.5)J = 8.1 Hz, 2H), 2.35 (t, J = 8.1 Hz, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 137.7, 136.4, 135.7, 134.9, 134.8, 131.2, 130.7, 130.4, 129.9, 128.9, 128.0, 127.4, 121.5, 117.3, 27.8, 24.1;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -150.92, -150.97;

HRMS-ESI (m/z) [M-BF₄]⁺ calc'd for C₂₂H₁₇S₂⁺, 345.0766, found 345.0765.

IV. General Procedure for the Alkene

Standard Procedure A:

Sodium sulfinate (1.5 equiv) and vinyl thianthrenium salt (1.0 equiv) were placed in a 10.0 mL Schlenk tube which equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), DCE (0.1 M) was added. The vial was sealed and at room temperature with stirring until TLC indicated the complete consumption of thianthrene (typically 10 h). The reaction mixture was evaporated and purified directly by column chromatography to afford the product.

Standard Procedure B:

Sodium sulfinate (1.5 equiv) and vinyl thianthrenium salt (1.0 equiv) were placed in a 10.0 mL Schlenk tube which equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), DCE (0.1 M) was added. The vial was sealed and at 50 °C with stirring until TLC indicated the complete consumption of thianthrene (typically 10 h). The reaction mixture was evaporated and purified directly by column chromatography to afford the product.

Standard Procedure C:

Zn(CN)₂ (1.5 equiv), KF (3.0 equiv) and vinyl thianthrenium salt (1.0 equiv) were placed in a 10.0 mL Schlenk tube which equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), CH₃CN (0.1 M) was added. The vial was sealed and at room temperature with stirring until TLC indicated the complete consumption of thianthrene (typically 10 h). The reaction mixture was evaporated and purified directly by column chromatography to afford the product.

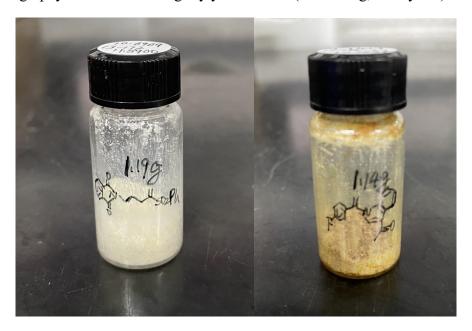
Standard Procedure D:

Zn(CN)₂ (1.5 equiv), KF (3.0 equiv) and vinyl thianthrenium salt (1.0 equiv) were placed in a 10.0 mL Schlenk tube which equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), CH₃CN (0.1 M) was added. The vial was sealed and at 50 °C with stirring until TLC indicated the complete consumption of thianthrene (typically 10 h). The reaction mixture was evaporated and purified directly by column chromatography to afford the product.

Standard Procedure E:

Nucleophile (1.5 equiv), K₂CO₃ (1.0 equiv) and vinyl thianthrenium salt (1.0 equiv) were placed in a 10.0 mL Schlenk tube which equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), CH₃CN (0.1 M) was added. The vial was sealed and at room temperature with stirring until TLC indicated

the complete consumption of thianthrene (typically 10 h). The reaction mixture was evaporated and purified directly by column chromatography to afford the product.


Standard Procedure F:

Nucleophile (1.5 equiv), Cs₂CO₃ (1.0 equiv) and vinyl thianthrenium salt (1.0 equiv) were placed in a 10.0 mL Schlenk tube which equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), CH₃CN (0.1 M) was added. The vial was sealed and at room temperature with stirring until TLC indicated the complete consumption of thianthrene (typically 10 h). The reaction mixture was evaporated and purified directly by column chromatography to afford the product.

V. Gram Scale Synthesis

Sodium benzene sulfinate **1b** (985.0 mg, 6.0 mmol, 1.5 equiv), and (*E*)-5-(5-(1,3-dioxoisoindolin-2-yl)pent-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2c** (2069.4 mg, 4.0 mmol, 1.0 equiv) were placed in 100 mL Schlenk flask equipped with a magnetic stirring bar. After backfilled with nitrogen (this process was repeated three times), 40.0 mL DCE was added. The flask was sealed at room temperature with stirring for 10 h. The reaction mixture was filtrated and washed with DCM (3 x 20.0 mL). The organic phase was purified directly by column chromatography to afford **4a** as white solid (1193.1 mg, 84% yield).

3-Acetylindole 1w(1208.7) 7.5 mmol, 1.5 equiv), (E)-5-(4 mg, -fluorostyryl)-5H-thianthren-5-ium tetrafluoroborate 2q (2121.3 mg, 5.0 mmol, 1.0 equiv) and K₂CO₃ (691.1 mg, mmol, 1.0 equiv) were placed in 100 mL Schlenk flask equipped with a magnetic stirring bar. After backfilled with nitrogen (this process was repeated three times), 50.0 mL CH₃CN was added. The flask was sealed at room temperature with stirring for 10 h. The reaction mixture was filtrated and washed with DCM (3 x 20.0 mL). The organic phase was purified directly by column chromatography to afford **6b** as lightly yellow solid (1145.3 mg, 82% yield).

VI. Characterization of Cross-Coupling Products

(3-(Methylsulfonyl)but-3-en-1-yl)benzene (3a)

Following the Standard Procedure A, the reaction of Sodium methyl solutions sulfinate $\mathbf{1a}$ (15.6 mg, 0.15 mmol, 1.5 equiv) and (*E*)-5-(4-phenylbut-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate $\mathbf{2a}$ (43.4 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid $\mathbf{3a}$ (17.5 mg, 83% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.28 (m, 2H), 7.25 – 7.19 (m, 3H), 6.29 (d, J = 1.1 Hz, 1H), 5.75 (d, J = 1.1 Hz, 1H), 2.95 (t, J = 7.8 Hz, 2H), 2.85 (s, 3H), 2.76 (t, J = 7.8 Hz, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 149.5, 140.0, 128.7, 128.6, 126.7, 124.7, 40.8, 34.2, 31.6;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{11}H_{15}O_2S^+$, 211.0787, found 211.0785.

2-(Methylsulfonyl)oct-1-ene (3b)

Following the Standard Procedure A, the reaction of Sodium SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and (*E*)-5-(oct-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2b** (41.4 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as colorless oil **3b** (14.1 mg, 74% yield).

¹**H NMR** (600 MHz, CDCl₃) δ 6.26 (s, 1H), 5.76 (s, 1H), 2.90 (s, 3H), 2.43 (t, J = 7.8 Hz, 2H), 1.61 (p, J = 7.4 Hz, 2H), 1.43 – 1.35 (m, 2H), 1.34 – 1.27 (m, 4H), 0.89 (t, J = 6.9 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 150.6, 123.6, 41.0, 31.6, 29.8, 28.8, 27.8, 22.7, 14.2; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₉H₁₉O₂S⁺, 191.1100, found 191.1100.

2-(4-(Methylsulfonyl)pent-4-en-1-yl)isoindoline-1,3-dione (3c)

Following the Standard Procedure A, the reaction of Sodium methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and (E)-5-(5-(1,3-dioxoisoindolin-2-yl)pent-1-en-1-yl)-5H-thianth

ren-5-ium tetrafluoroborate 2c (51.7 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid 3c (25.7 mg, 88% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.87 – 7.81 (m, 2H), 7.72 (m, 2H), 6.30 (s, 1H), 5.86 (s, 1H), 3.76 (t, J = 7.1 Hz, 2H), 2.91 (s, 3H), 2.51 (t, J = 7.4 Hz, 2H), 2.02 (tt, J = 7.4, 7.1 Hz, 2H);

¹³C **NMR** (101 MHz, CDCl₃) δ 168.4, 149.3, 134.3, 132.1, 124.5, 123.5, 41.1, 37.1, 27.1, 26.7;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{14}H_{16}NO_4S^+$, 294.0795, found 294.0792.

7-Bromo-2-(methylsulfonyl)hept-1-ene (3d)

Following the Standard Procedure A, the reaction of Sodium SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and (*E*)-5-(7-bromohept-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2d** (47.9 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as colorless oil **3d** (19.6 mg, 77% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.27 (s, 1H), 5.77 (s, 1H), 3.42 (t, J = 6.6 Hz, 2H), 2.91 (s, 3H), 2.46 (t, J = 7.6 Hz, 2H), 1.91 (p, J = 6.8 Hz, 2H), 1.71 – 1.62 (m, 2H), 1.59 – 1.49 (m, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 150.2, 124.0, 41.0, 33.6, 32.4, 29.7, 27.6, 27.1; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₈H₁₆BrO₂S⁺, 255.0049, found 255.0047.

2-(Methylsulfonyl)prop-1-ene (3e)

Following the Standard Procedure A, the reaction of Sodium methyl SO_2Me sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and (*E*)-5-(prop-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2e** (34.4 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as colorless oil **3e** (6.3 mg, 52% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.18 (s, 1H), 5.76 (q, J = 1.6 Hz, 1H), 2.91 (s, 3H), 2.18 (t, J = 1.6 Hz, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 145.9, 125.0, 40.2, 16.8;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for C₄H₉O₂S⁺, 121.0318, found 121.0319.

(2-(Methylsulfonyl)allyl)benzene (3f)

Following the Standard Procedure A, the reaction of Sodium methyl SO_2Me sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and (*E*)-5-(3-phenylprop-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2f** (42.0 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as colorless oil **3f** (10.8 mg, 55% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (dd, J = 8.1, 6.5 Hz, 2H), 7.32 – 7.28 (m, 1H), 7.27 – 7.24 (m, 2H), 6.31 (s, 1H), 5.67 (s, 1H), 3.81 (s, 2H), 2.68 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 150.4, 136.0, 129.4, 129.1, 127.6, 126.2, 42.1, 36.8; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₀H₁₃O₂S⁺, 197.0631, found 197.0631.

9-(Methylsulfonyl)dec-9-en-1-yl benzoate (3g)

Following the Standard Procedure A, the reaction of SO₂Me Sodium methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and (*E*)-5-(10-(benzoyloxy)dec-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoro -borate **2g** (56.2 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as colorless oil **3g** (24.5 mg, 72% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.07 – 8. 01 (m, 2H), 7.58 – 7.52 (m, 1H), 7.47 – 7.40 (m, 2H), 6.25 (s, 1H), 5.75 (s, 1H), 4.31 (t, J = 6.6 Hz, 2H), 2.89 (s, 3H), 2.43 (t, J = 7.9 Hz, 2H), 1.77 (tt, J = 6.9, 6.6 Hz, 2H), 1.62 (tt, J = 7.9, 7.3 Hz, 2H), 1.47 – 1.35 (m, 8H);

¹³C **NMR** (101 MHz, CDCl₃) δ 166.8, 150.5, 133.0, 130.6, 129.6, 128.5, 123.7, 65.1, 41.0, 29.7, 29.3, 29.2, 29.1, 28.8, 27.8, 26.1;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{18}H_{27}O_4S^+$, 339.1625, found 339.1622.

N-(3-(Methylsulfonyl)but-3-en-1-yl)benzamide (3h)

Following the Standard Procedure A, the reaction of Sodium SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and SO_2Me methyl sulfinate **1a** (15.6 mg, 0.

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 – 7.74 (m, 2H), 7.53 – 7.46 (m, 1H), 7.45 – 7.38 (m, 2H), 6.81 (bs, 1H), 6.34 (s, 1H), 5.90 (s, 1H), 3.74 (dt, J = 6.5, 6.2 Hz, 2H), 2.97 (s, 3H), 2.81 (t, J = 6.5 Hz, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 167.8, 147.6, 134.1, 131.8, 128.8, 127.0, 126.9, 40.9, 39.2, 30.1;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{12}H_{16}NO_3S^+$, 254.0845, found 254.0843.

9-(Methylsulfonyl)dec-9-en-1-yl 2,2,2-trifluoroacetate (3i)

Following the Standard Procedure A, the reaction of So₂Me Sodium methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and (E)-5-(10-(2,2,2-trifluoroacetoxy)dec-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2i** (55.4 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as colorless oil **3i** (22.9 mg, 69% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.25 (s, 1H), 5.75 (s, 1H), 4.34 (t, J = 6.6 Hz, 2H), 2.90 (s, 3H), 2.43 (t, J = 7.7 Hz, 2H), 1.74 (tt, J = 7.2, 6.6 Hz, 2H), 1.61 (tt, J = 7.7, 7.0 Hz, 2H), 1.43 – 1.31 (m, 8H);

¹³C NMR (101 MHz, CDCl₃) δ 157.7 (q, J = 42.0 Hz), 150.5, 123.7, 114.7 (q, J = 285.7 Hz), 68.3, 41.0, 29.7, 29.2, 29.01, 28.99, 28.2, 27.8, 25.6;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -75.13;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{13}H_{22}F_3O_4S^+$, 331.1185, found 331.1183.

9-(Methylsulfonyl)dec-9-en-1-ol (3j)

Following the Standard Procedure A, the reaction of SO₂Me Sodium methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and (*E*)-5-(10-hydroxydec-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2j** (45.8 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid **3j** (17.5 mg, 75% yield).

¹H NMR (400 MHz, CDCl₃) δ 6.25 (s, 1H), 5.75 (s, 1H), 3.63 (t, J = 6.6 Hz, 2H), 2.90 (s, 3H), 2.42 (t, J = 7.6 Hz, 2H), 1.65 – 1.51 (m, 4H), 1.43 – 1.29 (m, 8H); ¹³C NMR (101 MHz, CDCl₃) δ 150.5, 123.7, 63.1, 41.0, 32.8, 29.7, 29.3, 29.0, 27.8, 25.8;

HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₁H₂₃O₃S⁺, 235.1362, found 235.1360.

2-(Methylsulfonyl)octa-1,7-diene (3k)

Following the Standard Procedure A, the reaction of Sodium SO_2Me methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and (*E*)-5-(octa-1,7-dien-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2k** (41.2 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as colorless oil **3k** (13.1 mg, 70% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.26 (s, 1H), 5.79 (ddt, J = 17.0, 10.2, 6.7 Hz, 1H), 5.76 (s, 1H), 5.02 (dd, J = 17.0, 1.8 Hz, 1H), 4.97 (dd, J = 10.2, 1.8 Hz, 1H), 2.90 (s, 3H), 2.44 (t, J = 7.7 Hz, 2H), 2.10 (dt, J = 7.0, 6.7 Hz, 2H), 1.64 (tt, J = 8.3, 7.0 Hz, 2H), 1.49 (tt, J = 8.3, 7.7 Hz, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 150.4, 138.3, 123.8, 115.1, 41.0, 33.5, 29.6, 28.3, 27.2;

HRMS-ESI (m/z) [M+Na]⁺ calc'd for C₉H₁₆NaO₂S⁺, 211.0763, found 211.0764.

(1-(Methylsulfonyl)vinyl)cyclohexane (3l)

Following the Standard Procedure A, the reaction of Sodium methyl sulfinate $\mathbf{1a}$ (15.6 mg, 0.15 mmol, 1.5 equiv) and (E)-5-(2-cyclohexylvinyl)-5*H*-thianthren-5-ium tetrafluoroborate $\mathbf{2l}$ (41.2 mg, 0.10 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-20% as colorless oil $\mathbf{3l}$ (15.3 mg, 81% yield).

¹H NMR (400 MHz, CDCl₃) δ 6.27 (s, 1H), 5.79 (s, 1H), 2.90 (s, 3H), 2.46 (tt, J =

11.5, 3.4 Hz, 1H), 1.98 (ddt, J = 11.5, 3.3, 1.7 Hz, 2H), 1.82 (dt, J = 12.9, 3.3 Hz, 2H), 1.73 (ddt, J = 12.9, 3.4, 1.7 Hz, 1H), 1.41 – 1.19 (m, 5H);

¹³C NMR (101 MHz, CDCl₃) δ 156.3, 123.1, 41.8, 38.8, 33.9, 26.6, 25.8;

HRMS-ESI (m/z) [M+H]⁺ calc'd for C₉H₁₇O₂S⁺, 189.0944, found 189.0944.

4-(1-(Methylsulfonyl)vinyl)-4'-propyl-1,1'-bi(cyclohexane) (3m)

SO₂Me

Following the Standard Procedure A, the reaction of Sodium methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and (*E*)-5-(2-(4'-propyl-[1,1'-bi(cyclohexan)]-4-yl) vinyl)-5*H*-thianthren-5-ium tetrafluoroborate **2m** (53.7 mg,

0.10 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-20% as white solid **3m** (26.5 mg, 85% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.26 (s, 1H), 5.78 (s, 1H), 2.90 (s, 3H), 2.41 (tt, J = 12.0, 3.3 Hz, 1H), 2.08 – 1.98 (m, 2H), 1.86 – 1.64 (m, 6H), 1.35 – 1.21 (m, 4H), 1.19 – 1.08 (m, 6H), 1.07 – 0.91 (m, 3H), 0.90 – 0.77 (m, 5H);

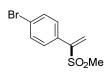
¹³C NMR (101 MHz, CDCl₃) δ 156.2, 122.9, 43.3, 42.8, 41.8, 39.9, 38.9, 37.7, 34.0, 33.6, 30.13, 30.06, 20.2, 14.5;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{18}H_{33}O_2S^+$, 313.2196, found 313.2192.

(1-(Methylsulfonyl)vinyl)benzene (3n)

SO₂Me

Following the Standard Procedure A, the reaction of Sodium methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and (*E*)-5-styryl-5*H*-thianthren-5-ium tetrafluoroborate **2n** (40.6 mg, 0.10


mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid **3n** (13.0 mg, 71% yield).

¹**H NMR** (600 MHz, CDCl₃) δ 7.63 (d, J = 7.5 Hz, 2H), 7.47 – 7.41 (m, 3H), 6.54 (s, 1H), 6.02 (s, 1H), 2.80 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 150.2, 132.6, 130.0, 129.0, 128.8, 126.1, 40.8;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for C₉H₁₁O₂S⁺, 183.0474, found 183.0473.

1-Bromo-4-(1-(methylsulfonyl)vinyl)benzene (30)

Following the Standard Procedure A, the reaction of Sodium methyl sulfinate 1a (15.6 mg, 0.15 mmol, 1.5 equiv) and (*E*)-5-(4-bromostyryl)-5*H*-thianthren-5-ium tetrafluoroborate 2o

(48.5 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as light yellow solid **30** (22.7 mg, 87% yield).

¹**H NMR** (600 MHz, CDCl₃) δ 7.59 – 7.54 (m, 2H), 7.53 – 7.48 (m, 2H), 6.55 (s, 1H), 6.03 (s, 1H), 2.80 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 149.3, 132.3, 131.5, 130.3, 126.6, 124.6, 40.8;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_9H_{10}BrO_2S^+$, 260.9579, found 260.9577.

1-Chloro-4-(1-(methylsulfonyl)vinyl)benzene (3p)

Following the Standard Procedure A, the reaction of Sodium methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and (E)-5-(4-chlorostyryl)-5*H*-thianthren-5-ium tetrafluoroborate **2p** (44.1 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid **3p** (13.2 mg, 61% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H), 6.55 (s, 1H), 6.03 (s, 1H), 2.80 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 149.2, 136.4, 131.0, 130.1, 129.3, 126.6, 40.8;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_9H_{10}ClO_2S^+$, 217.0085, found 217.0082.

1-Fluoro-4-(1-(methylsulfonyl)vinyl)benzene (3q)

Following the Standard Procedure A, the reaction of Sodium methyl sulfinate $\mathbf{1a}$ (15.6 mg, 0.15 mmol, 1.5 equiv) and $\mathrm{SO_2Me}$ (*E*)-5-(4-fluorostyryl)-5*H*-thianthren-5-ium tetrafluoroborate $\mathbf{2q}$ (42.4 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid $\mathbf{3q}$ (16.8 mg, 84% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.67 – 7.58 (m, 2H), 7.16 – 7.07 (m, 2H), 6.54 (s, 1H), 6.01 (s, 1H), 2.79 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 163.8 (d, J = 250.7 Hz), 149.3, 130.9 (d, J = 8.4 Hz), 128.6 (d, J = 3.5 Hz), 126.3, 116.2 (d, J = 21.8 Hz), 40.7;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -110.61;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_9H_{10}FO_2S^+$, 201.0380, found 201.0378.

4-(1-(Methylsulfonyl)vinyl)phenyl acetate (3r)

Following the Standard Procedure A, the reaction of Sodium

methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and (E)-5-(4-acetoxystyryl)-5*H*-thianthren-5-ium tetrafluoroborate **2r** (46.4 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid **3r** (22.2 mg, 92% yield).

¹**H NMR** (600 MHz, CDCl₃) δ 7.68 – 7.63 (m, 2H), 7.18 – 7.14 (m, 2H), 6.54 (s, 1H), 6.02 (s, 1H), 2.81 (s, 3H), 2.32 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 169.3, 152.0, 149.4, 130.1, 130.0, 126.4, 122.3, 40.8, 21.3;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{11}H_{13}O_4S^+$, 241.0529, found 241.0526.

1,4-Dimethyl-2-(1-(methylsulfonyl)vinyl)benzene (3s)

Following the Standard Procedure B, the reaction of Sodium methyl sulfinate $\mathbf{1a}$ (15.6 mg, 0.15 mmol, 1.5 equiv) and (E)-5-(2,5-dimethylstyryl)-5H-thianthren-5-ium tetrafluoroborate $\mathbf{2s}$

(43.4 mg, 0.10 mmol, 1.0 equiv) for 10 h at 50 °C afforded product after flash chromatography EA: PE = 0-20% as white solid **3s** (13.8 mg, 66% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.20 – 7.12 (m, 3H), 6.67 (s, 1H), 5.87 (s, 1H), 2.80 (s, 3H), 2.33 (s, 3H), 2.31 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 149.6, 135.6, 134.3, 131.7, 130.82, 130.80, 130.6, 127.7, 40.0, 21.0, 19.7;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{11}H_{15}O_2S^+$, 211.0787, found 211.0786.

1-(Methylsulfonyl)cyclopent-1-ene (3t)

Following the Standard Procedure B, the reaction of Sodium methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and 5-(cyclopent-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2t** (37.0 mg, 0.10 mmol, 1.0 equiv) for 36 h at 50 °C afforded product after flash chromatography EA: PE = 0-20% as white solid **3t** (13.0 mg, 89% yield).

¹H NMR (400 MHz, CDCl₃) δ 6.75 (p, J = 2.2, Hz, 1H), 2.93 (s, 3H), 2.72 (ddt, J = 10.3, 7.4, 2.3 Hz, 2H), 2.59 (tq, J = 7.7, 2.6 Hz, 2H), 2.19 – 2.10 (m, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 144.1, 144.0, 41.4, 33.1, 31.3, 23.9;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_6H_{11}O_2S^+$, 147.0474, found 147.0474.

1-(Methylsulfonyl)cyclohex-1-ene (3u)

Following the Standard Procedure B, the reaction of Sodium methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and 5-(cyclohex-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2u** (38.4 mg,

0.10 mmol, 1.0 equiv) for 36 h at 50 °C afforded product after flash chromatography EA: PE = 0-20% as white solid 3u (9.4 mg, 59% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.94 (tt, J = 3.7, 1.8 Hz, 1H), 2.86 (s, 3H), 2.38 (dt, J = 6.2, 1.8 Hz, 2H), 2.28 (dt, J = 6.2, 3.7 Hz, 2H), 1.82 – 1.73 (m, 2H), 1.71 – 1.61 (m, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 139.5, 139.1, 40.5, 25.5, 23.4, 22.0, 20.9;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_7H_{13}O_2S^+$, 161.0631, found 161.0630.

6-(Methylsulfonyl)-1,2,3,4,4a,5,8,8a-octahydro-1,4-methanonaphthalene (3v)

Following the Standard Procedure B, the reaction of Sodium methyl sulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and 50₂Me 5-(1,2,3,4,4a,5,8,8a-octahydro-1,4-methanonaphthalen-6-yl)-5*H*-thia nthren-5-ium tetrafluoroborate **2v** (45.0 mg, 0.10 mmol, 1.0 equiv) for 36 h at 50 °C afforded product after flash chromatography EA: PE = 0-20% as white solid **3v** (19.1 mg, 84% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.09 – 6.99 (m, 1H), 2.85 (s, 3H), 2.79 – 2.68 (m, 1H), 2.62 – 2.49 (m, 1H), 2.07 (s, 1H), 2.03 (s, 1H), 1.83 – 1.72 (m, 2H), 1.70 – 1.64 (m, 1H), 1.61 – 1.55 (m, 4H), 1.26 – 1.21 (m, 2H), 1.12 (d, J = 10.4 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 140.8, 140.4, 43.7, 43.2, 43.1, 42.5, 40.9, 33.5, 29.6,

29.5, 29.1, 27.1; **HRMS-ESI** (m/z) [M+H]⁺ calc'd for C₁₂H₁₉O₂S⁺, 227.1100, found 227.1099.

(1E,5Z)-1-(methylsulfonyl)cycloocta-1,5-diene (3w)

Following the Standard Procedure B, the reaction of Sodium methyl sulfinate $\mathbf{1a}$ (15.6 mg, 0.15 mmol, 1.5 equiv) and $\mathbf{50_2Me}$ 5-((1*E*,5*Z*)-cycloocta-1,5-dien-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate $\mathbf{2w}$ (41.0 mg, 0.10 mmol, 1.0 equiv) for 36 h at 50 °C afforded product after flash chromatography EA: PE = 0-20% as colorless oil $\mathbf{3w}$ (11.9 mg, 64% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.96 (t, J = 6.1 Hz, 1H), 5.61 – 5.56 (m, 2H), 2.89 – 2.81 (m, 5H), 2.62 – 2.51 (m, 4H), 2.45 (q, J = 6.1 Hz, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 140.9, 140.5, 128.4, 128.2, 41.2, 28.8, 28.0, 26.0, 25.8;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_9H_{15}O_2S^+$, 187.0787, found 187.0787.

(Vinylsulfonyl)benzene (3x)

Following the Standard Procedure A, the reaction of sodium benzene sulfinate SO_2Ph 1a (24.6 mg, 0.15 mmol, 1.5 equiv) and 5-vinyl-5*H*-thianthren-5-ium tetrafluoroborate 2x (33.0 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid 3x (11.9 mg, 71% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 – 7.87 (m, 2H), 7.67 – 7.61 (m, 1H), 7.59 – 7.51 (m, 2H), 6.66 (dd, J = 16.6, 9.8 Hz, 1H), 6.46 (d, J = 16.6 Hz, 1H), 6.04 (d, J = 9.8 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 139.7, 138.6, 133.8, 129.5, 128.1, 127.9; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₈H₉O₂S⁺, 169.0318, found 169.0317.

(Prop-1-en-2-ylsulfonyl)benzene (3y)

Following the Standard Procedure A, the reaction of sodium benzene SO_2Ph sulfinate **1a** (24.6 mg, 0.15 mmol, 1.5 equiv) and (*E*)-5-(prop-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2e** (34.4 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as colorless oil **3y** (16.0 mg, 88% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.85 (m, 2H), 7.69 – 7.60 (m, 1H), 7.58 – 7.50 (m, 2H), 6.28 (s, 1H), 5.71 (q, J = 1.6 Hz, 1H), 1.96 (dd, J = 1.6, 1.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 146.4, 138.6, 133.6, 129.3, 128.4, 124.4, 16.5; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₉H₁₁O₂S⁺, 183.0474, found 183.0473.

3-(Methylsulfonyl)but-3-en-1-yl (4R)-4-((3R,8R,9S,10S,13R,14S,17R)-3-acetoxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoate (3z)

Following the Standard Procedure A, the reaction of Sodium methyl sulfinate $\mathbf{1a}$ (15.6 mg, 0.15 mmol, 1.5 equiv) and 5-((E)-4-(((4R)-4-((3R,8R,9S,10S,13R,14S,17

R)-3-acetoxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pent anoyl)oxy)but-1-en-1-yl)-5H-thianthren-5-ium tetrafluoroborate **2y** (77.5 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid **3z** (38.8 mg, 70% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 6.35 (s, 1H), 5.87 (s, 1H), 4.71 (tt, J = 11.1, 4.7 Hz, 1H), 4.33 (t, J = 6.6 Hz, 2H), 2.94 (s, 3H), 2.79 (t, J = 6.6 Hz, 2H), 2.34 (ddd, J = 15.3, 10.1, 5.1 Hz, 1H), 2.21 (ddd, J = 15.7, 9.6, 6.4 Hz, 1H), 2.02 (s, 3H), 1.98 – 1.91 (m, 1H), 1.89 – 1.73 (m, 5H), 1.72 – 1.64 (m, 1H), 1.60 – 1.49 (m, 2H), 1.48 – 1.19 (m, 11H), 1.08 (dddd, J = 29.1, 24.5, 14.9, 11.6 Hz, 6H), 0.92 (s, 3H), 0.90 (d, J = 6.9 Hz, 3H), 0.63 (s, 3H);

¹³C **NMR** (101 MHz, CDCl₃) δ 174.1, 170.8, 146.8, 126.3, 74.5, 61.6, 56.6, 56.1, 42.9, 42.0, 41.1, 40.5, 40.3, 35.9, 35.5, 35.2, 34.7, 32.4, 31.3, 31.1, 29.4, 28.3, 27.1, 26.8, 26.4, 24.3, 23.5, 21.6, 21.0, 18.4, 12.2;

HRMS-ESI (m/z) [M+Na]⁺ calc'd for C₃₁H₅₀NaO₆S⁺, 573.3220, found 573.3216.

2-(4-(Phenylsulfonyl)pent-4-en-1-yl)isoindoline-1,3-dione (4a)

Following the Standard Procedure A, the reaction of sodium benzene sulfinate **1b** (24.6 mg, 0.15 mmol, 1.5 equiv) and (E)-5-(5-(1,3-dioxoisoindolin-2-yl)pent-1-en-1-yl)-5*H*-thianthr

en-5-ium tetrafluoroborate **2a** (51.7 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid **4a** (29.7 mg, 84% yield).

¹**H NMR** (600 MHz, CDCl₃) δ 7.87 – 7.83 (m, 2H), 7.81 (dd, J = 5.4, 3.0 Hz, 2H), 7.71 (dd, J = 5.5, 3.0 Hz, 2H), 7.63 – 7.57 (m, 1H), 7.51 (t, J = 7.8 Hz, 2H), 6.40 (s, 1H), 5.83 (s, 1H), 3.61 (t, J = 7.2 Hz, 2H), 2.29 (t, J = 7.7 Hz, 2H), 1.85 (p, J = 7.4 Hz, 2H);

¹³C NMR (151 MHz, CDCl₃) δ 168.3, 149.5, 138.7, 134.2, 133.7, 132.1, 129.4, 128.4, 123.7, 123.4, 37.0, 26.7, 26.6;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{19}H_{18}NO_4S^+$, 356.0951, found 356.0948.

2-(4-((4-Methoxyphenyl)sulfonyl)pent-4-en-1-yl)isoindoline-1,3-dione (4b)

Following the Standard Procedure A, the reaction of sodium 4-methoxybenzenesulfinate 1c (29.1 mg, 0.15

mmol, 1.5 equiv) and (*E*)-5-(5-(1,3-dioxoisoindolin-2-yl)pent-1-en-1-yl)-5*H* -thianthren-5-ium tetrafluoroborate **2a** (51.7 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid **4b** (32.8 mg, 85% yield).

¹**H NMR** (600 MHz, CDCl₃) δ 7.86 – 7.79 (m, 2H), 7.78 (dd, J = 8.8, 3.7 Hz, 2H), 7.73 – 7.68 (m, 2H), 6.96 (dd, J = 8.8, 2.9 Hz, 2H), 6.33 (s, 1H), 5.76 (s, 1H), 3.86 (s, 3H), 3.62 (t, J = 7.3 Hz, 2H), 2.29 (t, J = 7.8 Hz, 2H), 1.84 (tt, J = 7.8, 7.3 Hz, 2H); 13**C NMR** (151 MHz, CDCl₃) δ 168.3, 163.8, 150.0, 134.2, 132.1, 130.6, 130.1, 123.4, 122.8, 114.6, 55.8, 37.1, 26.6;

HRMS-ESI (m/z) [M+H]⁺ calc'd for C₂₀H₂₀NO₅S⁺, 386.1057, found 386.1054.

N-(4-((5-(1,3-Dioxoisoindolin-2-yl)pent-1-en-2-yl)sulfonyl)phenyl)acetamide (4c)

N S NHAc

4d (30.3 mg, 82% yield).

Following the Standard Procedure A, the reaction of sodium 4-acetamidobenzenesulfinate 1d (33.2 mg, 0.15 mmol, 1.5 equiv) and (*E*)-5-(5-(1,3-dioxoiso

-indolin-2-yl)pent-1-en-1-yl)-5H-thianthren-5-ium tetrafluoroborate **2a** (51.7 mg, 0.10 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-20% as white solid **4c** (39.7 mg, 96% yield).

¹H NMR (600 MHz, CDCl₃) δ 8.07 – 7.94 (bs, 1H), 7.81 (dd, J = 5.5, 3.0 Hz, 2H), 7.75 (dd, J = 9.0, 2.3 Hz, 2H), 7.72 – 7.65 (m, 4H), 6.35 (s, 1H), 5.81 (d, J = 2.0 Hz, 1H), 3.62 (t, J = 7.2 Hz, 2H), 2.28 (t, J = 7.7 Hz, 2H), 2.20 (s, 3H), 1.85 (p, J = 7.5 Hz, 2H);

¹³C **NMR** (151 MHz, CDCl₃) δ 169.1, 168.4, 149.6, 143.2, 134.2, 132.0, 129.7, 123.5, 123.4, 119.5, 37.1, 26.7, 26.6, 24.8;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{21}H_{21}N_2O_5S^+$, 413.1166, found 413.1163.

2-(4-Tosylpent-4-en-1-yl)isoindoline-1,3-dione (4d)

Following the Standard Procedure A, the reaction of Sodium p-toluenesulfinate equiv and equiv a

¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (dd, J = 5.4, 3.0 Hz, 2H), 7.74 – 7.69 (m, 4H), 7.29 (d, J = 8.0 Hz, 2H), 6.37 (s, 1H), 5.79 (s, 1H), 3.61 (t, J = 7.1 Hz, 2H), 2.41 (s, 3H), 2.28 (t, J = 7.8 Hz, 2H), 1.84 (tt, J = 7.8, 7.1 Hz, 2H);

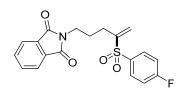
¹³C NMR (101 MHz, CDCl₃) δ 168.3, 149.7, 144.7, 135.7, 134.2, 132.1, 130.0, 128.4, 123.4, 123.2, 37.1, 26.7, 26.6, 21.7;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{20}H_{20}NO_4S^+$, 370.1108, found 370.1105.

2-(4-((4-(Trifluoromethyl)phenyl)sulfonyl)pent-4-en-1-yl)isoindoline-1,3-dione (4e)

Following the Standard Procedure A, the reaction of sodium 4-(trifluoromethyl)benzenesulfinate **1f** (34.8 mg, 0.15 mmol, 1.5 equiv) and (*E*)-5-(5-(1,3-dioxo -isoindolin-2-yl)pent-1-en-1-yl)-5*H*-thianthren-5-ium

tetrafluoroborate **2a** (51.7 mg, 0.10 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-20% as white solid **4e** (25.9 mg, 61% yield).


¹**H NMR** (600 MHz, CDCl₃) δ 7.99 (d, J = 8.1 Hz, 2H), 7.82 (dd, J = 5.4, 3.1 Hz, 2H), 7.78 (d, J = 8.1 Hz, 2H), 7.72 (dd, J = 5.5, 3.0 Hz, 2H), 6.47 (s, 1H), 5.92 (s, 1H), 3.65 (t, J = 7.1 Hz, 2H), 2.28 (t, J = 7.7 Hz, 2H), 1.88 (p, J = 7.4 Hz, 2H);

¹³C **NMR** (151 MHz, CDCl₃) δ 168.3, 149.0, 142.5, 135.4 (q, J = 33.2 Hz), 134.3, 132.0, 129.0, 126.6 (q, J = 3.8 Hz), 125.1, 123.4, 123.2 (q, J = 273.2 Hz), 37.0, 26.8, 26.5;

¹⁹**F NMR** (565 MHz, CDCl₃) δ -63.17;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{20}H_{17}F_3NO_4S^+$, 424.0825, found 424.0821.

2-(4-((4-Fluorophenyl)sulfonyl)pent-4-en-1-yl)isoindoline-1,3-dione (4f)

Following the Standard Procedure A, the reaction of sodium 4-fluorobenzenesulfinate **1g** (27.3 mg, 0.15 mmol, 1.5 equiv) and (*E*)-5-(5-(1,3-dioxoisoindolin-2-yl)pent-1 -en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (51.7

mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid **4f** (30.6 mg, 82% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 – 7.79 (m, 4H), 7.71 (dd, J = 5.4, 3.1 Hz, 2H), 7.21 – 7.13 (m, 2H), 6.39 (s, 1H), 5.83 (s, 1H), 3.63 (t, J = 7.1 Hz, 2H), 2.28 (t, J = 7.8 Hz, 2H), 1.92 – 1.81 (m, 2H);

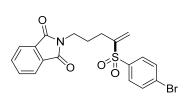
¹³C NMR (101 MHz, CDCl₃) δ 168.3, 165.9 (d, J = 256.4 Hz), 149.4, 134.8 (d, J = 3.2 Hz), 134.2, 132.0, 131.2 (d, J = 9.5 Hz), 123.9, 123.4, 116.7 (d, J = 22.6 Hz), 37.0, 26.6, 26.5;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -103.53;

HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₉H₁₇FNO₄S⁺, 374.0857, found 374.0854.

2-(4-((4-Chlorophenyl)sulfonyl)pent-4-en-1-yl)isoindoline-1,3-dione (4g)

Following the Standard Procedure A, the reaction of sodium 4-chlorobenzenesulfinate **1h** (29.8 mg, 0.15 mmol, 1.5 equiv) and (E)-5-(5-(1,3-dioxoisoindolin-2-yl) pent-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2a**


(51.7 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid **4g** (33.6 mg, 86% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (dd, J = 5.5, 3.1 Hz, 2H), 7.80 – 7.76 (m, 2H), 7.72 (dd, J = 5.5, 3.0 Hz, 2H), 7.51 – 7.46 (m, 2H), 6.41 (s, 1H), 5.86 (s, 1H), 3.64 (t, J = 7.1 Hz, 2H), 2.28 (t, J = 7.7 Hz, 2H), 1.87 (p, J = 7.4 Hz, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 168.3, 149.3, 140.5, 137.3, 134.2, 132.0, 129.9, 129.7, 124.2, 123.4, 37.0, 26.7, 26.5;

HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₉H₁₇ClNO₄S⁺, 390.0561, found 390.0558.

2-(4-((4-Bromophenyl)sulfonyl)pent-4-en-1-yl)isoindoline-1,3-dione (4h)

Following the Standard Procedure A, the reaction of sodium 4-bromobenzenesulfinate 1i (36.5 mg, 0.15 mmol, 1.5 equiv) and (*E*)-5-(5-(1,3-dioxoisoindolin-2-yl) pent-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate 2a

(51.7 mg, 0.10 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-20% as white solid **4h** (34.0 mg, 78% yield).

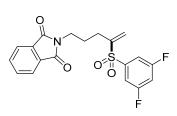
¹**H NMR** (400 MHz, CDCl₃) δ 7.84 (dd, J = 5.4, 3.0 Hz, 2H), 7.75 – 7.69 (m, 4H), 7.68 – 7.63 (m, 2H), 6.42 (s, 1H), 5.86 (s, 1H), 3.65 (t, J = 7.1 Hz, 2H), 2.28 (t, J = 7.7 Hz, 2H), 1.88 (tt, J = 7.7, 7.1 Hz, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 168.3, 149.2, 137.8, 134.2, 132.7, 132.0, 129.9, 129.1, 124.2, 123.4, 37.0, 26.6, 26.5;

HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₉H₁₇BrNO₄S⁺, 434.0056, found 434.0049.

2-(4-((4-Iodophenyl)sulfonyl)pent-4-en-1-yl)isoindoline-1,3-dione (4i)

Following the Standard Procedure A, the reaction of sodium 4-iodobenzenesulfinate 1j (43.5 mg, 0.15 mmol, 1.5 equiv) and (*E*)-5-(5-(1,3-dioxoisoindolin-2-yl)pent-1


-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (51.7 mg, 0.10 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-20% as white solid **4i** (38.2 mg, 79% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 – 7.85 (m, 2H), 7.83 (dd, J = 5.4, 3.1 Hz, 2H), 7.73 (dd, J = 5.5, 3.1 Hz, 2H), 7.57 – 7.53 (m, 2H), 6.41 (s, 1H), 5.85 (s, 1H), 3.64 (t, J = 7.1 Hz, 2H), 2.28 (t, J = 7.7 Hz, 2H), 1.87 (tt, J = 7.7, 7.1 Hz, 2H);

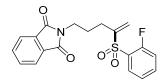
¹³C NMR (101 MHz, CDCl₃) δ 168.3, 149.3, 138.7, 138.5, 134.3, 132.1, 129.8, 124.2, 123.5, 101.7, 37.0, 26.7, 26.5;

HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₉H₁₇INO₄S⁺, 481.9917, found 481.9912.

2-(4-((3,5-Difluorophenyl)sulfonyl)pent-4-en-1-yl)isoindoline-1,3-dione (4j)

Following the Standard Procedure A, the reaction of sodium 3,5-difluorobenzenesulfinate 1k (30.0 mg, 0.15 mmol, 1.5 equiv) and (*E*)-5-(5-(1,3-dioxoisoindolin-2-yl) pent-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate 2a

(51.7 mg, 0.10 mmol, 1.0 equiv) for 24 h afforded product after flash chromatography EA: PE = 0-20% as white solid **4j** (29.6 mg, 76% yield).


¹**H NMR** (600 MHz, CDCl₃) δ 7.83 (dd, J = 5.5, 3.1 Hz, 2H), 7.72 (dd, J = 5.5, 3.1 Hz, 2H), 7.43 – 7.35 (m, 2H), 7.09 – 7.02 (m, 1H), 6.46 (s, 1H), 5.94 (s, 1H), 3.66 (t, J = 7.1 Hz, 2H), 2.30 (t, J = 7.7 Hz, 2H), 1.90 (tt, J = 7.7, 7.1 Hz, 2H);

¹³C NMR (151 MHz, CDCl₃) δ 168.4, 163.0 (dd, J = 255.8, 11.4 Hz), 148.7, 142.4 (t, J = 8.0 Hz), 134.3, 132.0, 125.4, 123.5, 111.9 (dd, J = 21.7, 6.4 Hz), 109.5 (t, J = 25.0 Hz), 37.0, 26.7, 26.5;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -104.85;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{19}H_{16}F_2NO_4S^+$, 392.0763, found 392.0760.

2-(4-((2-Fluorophenyl)sulfonyl)pent-4-en-1-yl)isoindoline-1,3-dione (4k)

Following the Standard Procedure A, the reaction of sodium 2-fluorobenzenesulfinate 11 (27.3 mg, 0.15 mmol, 1.5 equiv)

and (*E*)-5-(5-(1,3-dioxoisoindolin-2-yl)pent-1-en-1-yl)-5*H*-thianthren-5-ium tetra -fluoroborate **2a** (51.7 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid **4k** (22.4 mg, 60% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (t, J = 7.7 Hz, 1H), 7.86 – 7.79 (m, 2H), 7.76 – 7.69 (m, 2H), 7.65 – 7.58 (m, 1H), 7.30 (t, J = 7.7 Hz, 1H), 7.17 (t, J = 7.7 Hz, 1H), 6.50 (s, 1H), 5.96 (s, 1H), 3.63 (t, J = 7.1 Hz, 2H), 2.31 (t, J = 7.7 Hz, 2H), 1.88 (tt, J = 7.7, 7.1 Hz, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 168.3, 159.7 (d, J = 258.1 Hz), 148.8, 136.4 (d, J = 8.5 Hz), 134.2, 132.1, 131.1, 126.7 (d, J = 13.8 Hz), 125.5 (d, J = 1.9 Hz), 124.8 (d, J = 3.9 Hz), 123.4, 117.5 (d, J = 21.1 Hz), 37.0, 26.7, 26.6;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -107.33;

HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₉H₁₇FNO₄S⁺, 374.0857, found 374.0855.

2-(4-(Naphthalen-2-ylsulfonyl)pent-4-en-1-yl)isoindoline-1,3-dione (4l)

Following the Standard Procedure A, the reaction of sodium naphthalene-2-sulfinate **1m** (32.1 mg, 0.15 mmol, 1.5 equiv) and (E)-5-(5-(1,3-dioxoisoindolin-2

-yl)pent-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (51.7 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid **4l** (32.1 mg, 79% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.47 (d, J = 1.9 Hz, 1H), 7.96 (dd, J = 11.3, 8.3 Hz, 2H), 7.90 (d, J = 8.0 Hz, 1H), 7.79 – 7.74 (m, 3H), 7.71 – 7.59 (m, 4H), 6.47 (s, 1H), 5.87 (s, 1H), 3.61 (t, J = 7.1 Hz, 2H), 2.33 (t, J = 7.7 Hz, 2H), 1.88 (tt, J = 7.7, 7.1 Hz, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 168.3, 149.5, 135.5, 135.4, 134.1, 132.3, 132.0, 130.3, 129.7, 129.6, 129.4, 128.1, 127.8, 123.9, 123.4, 123.0, 37.0, 26.7, 26.5;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{23}H_{20}NO_4S^+$, 406.1108, found 406.1103.

2-(4-(Thiophen-2-ylsulfonyl)pent-4-en-1-yl)isoindoline-1,3-dione (4m)

Following the Standard Procedure A, the reaction of sodium thiophene-2-sulfinate $\mathbf{1n}$ (25.5 mg, 0.15 mmol, 1.5 equiv) and (E)-5-(5-(1,3-dioxoisoindolin-2-yl)pent-1-en-1-yl)-5H -thianthren-5-ium tetrafluoroborate $\mathbf{2a}$ (51.7 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid $\mathbf{4m}$ (32.1)

mg, 89% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (dd, J = 5.6, 2.2 Hz, 2H), 7.72 (dd, J = 5.6, 2.2 Hz, 2H), 7.68 (dd, J = 4.9, 1.3 Hz, 1H), 7.65 (p, J = 1.9 Hz, 1H), 7.11 (dd, J = 4.9, 3.6 Hz, 1H), 6.40 (d, J = 2.9 Hz, 1H), 5.84 – 5.76 (m, 1H), 3.66 (t, J = 7.2 Hz, 2H), 2.41 (t, J = 7.8 Hz, 2H), 1.94 – 1.83 (m, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 168.4, 150.1, 140.0, 134.7, 134.5, 134.2, 132.1, 128.1, 123.5, 123.4, 37.1, 26.8, 26.7;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{17}H_{16}NO_4S_2^+$, 362.0515, found 362.0511.

(E)-2-(4-(Styrylsulfonyl)pent-4-en-1-yl)isoindoline-1,3-dione (4n)

N S Ph

mg, 65% yield).

Following the Standard Procedure A, the reaction of sodium (E)-2-phenylethene-1-sulfinate **10** (28.5 mg, 0.15 mmol, 1.5 equiv) and (E)-5-(5-(1,3-dioxoisoindolin-2-yl)

pent-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (51.7 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid **4n** (32.1 mg, 84% yield).

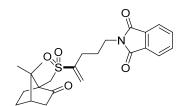
¹H NMR (400 MHz, CDCl₃) δ 7.78 (dd, J = 5.4, 3.1 Hz, 2H), 7.69 (dd, J = 5.5, 3.0 Hz, 2H), 7.58 (d, J = 15.5 Hz, 1H), 7.53 – 7.48 (m, 2H), 7.45 – 7.37 (m, 3H), 6.72 (d, J = 15.5 Hz, 1H), 6.35 (s, 1H), 5.86 (s, 1H), 3.72 (t, J = 7.1 Hz, 2H), 2.51 – 2.40 (m, 2H), 2.08 – 1.95 (m, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 168.4, 149.0, 145.0, 134.1, 132.5, 132.1, 131.5, 129.2, 128.8, 124.7, 124.3, 123.4, 37.1, 26.7, 26.6;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{21}H_{20}NO_4S^+$, 382.1108, found 382.1103.

2-(4-(Allylsulfonyl)pent-4-en-1-yl)isoindoline-1,3-dione (40)

Following the Standard Procedure A, the reaction of sodium prop-2-ene-1-sulfinate $\mathbf{1p}$ (19.2 mg, 0.15 mmol, 1.5 equiv) and (E)-5-(5-(1,3-dioxoisoindolin-2-yl)pent-1-en-1-yl)-5H -thianthren-5-ium tetrafluoroborate $\mathbf{2a}$ (51.7 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid $\mathbf{4o}$ (20.7)


¹**H NMR** (600 MHz, CDCl₃) δ 7.85 (dd, J = 5.5, 2.9 Hz, 2H), 7.73 (dd, J = 5.5, 2.9 Hz, 2H), 6.23 (s, 1H), 5.93 (s, 1H), 5.81 (ddd, J = 17.1, 10.2, 7.4 Hz, 1H), 5.40 (d, J =

10.2 Hz, 1H), 5.35 (d, J = 17.1 Hz, 1H), 3.75 (t, J = 7.2 Hz, 2H), 3.71 (d, J = 7.4 Hz, 2H), 2.46 (t, J = 7.7 Hz, 2H), 2.00 (tt, J = 7.7, 7.2 Hz, 2H);

¹³C NMR (151 MHz, CDCl₃) δ 168.4, 147.2, 134.2, 132.1, 126.5, 124.8, 124.6, 123.5, 57.7, 37.1, 27.5, 26.7;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{16}H_{18}NO_4S^+$, 320.0951, found 320.0949.

2-(4-((((1*R*,4*S*)-7,7-Dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methyl)sulfonyl)pent -4-en-1-yl)isoindoline-1,3-dione (4p)

Following the Standard Procedure A, the reaction of sodium ((1R,4S)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan -1-yl)methanesulfinate **1q** (35.7 mg, 0.15 mmol, 1.5 equiv) and (E)-5-(5-(1,3-dioxoisoindolin-2-yl)pent-1-en-1-yl) -5*H*-thianthren-5-ium tetrafluoroborate **2a** (51.7 mg, 0.10

mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid **4p** (30.1 mg, 70% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.84 (dt, J = 6.4, 3.2 Hz, 2H), 7.72 (dd, J = 5.4, 3.0 Hz, 2H), 6.27 (s, 1H), 5.86 (s, 1H), 3.80 (t, J = 7.1 Hz, 2H), 3.47 (d, J = 14.8 Hz, 1H), 2.77 (d, J = 14.8 Hz, 1H), 2.62 (q, J = 7.9 Hz, 2H), 2.58 – 2.48 (m, 1H), 2.32 (dt, J = 18.5, 3.9 Hz, 1H), 2.13 – 1.98 (m, 4H), 1.89 (d, J = 18.5 Hz, 1H), 1.67 (ddd, J = 14.0, 9.3, 4.6 Hz, 1H), 1.42 (ddd, J = 13.1, 9.4, 3.9 Hz, 1H), 1.10 (s, 3H), 0.86 (s, 3H); 13C NMR (101 MHz, CDCl₃) δ 214.8, 168.5, 150.2, 134.1, 132.2, 124.6, 123.4, 58.8, 49.5, 48.5, 42.7, 42.6, 37.2, 27.3, 27.2, 26.7, 24.5, 20.0, 19.9;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for C₂₃H₂₈NO₅S⁺, 430.1683, found 430.1680.

2-(4-(Cyclopropylsulfonyl)pent-4-en-1-yl)isoindoline-1,3-dione (4q)

Following the Standard Procedure A, the reaction of sodium cyclopropanesulfinate 1r (19.2 mg, 0.15 mmol, 1.5 equiv) and (*E*)-5-(5-(1,3-dioxoisoindolin-2-yl)pent-1-en-1-yl)-5*H*

-thianthren-5-ium tetrafluoroborate **2a** (51.7 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid **4q** (28.6 mg, 90% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.86 – 7.81 (m, 2H), 7.75 – 7.68 (m, 2H), 6.21 (s, 1H), 5.79 (s, 1H), 3.76 (t, J = 7.1 Hz, 2H), 2.59 – 2.49 (m, 2H), 2.36 (ddd, J = 8.0, 4.8, 1.4

Hz, 1H), 2.09 - 1.94 (m, 2H), 1.24 - 1.19 (m, 2H), 1.09 - 0.99 (m, 2H);

¹³C **NMR** (101 MHz, CDCl₃) δ 168.4, 149.1, 134.2, 132.1, 123.6, 123.4, 37.2, 29.6, 27.3, 26.7, 5.6;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{16}H_{18}NO_4S^+$, 320.0951, found 320.0949.

1-((1-Phenylvinyl)sulfonyl)naphthalene (4r)

Ph Fo naj

Following the Standard Procedure A, the reaction of sodium naphthalene-1-sulfinate 1s (32.1 mg, 0.15 mmol, 1.5 equiv) and (*E*)-5-styryl-5*H*-thianthren-5-ium tetrafluoroborate 2a (40.6 mg, 0.10

mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid **4r** (22.2 mg, 75% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.60 (d, J = 8.6 Hz, 1H), 8.13 (dd, J = 7.3, 1.3 Hz, 1H), 8.01 (dd, J = 8.3, 1.3 Hz, 1H), 7.91 – 7.85 (m, 1H), 7.64 (ddt, J = 8.5, 6.9, 1.3 Hz, 1H), 7.57 (tt, J = 7.0, 1.2 Hz, 1H), 7.42 (t, J = 7.8 Hz, 1H), 7.22 (ddt, J = 8.6, 6.0, 3.1 Hz, 1H), 7.17 – 7.09 (m, 4H), 6.77 (s, 1H), 6.05 (s, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 151.6, 135.3, 134.0, 133.0, 132.5, 131.7, 129.3, 129.2, 128.9, 128.8, 128.4, 128.2, 127.0, 125.9, 124.4, 124.3;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{18}H_{15}O_2S^+$, 295.0787, found 295.0784.

1,3,5-Trimethyl-2-((1-phenylvinyl)sulfonyl)benzene (4s)

Ph S O O Following the Standard Procedure B, the reaction of sodium 2,4,6-trimethylbenzenesulfinate 1t (30.9 mg, 0.15 mmol, 1.5 equiv) and (*E*)-5-styryl-5*H*-thianthren-5-ium tetrafluoroborate 2a (40.6 mg,

0.10 mmol, 1.0 equiv) for 10 h at 50 °C afforded product after flash chromatography EA: PE = 0-20% as white solid **4s** (24.5 mg, 86% yield)

¹**H NMR** (600 MHz, CDCl₃) δ 7.34 – 7.29 (m, 1H), 7.26 – 7.19 (m, 4H), 6.84 (s, 2H), 6.44 (s, 1H), 5.88 (s, 1H), 2.45 (s, 6H), 2.25 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 152.0, 143.5, 140.8, 132.8, 132.1, 131.6, 129.3, 129.2, 128.3, 123.9, 22.7, 21.1;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{17}H_{19}O_2S^+$, 287.1100, found 287.1096.

2-Methylene-4-phenylbutanenitrile (5a)

Ph Following the Standard Procedure C, the reaction of Zn(CN)₂ **1u** (17.6

mg, 0.15 mmol, 1.5 equiv), KF (17.4 mg, 0.30 mmol, 3.0 equiv) and (E)-5-(4-phenylbut-1-en-1-yl)-5H-thianthren-5-ium tetrafluoroborate **2a** (43.4 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **5a** (11.0 mg, 70% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.31 (dd, J = 8.1, 6.6 Hz, 2H), 7.25 – 7.21 (m, 1H), 7.21 – 7.17 (m, 2H), 5.83 (s, 1H), 5.64 (s, 1H), 2.89 (t, J = 7.3 Hz, 2H), 2.57 (t, J = 7.3 Hz, 2H);

¹³C **NMR** (101 MHz, CDCl₃) δ 139.7, 131.1, 128.7, 128.6, 126.6, 122.5, 118.7, 36.6, 34.0;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{11}H_{12}N^+$, 158.0964, found 158.0965.

2-Cyclohexylacrylonitrile (5b)

Following the Standard Procedure C, the reaction of Zn(CN)₂ **1u** (17.6 mg, 0.15 mmol, 1.5 equiv), KF (17.4 mg, 0.30 mmol, 3.0 equiv) and (E)-5-(2-cyclohexylvinyl)-5H-thianthren-5-ium tetrafluoroborate **2l** (41.2 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **5b** (7.1 mg, 53% yield).

¹H NMR (400 MHz, CDCl₃) δ 5.79 (s, 1H), 5.68 (s, 1H), 2.20 – 2.10 (m, 1H), 1.90 – 1.78 (m, 4H), 1.74 – 1.65 (m, 1H), 1.37 – 1.13 (m, 5H);

¹³C NMR (101 MHz, CDCl₃) δ 129.2, 128.1, 118.6, 42.7, 31.4, 25.9, 25.7;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for C₉H₁₄N⁺, 136.1121, found 136.1125.

5-(1,3-Dioxoisoindolin-2-yl)-2-methylenepentanenitrile (5c)

Following the Standard Procedure C, the reaction of Zn(CN)₂ **1u**(17.6 mg, 0.15 mmol, 1.5 equiv), KF (17.4 mg, 0.30 mmol, 3.0 equiv) and (E)-5-(5-(1,3-dioxoisoindolin-2-yl)pent-1-en-1-yl)
-5H-thianthren-5-ium tetrafluoroborate **2c** (51.7 mg, 0.10 mmol, 1.0 equiv) for 10 h

afforded product after flash chromatography EA: PE = 0-10% as colorless oil **5c** (18.4 mg, 77% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (dd, J = 5.4, 3.1 Hz, 2H), 7.73 (dd, J = 5.5, 3.0 Hz, 2H), 5.89 (s, 1H), 5.80 (s, 1H), 3.73 (t, J = 6.8 Hz, 2H), 2.32 (t, J = 7.7 Hz, 2H), 1.96 (tt, J = 7.7, 6.8 Hz, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 168.4, 134.2, 132.1, 131.3, 123.5, 121.9, 118.4, 36.8,

32.0, 26.7;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{14}H_{13}N_2O_2^+$, 241.0972, found 241.0970.

9-Cyanodec-9-en-1-yl benzoate (5d)

Following the Standard Procedure C, the reaction of Zn(CN)₂ **1u** (17.6 mg, 0.15 mmol, 1.5 equiv), KF (17.4 mg, 0.30 mmol, 3.0 equiv) and (*E*)-5-(10-(benzoyloxy)dec-1-en-1-yl)-5*H*-thianthren -5-ium tetrafluoroborate **2g** (56.2 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-10% as colorless oil **5d** (18.7 mg, 66% yield). **1H NMR** (400 MHz, CDCl₃) δ 8.07 – 8.02 (m, 2H), 7.58 – 7.52 (m, 1H), 7.47 – 7.41 (m, 2H), 5.82 (s, 1H), 5.69 (s, 1H), 4.31 (t, *J* = 6.6 Hz, 2H), 2.24 (t, *J* = 7.6 Hz, 2H), 1.77 (tt, *J* = 6.9, 6.6 Hz, 2H), 1.56 (tt, *J* = 7.6, 6.5 Hz, 2H), 1.49 – 1.29 (m, 8H); **13C NMR** (101 MHz, CDCl₃) δ 166.8, 133.0, 130.6, 130.2, 129.7, 128.5, 123.5, 118.9, 65.2, 34.7, 29.2, 28.8, 28.6, 27.6, 26.1;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{18}H_{24}NO_2^+$, 286.1802, found 286.1801.

10-Hydroxy-2-methylenedecanenitrile (5e)

Following the Standard Procedure C, the reaction of $Zn(CN)_2$ **1u** (17.6 mg, 0.15 mmol, 1.5 equiv), KF (17.4 mg, 0.30 mmol, 3.0 equiv) and (*E*)-5-(10-hydroxydec-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2j** (45.8 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-10% as colorless oil **5e** (11.8 mg, 65% yield). **1H NMR** (400 MHz, CDCl₃) δ 5.83 (s, 1H), 5.69 (s, 1H), 3.64 (t, J = 6.6 Hz, 2H),

1H NMR (400 MHz, CDCl₃) δ 5.83 (s, 1H), 5.69 (s, 1H), 3.64 (t, J = 6.6 Hz, 2H) 2.24 (t, J = 7.6 Hz, 2H), 1.60 - 1.52 (m, 4H), 1.38 - 1.29 (m, 8H);

¹³C NMR (101 MHz, CDCl₃) δ 130.3, 123.5, 118.9, 63.1, 34.7, 32.9, 29.4, 29.3, 28.6, 27.6, 25.8;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{11}H_{20}NO^+$, 182.1539, found 182.1539.

7-Bromo-2-methyleneheptanenitrile (5f)

Following the Standard Procedure C, the reaction of $Zn(CN)_2$ **1u** (17.6 mg, 0.15 mmol, 1.5 equiv), KF (17.4 mg, 0.30 mmol, 3.0 equiv) and (*E*)-5-(7-bromohept-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2d** (47.9 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **5f** (16.9 mg, 84% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 5.85 (s, 1H), 5.72 (s, 1H), 3.41 (t, J = 6.8 Hz, 2H), 2.28 (t, J = 7.5 Hz, 2H), 1.89 (tt, J = 7.4, 6.8 Hz, 2H), 1.60 (tt, J = 7.5, 7.0 Hz, 2H), 1.49 (tt, J = 7.0, 6.8 Hz, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 130.6, 123.1, 118.7, 34.6, 33.5, 32.4, 27.3, 26.9; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₈H₁₃BrN⁺, 202.0226, found 202.0223.

2-Methyleneoct-7-enenitrile (5g)

Following the Standard Procedure C, the reaction of Zn(CN)₂ 1u (17.6 mg, 0.15 mmol, 1.5 equiv), KF (17.4 mg, 0.30 mmol, 3.0 equiv) and (*E*)-5-(octa-1,7-dien-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate 2k (41.2 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil 5g (6.4 mg, 47% yield).

¹H NMR (400 MHz, CDCl₃) δ 5.83 (s, 1H), 5.79 (ddt, J = 17.2, 10.2, 7.2 Hz, 1H), 5.70 (s, 1H), 5.01 (dd, J = 17.2, 1.9 Hz, 1H), 4.97 (dd, J = 10.2, 1.9 Hz, 1H), 2.26 (t, J = 7.5 Hz, 2H), 2.08 (dt, J = 7.2, 7.0 Hz, 2H), 1.63 – 1.54 (m, 2H), 1.48 – 1.39 (m, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 138.4, 130.3, 123.4, 118.9, 115.0, 34.6, 33.4, 28.0, 27.1;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for C₉H₁₄N⁺, 136.1121, found 136.1122.

1,2,3,4,4a,5,8,8a-Octahydro-1,4-methanonaphthalene-6-carbonitrile (5h)

Following the Standard Procedure D, the reaction of Zn(CN)₂ **1u** (17.6 mg, 0.15 mmol, 1.5 equiv), KF (17.4 mg, 0.30 mmol, 3.0 equiv) and 5-(1,2,3,4,4a,5,8,8a-octahydro-1,4-methanonaphthalen-6-yl)-5*H*-thianth ren-5-ium tetrafluoroborate **2v** (45.0 mg, 0.10 mmol, 1.0 equiv) at 50 °C for 10 h afforded product after flash chromatography EA: PE = 0-5% as colorless oil **5h** (13.2 mg, 76% yield).

¹H NMR (400 MHz, CDCl₃) δ 6.85 – 6.77 (m, 1H), 2.49 – 2.37 (m, 2H), 2.00 (s, 2H), 1.77 – 1.67 (m, 2H), 1.62 – 1.53 (m, 5H), 1.28 – 1.19 (m, 2H), 1.09 (d, J = 10.3 Hz, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 147.2, 119.6, 113.7, 43.2, 43.0, 42.7, 42.2, 33.4, 30.0, 29.7, 29.6, 29.0;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{12}H_{16}N^+$, 174.1277, found 174.1278.

(Z)-2-Propylhex-2-enenitrile (5i)

_____CN

Following the Standard Procedure D, the reaction of $Zn(CN)_2$ **1u** (17.6 mg, 0.15 mmol, 1.5 equiv), KF (17.4 mg, 0.30 mmol, 3.0 equiv) and (*Z*)-5-(oct-4-en-4-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2z** (41.4 mg, 0.10 mmol, 1.0 equiv) at 50 °C for 10 h afforded product

after flash chromatography EA: PE = 0.5% as colorless oil **5i** (6.3 mg, 46% yield, Z/E = 1.6:1).

¹**H NMR** (400 MHz, CDCl₃) δ 6.35 (t, J = 7.6 Hz, 0.43H), 6.13 (t, J = 7.7 Hz, 0.57H), 2.33 (q, J = 7.5 Hz, 1.1H), 2.21 – 2.11 (m, 2.9H), 1.63 – 1.53 (m, 1.9H), 1.47 (dq, J = 14.7, 7.4 Hz, 2.1H), 1.00 – 0.88 (m, 6.0H);

¹³C NMR (101 MHz, CDCl₃) δ 147.8, 118.0, 114.8, 36.3, 30.5, 22.1, 21.4, 13.7, 13.2; HRMS-ESI (m/z) [M+H]⁺ calc'd for C₉H₁₆N⁺, 138.1277, found 138.1277.

2-(2,5-Dimethylphenyl)acrylonitrile (5j)

CN

Following the Standard Procedure D, the reaction of $Zn(CN)_2$ **1u** (17.6 mg, 0.15 mmol, 1.5 equiv), KF (17.4 mg, 0.30 mmol, 3.0 equiv) and (*E*)-5-(2,5-dimethylstyryl)-5*H*-thianthren-5-ium tetrafluoroborate **2s**

(43.4 mg, 0.10 mmol, 1.0 equiv) for 24 h at 50 °C afforded product after flash chromatography EA: PE = 0.5% as colorless oil 5j (11.0 mg, 70% yield).

¹**H NMR** (600 MHz, CDCl₃) δ 7.11 (s, 1H), 7.11 (s, 1H), 7.07 (s, 1H), 6.23 (d, J = 0.5 Hz, 1H), 5.98 (d, J = 0.5 Hz, 1H), 2.40 (s, 3H), 2.33 (s, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 136.2, 133.6, 132.8, 131.0, 130.4, 129.7, 123.5, 118.2, 20.9, 19.7;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{11}H_{12}N^+$, 158.0964, found 158.0965.

1-(1-(4-Fluorophenyl)vinyl)-1*H*-indole (6a)

F

Following the Standard Procedure E, the reaction of indole 1v (17.6 mg, 0.15 mmol, 1.5 equiv), K₂CO₃ (13.8 mg, 0.10 mmol,

1.0 equiv) and (E)-5-(4-fluorostyryl)-5H-thianthren-5-ium

tetrafluoroborate **2q** (42.4 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-10% as light yellow solid **6a** (19.4 mg, 82% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 – 7.59 (m, 1H), 7.25 (dt, J = 8.5, 6.1 Hz, 2H), 7.13 (d, J = 3.3 Hz, 1H), 7.12 – 7.05 (m, 3H), 7.00 (t, J = 8.6 Hz, 2H), 6.59 (d, J = 3.3

Hz, 1H), 5.49 (s, 1H), 5.32 (s, 1H);

¹³C **NMR** (101 MHz, CDCl₃) δ 163.4 (d, J = 249.1 Hz), 144.2, 136.4, 133.3 (d, J = 3.2 Hz), 129.5, 128.9 (d, J = 8.3 Hz), 128.7, 122.2, 121.2, 120.4, 115.8 (d, J = 21.8 Hz), 112.0, 108.0 (d, J = 1.4 Hz), 103.4;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -112.05;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{16}H_{13}FN^+$, 238.1027, found 238.1025.

1-(1-(4-Fluorophenyl)vinyl)-1*H*-indol-3-yl)ethan-1-one (6b)

F

Following the Standard Procedure E, the reaction of 3-acetylindole **1w** (23.9 mg, 0.15 mmol, 1.5 equiv), K₂CO₃ (13.8 mg, 0.10 mmol, 1.0 equiv) and (*E*)-5-(4-fluorostyryl)-5*H* -thianthren-5-ium tetrafluoroborate **2q** (42.4 mg, 0.10 mmol, 1.0

equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as light yellow solid **6b** (22.3 mg, 80% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.37 (dt, J = 8.3, 1.0 Hz, 1H), 7.76 (s, 1H), 7.25 – 7.19 (m, 3H), 7.14 (ddd, J = 8.3, 7.0, 1.3 Hz, 1H), 7.06 – 6.93 (m, 3H), 5.67 (s, 1H), 5.42 (s, 1H), 2.50 (s, 3H);

¹³C **NMR** (101 MHz, CDCl₃) δ 193.5, 163.7 (d, J = 250.3 Hz), 143.4, 137.3, 135.1, 132.0 (d, J = 3.4 Hz), 128.6 (d, J = 8.4 Hz), 126.6, 123.9, 123.2, 122.9, 118.6, 116.1 (d, J = 22.0 Hz), 112.0, 110.6 (d, J = 1.5 Hz), 27.9;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -110.89;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{18}H_{15}FNO^+$, 280.1132, found 280.1130.

1-(1-(4-Fluorophenyl)vinyl)-1*H*-indole-5-carbaldehyde (6c)

F CHO

Following the Standard Procedure E, the reaction of indole-5-carboxaldehyde 1x (21.8 mg, 0.15 mmol, 1.5 equiv), K₂CO₃ (13.8 mg, 0.10 mmol, 1.0 equiv) and

(*E*)-5-(4-fluorostyryl)-5*H*-thianthren-5-ium tetrafluoroborate $\mathbf{2q}$ (42.4 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as light yellow solid $\mathbf{6c}$ (21.6 mg, 81% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 10.03 (s, 1H), 8.18 (s, 1H), 7.67 (dd, J = 8.7, 1.6 Hz, 1H), 7.24 (dd, J = 9.1, 4.5 Hz, 3H), 7.18 (d, J = 8.7 Hz, 1H), 7.07 – 7.01 (m, 2H), 6.77 (d, J = 4.5 Hz, 1H), 5.65 (s, 1H), 5.41 (s, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 192.4, 163.6 (d, J = 249.8 Hz), 143.6, 139.7, 132.6 (d, J = 3.3 Hz), 130.6, 130.2, 129.2, 128.7 (d, J = 8.4 Hz), 126.2, 122.7, 116.0 (d, J =21.8 Hz), 112.3, 109.6 (d, J = 1.5 Hz), 105.1;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -111.24;

HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₇H₁₃FNO⁺, 266.0976, found 266.0975.

5-Bromo-1-(1-(4-fluorophenyl)vinyl)-1*H*-indole (6d)

Following the Standard Procedure E, the reaction of 5-bromoindole 1y (29.4 mg, 0.15 mmol, 1.5 equiv), K₂CO₃ (13.8)0.10 mg, mmol,

(E)-5-(4-fluorostyryl)-5H-thianthren-5-ium tetrafluoroborate 2q (42.4 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-10% as light yellow solid 6d (24.0 mg, 76% yield).

1.0

equiv)

and

¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 1.9 Hz, 1H), 7.26 – 7.22 (m, 2H), 7.19 – 7.15 (m, 2H), 7.07 - 6.99 (m, 2H), 6.93 (d, J = 8.8 Hz, 1H), 6.56 (d, J = 3.3 Hz, 1H), 5.54 (s, 1H), 5.33 (s, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 163.5 (d, J = 249.6 Hz), 143.9, 135.1, 132.9 (d, J =3.3 Hz), 131.1, 129.8, 128.8 (d, J = 8.3 Hz), 125.1, 123.6, 115.9 (d, J = 21.9 Hz), 113.7, 113.4, 108.5 (d, J = 1.4 Hz), 102.9;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -111.58;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{16}H_{12}BrFN^+$, 316.0132, found 316.0129.

9-(1-(4-Fluorophenyl)vinyl)-9*H*-carbazole (6e)

Following the Standard Procedure E, the reaction of carbazole 1z (25.1 mg, 0.15 mmol, 1.5 equiv), K₂CO₃ (13.8 mg, 0.10 mmol, equiv) and (E)-5-(4-fluorostyryl)-5H-thianthren-5 -ium tetrafluoroborate 2q (42.4 mg, 0.10 mmol, 1.0 equiv) for 10 h

afforded product after flash chromatography EA: PE = 0-10% as white solid 6e (23.3 mg, 81% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 7.7 Hz, 2H), 7.40 - 7.33 (m, 2H), 7.30 -7.21 (m, 6H), 6.98 (t, J = 8.6 Hz, 2H), 6.02 (s, 1H), 5.58 (s, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 163.4 (d, J = 249.1 Hz), 141.9, 140.8, 132.6 (d, J =3.3 Hz), 128.2 (d, J = 8.3 Hz), 126.0, 123.6, 120.4, 120.1, 115.9 (d, J = 21.8 Hz), 112.7 (d, J = 1.7 Hz), 110.9;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -112.15;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{20}H_{15}FN^+$, 288.1183, found 288.1177.

1-(1-(4-Fluorophenyl)vinyl)-1*H*-imidazole (6f)

Following the Standard Procedure E, the reaction of imidazole

1aa (10.2 mg, 0.15 mmol, 1.5 equiv), K₂CO₃ (13.8 mg, 0.10 mmol,
1.0 equiv) and (*E*)-5-(4-fluorostyryl)-5*H*-thianthren-5-ium

tetrafluoroborate 2q (42.4 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after

flash chromatography EA: PE = 0-20% as colorless oil 6f (15.8 mg, 84% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.36 – 7.28 (m, 2H), 7.14 (s, 1H), 7.12 – 7.04 (m, 2H), 7.00 (s, 1H), 5.28 (s, 1H), 5.27 (s, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 163.7 (d, J = 250.3 Hz), 142.4, 137.2, 131.9 (d, J = 3.4 Hz), 129.9, 129.3 (d, J = 8.4 Hz), 119.4, 116.0 (d, J = 22.0 Hz), 106.5 (d, J = 1.3 Hz);

¹⁹**F NMR** (376 MHz, CDCl₃) δ -110.90;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{11}H_{10}FN_2^+$, 189.0823, found 189.0821.

N-(1-(4-Fluorophenyl)vinyl)-N,4-dimethylbenzenesulfonamide (6g)

Following the Standard Procedure E, the reaction of N-methyl-p-toluenesulfonamide **1ab** (27.8 mg, 0.15 mmol, 1.5 equiv), K_2CO_3 (13.8 mg, 0.10 mmol, 1.0 equiv) and (E)-5-(4-fluorostyryl)-5H-thianthren-5-ium tetrafluoroborate **2q** (42.4 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as light yellow solid **6g** (19.4 mg, 64% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.67 (m, 2H), 7.51 – 7.44 (m, 2H), 7.35 – 7.30 (m, 2H), 7.05 – 6.98 (m, 2H), 5.35 (s, 1H), 4.77 (s, 1H), 3.04 (s, 3H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.3 (d, J = 248.3 Hz), 147.5, 143.9, 134.5, 133.8 (d, J = 3.3 Hz), 129.6, 128.4 (d, J = 8.3 Hz), 128.1, 115.4 (d, J = 21.7 Hz), 110.8, 38.5, 21.7;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -112.99;

HRMS-ESI (m/z) [M+H]⁺ calc'd for C₁₆H₁₇FNO₂S⁺, 306.0959, found 306.0957.

2-(1-(4-Fluorophenyl)vinyl)isoindoline-1,3-dione (6h)

Following the Standard Procedure E, the reaction of phthalimide **1ac** (22.1 mg, 0.15 mmol, 1.5 equiv), K₂CO₃ (13.8 mg, 0.10 mmol, 1.0 equiv) and (*E*)-5-(4-fluorostyryl)-5*H*-thianthren-5

-ium tetrafluoroborate 2q (42.4 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as white solid 6h (21.5 mg, 80% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (dd, J = 5.5, 3.1 Hz, 2H), 7.79 (dd, J = 5.5, 3.1 Hz, 2H), 7.36 (ddt, J = 8.1, 5.1, 2.5 Hz, 2H), 7.06 – 6.98 (m, 2H), 5.93 (s, 1H), 5.43 (s, 1H);

¹³C **NMR** (101 MHz, CDCl₃) δ 167.2, 163.2 (d, J = 248.7 Hz), 136.4, 134.6, 131.9, 131.8 (d, J = 3.3 Hz), 127.5 (d, J = 8.4 Hz), 124.0, 116.1, 115.8 (d, J = 21.9 Hz); ¹⁹F **NMR** (376 MHz, CDCl₃) δ -112.51;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{16}H_{11}FNO_2^+$, 268.0768, found 268.0768.

5-Bromo-1-(1-(4-chlorophenyl)vinyl)-1*H*-indole (6i)

Following the Standard Procedure E, the reaction of 5-bromoindole $\mathbf{1y}$ (29.4 mg, 0.15 mmol, 1.5 equiv), K_2CO_3 (13.8 mg, 0.10 mmol, 1.0 equiv) and (E)-5-(4-chlorostyryl)-5H-thianthren-5-ium tetrafluoroborate $\mathbf{2p}$ (44.1 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-10% as light yellow solid $\mathbf{6i}$ (25.9 mg, 78% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.32 (dd, J = 8.7, 1.8 Hz, 2H), 7.22 – 7.15 (m, 4H), 6.93 (d, J = 8.7 Hz, 1H), 6.57 (d, J = 3.3 Hz, 1H), 5.59 (s, 1H), 5.38 (s, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 143.8, 135.5, 135.2, 135.1, 131.1, 129.8, 129.1, 128.3, 125.2, 123.7, 113.8, 113.3, 109.2, 103.0;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{16}H_{12}BrClN^+$, 331.9836, found 331.9835.

5-Bromo-1-(1-(4-bromophenyl)vinyl)-1*H*-indole (6j)

Following the Standard Procedure E, the reaction of 5-bromoindole **1y** (29.4 mg, 0.15 mmol, 1.5 equiv), K₂CO₃ (13.8 mg, 0.10 mmol, 1.0 equiv) and (*E*)-5-(4-bromostyryl)

-5*H*-thianthren-5-ium tetrafluoroborate **2o** (48.5 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0.10% as light yellow solid **6j**

(31.0 mg, 82% yield).

solid 6k (26.5 mg, 82% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (t, J = 2.1 Hz, 1H), 7.53 – 7.43 (m, 2H), 7.25 – 7.10 (m, 4H), 6.93 (dd, J = 8.8, 2.1 Hz, 1H), 6.56 (t, J = 2.6 Hz, 1H), 5.60 (d, J = 1.9 Hz, 1H), 5.38 (d, J = 1.9 Hz, 1H);

¹³C **NMR** (101 MHz, CDCl₃) δ 143.9, 135.6, 135.1, 132.1, 131.1, 129.8, 128.5, 125.2, 123.72, 123.67, 113.8, 113.3, 109.3, 103.1;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{16}H_{12}Br_2N^+$, 375.9331, found 375.9329.

5-Bromo-1-(3,4-dihydronaphthalen-1-yl)-1*H*-indole (6k)

Following the Standard Procedure E, the reaction of 5-bromoindole 1y (29.4 mg, 0.15 mmol, 1.5 equiv), K₂CO₃ (13.8 mg, 0.10 mmol, 1.0 equiv) and 5-(3,4-dihydronaphthalen -2-yl)-5*H*-thianthren-5-ium tetrafluoroborate 2aa (43.2 mg, 0.10 mmol, 1.0 equiv) for

10 h afforded product after flash chromatography EA: PE = 0-10% as light yellow

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (d, J = 1.9 Hz, 1H), 7.25 – 7.17 (m, 4H), 7.04 (dt, J = 7.8, 3.0 Hz, 2H), 6.58 (d, J = 3.0 Hz, 1H), 6.48 (d, J = 7.8 Hz, 1H), 6.19 (t, J = 4.6 Hz, 1H), 2.97 (t, J = 8.1 Hz, 2H), 2.57 (td, J = 8.1, 4.6 Hz, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 136.4, 136.3, 135.6, 131.9, 130.3, 130.0, 128.4, 127.9, 126.9, 125.7, 124.8, 123.4, 123.1, 113.3, 112.8, 102.1, 27.6, 22.9;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{18}H_{15}BrN^+$, 324.0382, found 324.0381.

1-(4-Phenylbut-1-en-2-yl)-1*H*-imidazole (6l)

Following the Standard Procedure F, the reaction of imidazole **1aa** (10.2 mg, 0.15 mmol, 1.5 equiv), Cs_2CO_3 (32.6 mg, 0.10 mmol, 1.0 equiv) and (*E*)-5-(4-phenylbut-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (43.4 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as colorless oil **6l** (11.8 mg, 60% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.70 (s, 1H), 7.32 – 7.27 (m, 2H), 7.24 – 7.19 (m, 1H), 7.16 – 7.09 (m, 4H), 5.07 (s, 1H), 4.78 (s, 1H), 2.80 (s, 4H);

¹³C NMR (101 MHz, CDCl₃) δ 142.1, 140.2, 135.3, 130.1, 128.7, 128.4, 126.5, 117.2, 103.9, 35.9, 33.4;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{13}H_{15}N_2^+$, 199.1230, found 199.1228.

1-(1-Cyclohexylvinyl)-1*H*-imidazole (6m)

Following the Standard Procedure F, the reaction of imidazole **1aa** (10.2 mg, 0.15 mmol, 1.5 equiv), Cs_2CO_3 (32.6 mg, 0.10 mmol, 1.0 equiv) and (*E*)-5-(5-(1,3-dioxoisoindolin-2-yl)pent-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2l** (41.2 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as colorless oil **6m** (13.0 mg, 74% yield).

¹**H NMR** (600 MHz, CDCl₃) δ 7.61 (s, 1H), 7.08 (s, 1H), 7.04 (s, 1H), 5.05 (s, 1H), 4.85 (s, 1H), 2.32 (tt, J = 11.5, 3.2 Hz, 1H), 1.86 – 1.77 (m, 4H), 1.75 – 1.69 (m, 1H), 1.36 – 1.26 (m, 2H), 1.24 – 1.13 (m, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 148.8, 135.8, 129.6, 117.9, 103.8, 42.2, 31.5, 26.4, 26.2;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{11}H_{17}N_2^+$, 177.1386, found 177.1385.

1-(Octa-1,7-dien-2-yl)-1*H*-imidazole (6n)

¹**H NMR** (600 MHz, CDCl₃) δ 7.68 (s, 1H), 7.10 (s, 1H), 7.09 (s, 1H), 5.77 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.07 (s, 1H), 4.99 (dd, J = 16.9, 1.8 Hz, 1H), 4.95 (dd, J = 10.2, 1.8 Hz, 1H), 4.80 (s, 1H), 2.50 (t, J = 7.4 Hz, 2H), 2.06 (dt, J = 7.2, 6.7 Hz, 2H), 1.51 (tt, J = 7.4, 7.0 Hz, 2H), 1.44 (tt, J = 7.2, 7.0 Hz, 2H);

¹³C NMR (151 MHz, CDCl₃) δ 142.9, 138.4, 135.3, 129.9, 117.2, 115.0, 103.1, 33.9, 33.4, 28.3, 26.4;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{11}H_{17}N_2^+$, 177.1386, found 177.1385.

1-(Cyclohex-1-en-1-yl)-1*H*-imidazole (60)

Following the Standard Procedure F, the reaction of imidazole **1aa** (10.2 mg, 0.15 mmol, 1.5 equiv), Cs₂CO₃ (32.6 mg, 0.10 mmol, 1.0 equiv) and (*E*)-5-(5-(1,3-dioxoisoindolin-2-yl)pent-1-en-1-yl)-5*H*

-thianthren-5-ium tetrafluoroborate 2u (42.4 mg, 0.10 mmol, 1.0 equiv) for 10 h

afforded product after flash chromatography EA: PE = 0-20% as colorless oil **60** (8.5 mg, 57% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.08 (s, 1H), 7.06 (s, 1H), 5.83 (tt, J = 3.9, 1.6 Hz, 1H), 2.46 – 2.39 (m, 2H), 2.23 – 2.15 (m, 2H), 1.87 – 1.78 (m, 2H), 1.71 – 1.62 (m, 2H);

¹³C NMR (101 MHz, CDCl₃) δ 134.6, 133.9, 129.5, 116.7, 116.5, 27.5, 24.2, 22.5, 21.8;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_9H_{13}N_2^+$, 149.1073, found 149.1073.

1-((1E,5Z)-Cycloocta-1,5-dien-1-yl)-1*H*-imidazole (6p)

Following the Standard Procedure F, the reaction of imidazole 1aa (10.2 mg, 0.15 mmol, 1.5 equiv), Cs_2CO_3 (32.6 mg, 0.10 mmol, 1.0 equiv) and (*E*)-5-(5-(1,3-dioxoisoindolin-2-yl)pent-1-en-1-yl)-5*H* -thianthren-5-ium tetrafluoro-borate 2w (42.4 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-20% as colorless oil 6p (9.9 mg, 57% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 7.04 (s, 1H), 7.00 (s, 1H), 5.74 (t, J = 6.7 Hz, 1H), 5.61 (t, J = 4.1 Hz, 2H), 2.81 – 2.73 (m, 2H), 2.53 – 2.41 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 136.1, 136.0, 129.3, 128.9, 127.8, 121.8, 118.1, 32.1, 27.7, 26.6, 25.7;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{11}H_{15}N_2^+$, 175.1230, found 175.1229.

5-((3,5-Dimethylphenoxy)methyl)-3-(1-(4-fluorophenyl)vinyl)oxazolidin-2-one (6q)

Following the Standard Procedure E, the reaction of Metaxalone (33.2 mg, 0.15 mmol, 1.5 equiv), K₂CO₃ (13.8 mg, 0.10 mmol, 1.0 equiv) and (*E*)-5-(4-fluorostyryl)-5*H*-thianthren-5-ium tetrafluoro

-borate 2q (42.4 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-50% as white solid 6q (27.9 mg, 82% yield).

¹**H NMR** (600 MHz, CDCl₃) δ 7.44 – 7.39 (m, 2H), 7.09 – 7.01 (m, 2H), 6.67 (s, 1H), 6.56 (s, 2H), 5.23 (d, J = 0.6 Hz, 1H), 5.20 (d, J = 0.6 Hz, 1H), 4.90 (ddt, J = 9.0, 5.5, 4.7 Hz, 1H), 4.20 (dd, J = 10.2, 4.7 Hz, 1H), 4.14 (dd, J = 10.2, 4.7 Hz, 1H), 3.92 (dd,

J = 9.1, 9.0 Hz, 1H), 3.79 (dd, J = 9.1, 5.5 Hz, 1H), 2.30 (s, 6H);

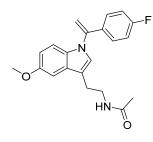
¹³C **NMR** (151 MHz, CDCl₃) δ 163.2 (d, J = 248.4 Hz), 158.2, 155.2, 142.2, 139.7, 132.0 (d, J = 3.2 Hz), 128.7 (d, J = 8.3 Hz), 123.7, 115.6 (d, J = 21.8 Hz), 112.5, 106.9, 70.9, 68.1, 48.5, 21.6;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -112.62.

HRMS-ESI (m/z) [M+H]⁺ calc'd for C₂₀H₂₁FNO₃⁺, 342.1500, found 342.1498.

1-(1-(4-Fluorophenyl)vinyl)-2-(((3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl)-methyl)sulfinyl)-1H-benzo[d]imidazole (6r)

Following the Standard Procedure E, the reaction of Lansoprazole (55.4 mg, 0.15 mmol, 1.5 equiv), K₂CO₃ (13.8 mg, 0.10 mmol, 1.0 equiv) and (*E*)-5-(4-fluorostyryl)-5*H*-thianthren-5-ium tetrafluoro -borate **2q** (42.4 mg, 0.10 mmol, 1.0 equiv) for 10 h


afforded product after flash chromatography EA: PE = 0-50% as white solid **6r** (34.3 mg, 70% yield).

¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 5.6 Hz, 1H), 7.88 (d, J = 8.1 Hz, 1H), 7.38 -7.31 (m, 1H), 7.30 -7.26 (m, 1H), 7.26 -7.19 (m, 2H), 7.07 (d, J = 8.1 Hz, 1H), 7.03 -6.97 (m, 1H), 6.57 (d, J = 5.7 Hz, 1H), 6.11 -6.00 (m, 1H), 5.70 (s, 1H), 5.20 (d, J = 14.0 Hz, 1H), 4.95 (d, J = 14.0 Hz, 1H), 4.35 (q, J = 7.8 Hz, 2H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 163.7 (d, J = 250.5 Hz), 161.8, 154.2, 152.1, 148.0, 142.2, 139.5, 136.0, 131.3 (d, J = 3.3 Hz), 128.2 (d, J = 8.5 Hz), 125.4, 124.0, 123.1, 123.0 (q, J = 277.9 Hz), 121.5, 116.1 (d, J = 22.0 Hz), 115.6, 111.9, 105.7, 65.5 (q, J = 36.4 Hz), 57.8, 11.1;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -73.79, -110.75;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{24}H_{20}F_4N_3O_2S^+$, 490.1207, found 490.1206.

N-(2-(1-(1-(4-Fluorophenyl)vinyl)-5-methoxy-1H-indol-3-yl)ethyl)acetamide (6s)

Following the Standard Procedure E, the reaction of Melatonin (34.8 mg, 0.15 mmol, 1.5 equiv), K_2CO_3 (13.8 mg, 0.10 mmol, 1.0 equiv) and (*E*)-5-(4-fluorostyryl)-5*H*-thianthren-5-ium tetrafluoroborate **2q** (42.4 mg, 0.10 mmol, 1.0 equiv) for 10 h afforded product after flash chromatography EA: PE = 0-50%

as white solid **6s** (26.4 mg, 75% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 – 7.20 (m, 2H), 7.04 – 6.97 (m, 3H), 6.95 – 6.91 (m, 2H), 6.73 (dd, J = 9.0, 2.4 Hz, 1H), 5.64 (bs, 1H), 5.36 (s, 1H), 5.22 (s, 1H), 3.82 (s, 3H), 3.55 (dt, J = 6.9, 6.2 Hz, 2H), 2.90 (t, J = 6.9 Hz, 2H), 1.91 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 170.1, 163.4 (d, J = 249.2 Hz), 154.5, 144.1, 133.4 (d, J = 3.2 Hz), 132.0, 129.5, 129.1 (d, J = 8.3 Hz), 126.9, 115.7 (d, J = 21.8 Hz), 113.6, 113.0, 112.4, 106.7, 100.9, 56.0, 39.8, 25.4, 23.5;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -111.90;

HRMS-ESI (m/z) $[M+H]^+$ calc'd for $C_{21}H_{22}FN_2O_2^+$, 353.1660, found 353.1656.

VII. Mechanistic Study

One-Pot Experiments

Under the nitrogen atmosphere, to a 10.0 mL borosilicate vial equipped with a magnetic stir bar was charged with thianthrene 5-oxide (46.5 mg, 0.2 mmol, 2.0 equiv), 4-phenyl-1-butene (13.2 mg, 0.1 mmol, 1.0 equiv) and CH₃CN (1.0 mL). Then, trifluoroacetic anhydride (31.5)mg, 0.30 mmol, 3.0 equiv) trifluoromethanesulfonic (18.0 mg, 0.12 mmol, 1.2 equiv) were added at 0 °C. The resulting mixture was stirred at 0 °C for 1 h. After stirring at room temperature for 1 h, the solvent was evaporated followed by the addition of DCM (10.0 mL), washed with saturated aqueous NaHCO₃ solution (2 x 10.0 mL), then the CH₂Cl₂ solution was washed with aqueous NaBF4 solution (2 x 10.0 mL, 5 % w/w). The DCM solvent was evaporated followed by the addition of sodium methanesulfinate 1a (15.6 mg, 0.15 mmol, 1.5 equiv) and DCE (1.0 mL). The resulting mixture was stirred at room temperature for 10 h. Evaporation of solvent and flash chromatography (EA: PE = 0-10%) afforded **3a** as white solid (15.0 mg, 71% yield).

Under the nitrogen atmosphere, to a 10.0 mL borosilicate vial equipped with a magnetic stir bar was charged with thianthrene 5-oxide (46.5 mg, 0.2 mmol, 2.0 equiv), 4-phenyl- 1-butene (13.2 mg, 0.1 mmol, 1.0 equiv) and CH₃CN (1.0 mL). Then, trifluoroacetic anhydride (31.5 mg, 0.30 mmol, 3.0 equiv) and trifluoromethanesulfonic (18.0 mg, 0.12 mmol, 1.2 equiv) were added at 0 °C. The resulting mixture was stirred at 0 °C for 1 h. After stirring at room temperature for 1 h, the solvent was evaporated followed by the addition of DCM (10.0 mL), washed with saturated aqueous NaHCO₃ solution (2 x 10.0 mL), then the CH₂Cl₂ solution was washed with aqueous NaBF₄ solution (2 x 10.0 mL, 5 % w/w). The DCM solvent was evaporated followed by the addition of imidazole 1aa (10.2 mg, 0.15 mmol, 1.5 equiv), K₂CO₃ (13.8 mg, 0.10 mmol, 1.0 equiv) and CH₃CN (1.0 mL). The resulting mixture was stirred at room temperature for 10 h. Evaporation of solvent and flash chromatography (EA: PE = 0-20%) afforded 61 as colorless oil (12.9 mg, 65% yield).

Probe of Radical Experiments

Following the Standard Procedure A, the reaction of sodium methanesulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv), (*E*)-5-(4-phenylbut-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (43.4 mg, 0.10 mmol, 1.0 equiv) and TEMPO (30.5 mg, 0.20 mmol, 2.0 equiv) in DCE (1.0 mL) for 10 h. The conversion of **2a** >95%, and the yield of **3a** 72% yield. Conversion and yield were determined by ¹H NMR of the crude mixture using mesitylene (12.0 mg, 0.10 mmol, 1.0 equiv) as internal standard.

Following the Standard Procedure A, the reaction of sodium methanesulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv), (*E*)-5-(4-phenylbut-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (43.4 mg, 0.10 mmol, 1.0 equiv) and BHT (44.1 mg, 0.20 mmol, 2.0 equiv) in DCE (1.0 mL) for 10 h. The conversion of **2a** >95%, and the yield of **3a** 83% yield. Conversion and yield were determined by ¹H NMR of the crude mixture using mesitylene (12.0 mg, 0.10 mmol, 1.0 equiv) as internal standard.

Assignment of Reaction Intermediate

Under the nitrogen atmosphere, to a 10.0 mL Schlenk tube equipped with a magnetic stir bar was charged with (*E*)-5-(4-phenylbut-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (43.4 mg, 0.1 mmol, 1.0 equiv), sodium methanesulfinate **1a** (15.6 mg, 0.15 mmol, 1.5 equiv) and HBF₄·Et₂O (16.2 mg, 0.1 mmol, 1.0 equiv). After addition of DCE (1.0 mL), the reaction stirred at room temperature for 10 h. The reaction mixture was evaporated and washed with Et₂O (3 x 10.0 mL). The residual solid was dissolved in DCM (10.0 mL) and filtrated, the filtrate was evaporated to afford **7a** (22.1 mg, 43% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 8.33 (d, J = 7.8 Hz, 1H), 8.09 – 7.99 (m, 1H), 7.83 (dd, J = 7.9, 1.0 Hz, 1H), 7.77 – 7.69 (m, 3H), 7.69 – 7.56 (m, 2H), 7.25 – 7.15 (m, 3H), 7.08 – 7.03 (m, 2H), 4.31 (dd, J = 13.8, 9.6 Hz, 1H), 4.11 (dd, J = 13.8, 4.4 Hz, 1H), 3.25 – 3.16 (m, 1H), 3.12 (s, 3H), 2.81 (dt, J = 14.3, 7.2 Hz, 1H), 2.71 (dt, J = 14.3, 7.2 Hz, 1H), 2.44 – 2.33 (m, 1H), 2.03 (dq, J = 15.2, 7.2 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 138.9, 136.1, 135.9, 135.8, 135.2, 134.7, 130.6, 130.1, 129.0, 128.6, 126.8, 118.8, 117.3, 58.3, 40.4, 38.0, 32.0, 29.8;

¹⁹F NMR (376 MHz, CDCl₃) δ -150.36, 150.41;

HRMS-ESI (m/z) $[M-BF_4]^+$ calc'd for $C_{23}H_{23}O_2S_3^+$, 427.0855, found 427.0853.

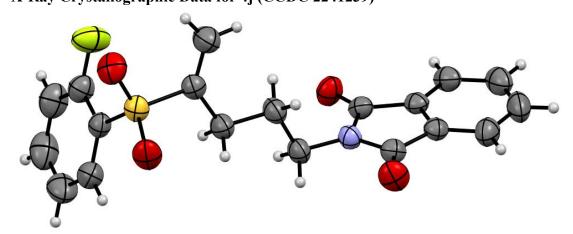
Under the nitrogen atmosphere, to a 10.0 mL Schlenk tube equipped with a magnetic stir bar was charged with 5-(2-(methylsulfonyl)-4-phenylbutyl)-5*H*-thianthren-5-ium trifluoromethanesulfonate **7a** (57.7 mg, 0.1 mmol, 1.0 equiv) and K₂CO₃ (13.8 mg, 0.1 mmol, 1.0 equiv). After addition of DCE (1.0 mL), the reaction stirred at room temperature for 10 h. The reaction mixture was purified directly by column chromatography to afford **3a** as white solid (13.3 mg, 63% yield).

Under the nitrogen atmosphere, to a 10.0 mL Schlenk tube equipped with a magnetic stir bar was charged with (*E*)-5-(4-phenylbut-1-en-1-yl)-5*H*-thianthren-5-ium tetrafluoroborate **2a** (86.8 mg, 0.2 mmol, 1.0 equiv), imidazole **1aa** (20.4 mg, 0.3 mmol, 1.5 equiv) and Na₃PO₄ (32.8 mg, 0.2 mmol, 1.0 equiv). After addition of CH₃CN (2.0 mL), the reaction stirred at room temperature for 10 h. The reaction mixture was evaporated and washed with Et₂O (3 x 10.0 mL). The residual solid was dissolved in DCM (10.0 mL) and filtrated, the filtrate was evaporated to afford **7b** (98.3 mg, 98% yield).

¹**H NMR** (600 MHz, CDCl₃) δ 8.31 (d, J = 7.9 Hz, 1H), 7.80 (d, J = 7.8 Hz, 1H), 7.74 – 7.66 (m, 2H), 7.61 (dt, J = 10.8, 7.8 Hz, 2H), 7.51 (d, J = 7.9 Hz, 1H), 7.47 (s, 1H), 7.39 (t, J = 7.7 Hz, 1H), 7.16 (t, J = 7.5 Hz, 2H), 7.10 (t, J = 7.7 Hz, 1H), 6.98 (d, J = 7.5 Hz, 2H), 6.83 (s, 1H), 6.77 (s, 1H), 5.07 (tt, J = 6.7, 3.2 Hz, 1H), 4.68 (dd, J = 13.2, 3.2 Hz, 1H), 3.87 (dd, J = 13.2, 3.2 Hz, 1H), 2.48 – 2.41 (m, 1H), 2.25 – 2.16 (m, 2H), 1.95 (tt, J = 14.0, 6.7 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 139.6, 136.8, 136.1, 135.9, 134.6, 134.3, 133.3, 131.5, 130.41, 130.38, 130.36, 130.2, 128.6, 128.4, 126.4, 118.7, 117.1, 115.7, 54.2, 46.4,

37.1, 31.5;


¹⁹**F NMR** (376 MHz, CDCl₃) δ -150.49, 150.55;

HRMS-ESI (m/z) $[M-BF_4]^+$ calc'd for $C_{25}H_{23}N_2S_2^+$, 415.1297, found 415.1290.

Under the nitrogen atmosphere, to a 10.0 mL Schlenk tube equipped with a magnetic stir bar was charged with 5-(2-(1*H*-imidazol-1-yl)-4-phenylbutyl)-5*H*-thianthren -5-ium tetrafluoroborate **7b** (50.2 mg, 0.1 mmol, 1.0 equiv) and Cs₂CO₃ (32.6 mg, 0.1 mmol, 1.0 equiv). After addition of CH₃CN (1.0 mL), the reaction stirred at room temperature for 10 h. The reaction mixture was purified directly by column chromatography to afford **6l** as colorless oil (11.3 mg, 57% yield).

VIII. Crystallographic Data

X-Ray Crystallographic Data for 4j (CCDC 2241239)

Table S8. Crystal data and structure refinement for 4j (LMS12209B2 0m)

Identification code LMS12209B2 0m

Empirical formula C₁₉H₁₆FNO₄S

Formula weight 373.39

Temperature/K 267.0

Crystal system monoclinic

Space group P2/n

a/Å 7.0846(7)

b/Å 12.2015(12)

c/Å 23.936(2)

 $\alpha/^{\circ}$ 90

 β /° 98.375(4)

 γ /° 90

Volume/Å³ 2047.1(3)

Z 4

 $\rho_{calc}g/cm^3$ 1.212

 μ/mm^{-1} 1.676

F(000) 776.0

Crystal size/mm³ $0.02 \times 0.01 \times 0.01$

Radiation $CuK\alpha (\lambda = 1.54178)$

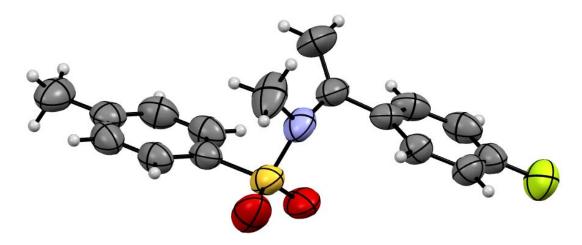
2Θ range for data collection/° 7.244 to 144.838

Index ranges $-8 \le h \le 8, -14 \le k \le 15, -29 \le 1 \le 22$

Reflections collected 20764

Independent reflections $4021 [R_{int} = 0.0498, R_{sigma} = 0.0344]$

Data/restraints/parameters 4021/0/235


Goodness-of-fit on F² 1.198

Final R indexes [I>= 2σ (I)] $R_1 = 0.0588$, $wR_2 = 0.2023$

Final R indexes [all data] $R_1 = 0.0629$, $wR_2 = 0.2059$

Largest diff. peak/hole / e Å⁻³ 0.38/-0.28

X-Ray Crystallographic Data for 6g (CCDC 2241240)

Table S9. Crystal data and structure refinement for **6g** (lms129c06_0ma)

Identification code lms129c06_0ma

Empirical formula C₁₆H₁₆FNO₂S

Formula weight 305.36

Temperature/K 298.0

Crystal system monoclinic

Space group Cc

a/Å 17.2716(14)

b/Å 11.7864(14)

c/Å 7.4972(7)

 $\alpha/^{\circ}$ 90

 $\beta/^{\circ}$ 92.385(6)

γ/° 90

Volume/Å³ 1524.9(3)

Z 4

 $\rho_{calc}g/cm^3 1.330$

 μ/mm^{-1} 2.019

F(000) 640.0

Crystal size/mm³ $0.02 \times 0.01 \times 0.01$

Radiation $CuK\alpha (\lambda = 1.54178)$

2Θ range for data collection/° 9.086 to 144.248

Index ranges $-21 \le h \le 21, -14 \le k \le 14, -9 \le 1 \le 8$

Reflections collected 12375

Independent reflections $2802 [R_{int} = 0.0543, R_{sigma} = 0.0408]$

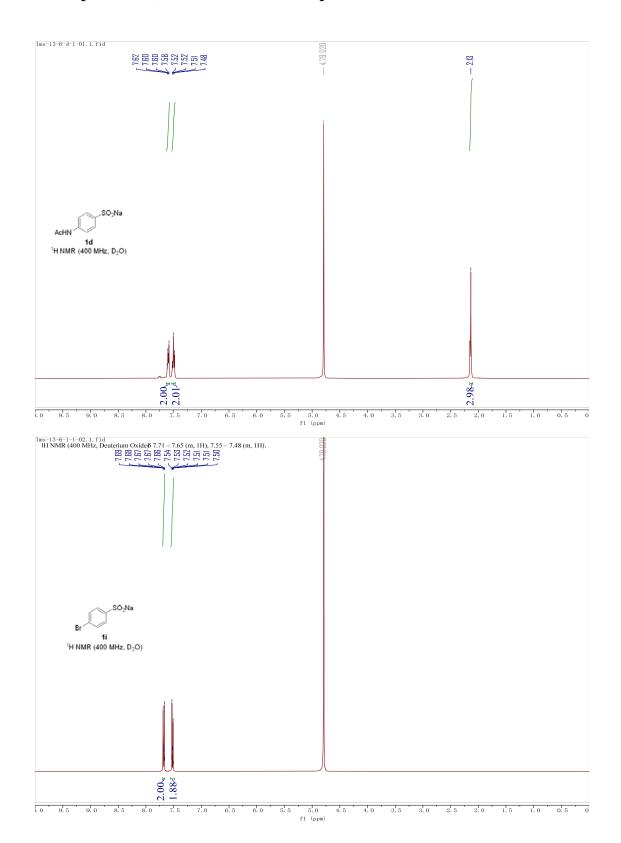
Data/restraints/parameters 2802/2/192

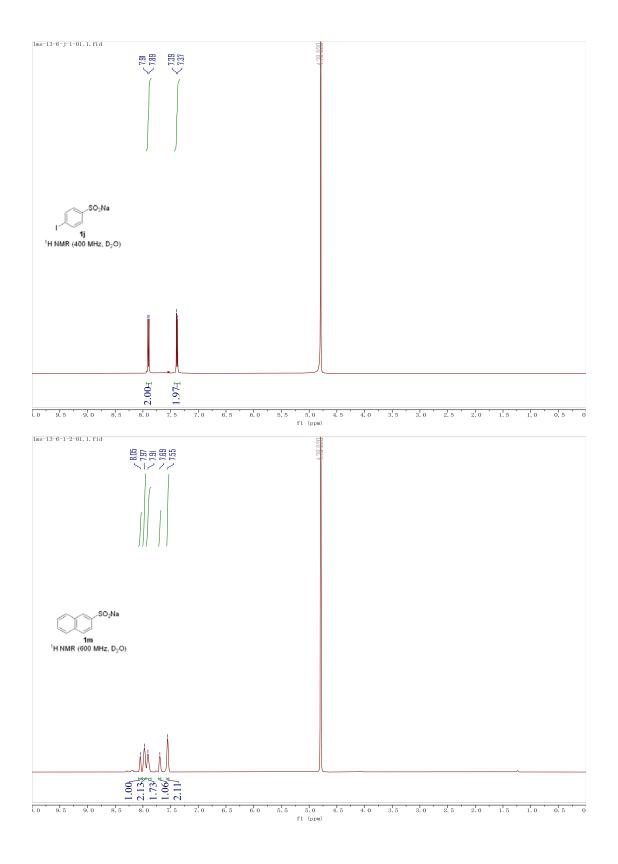
Goodness-of-fit on F^2 1.055

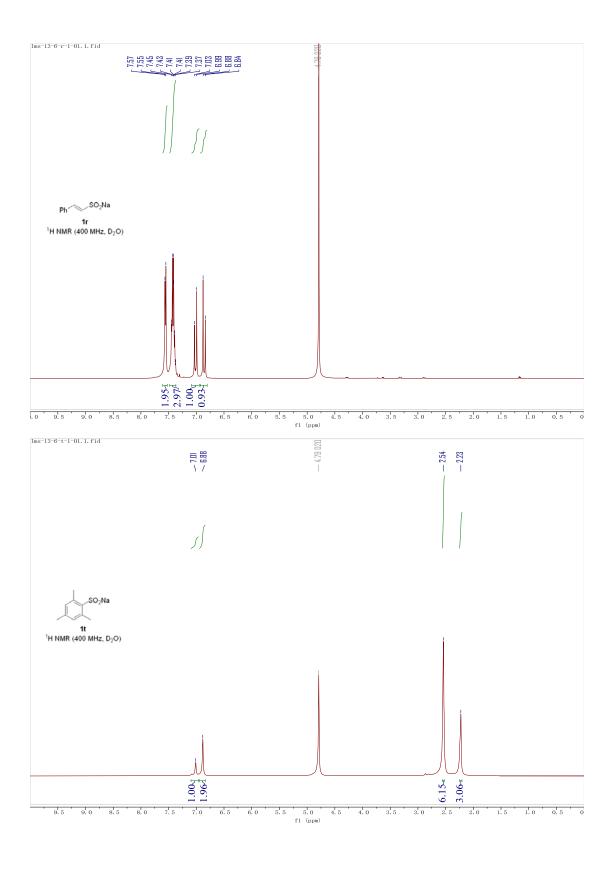
Final R indexes [I>= 2σ (I)] $R_1 = 0.0349$, $wR_2 = 0.0890$

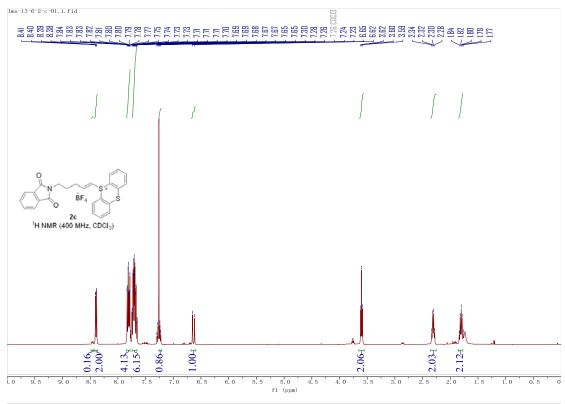
Final R indexes [all data] $R_1 = 0.0375$, $wR_2 = 0.0913$

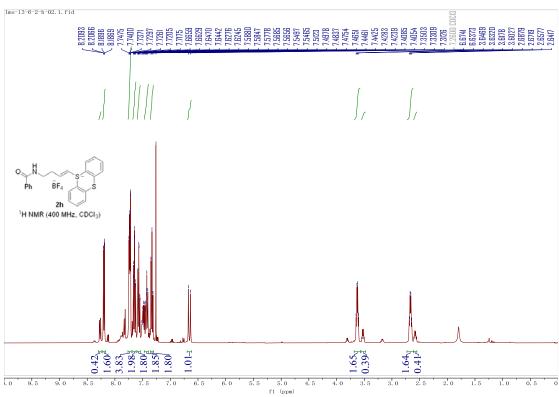
Largest diff. peak/hole / e Å⁻³ 0.20/-0.13

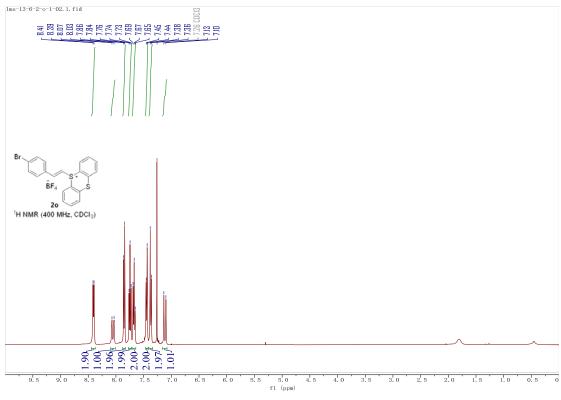

Flack parameter 0.116(9)

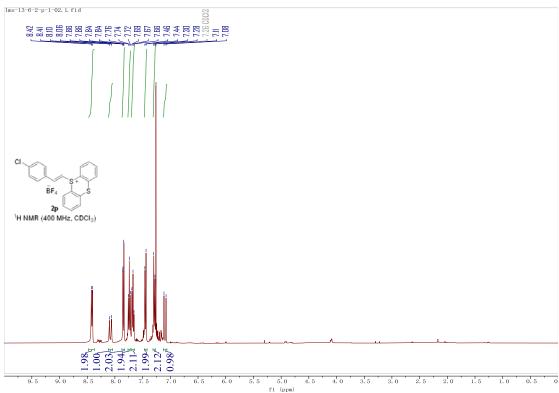

IX. References

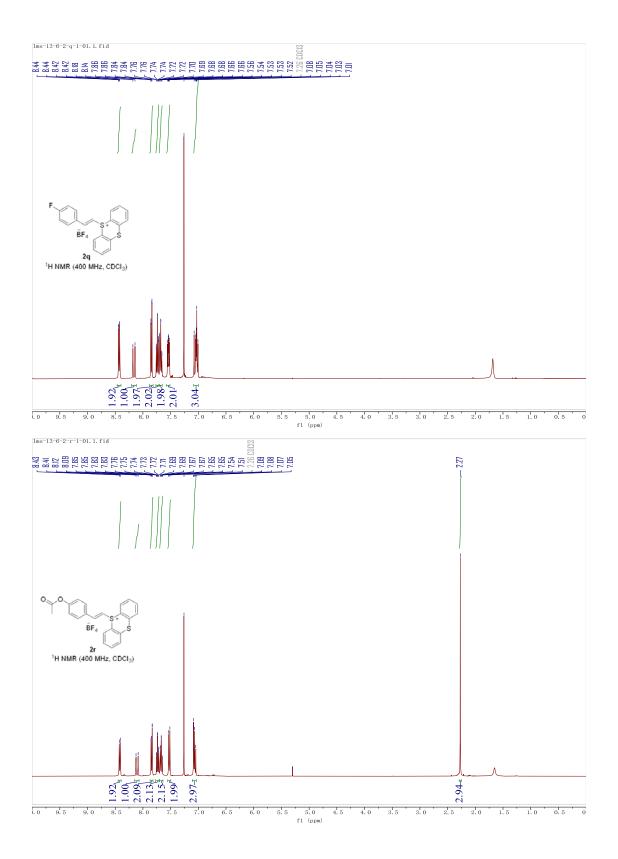

- 1. Meyer, A. U.; Jäger, S.; Prasad Hari, D. & König, B. Visible Light-Mediated Metal-Free Synthesis of Vinyl Sulfones from Aryl Sulfinates. *Adv. Syn. Catal.* **357**, 2050-2054 (2015).
- 2. Shi, S.-H. et al. Electro-Oxidation Induced O-S Cross-Coupling of Quinoxalinones with Sodium Sulfinates for Synthesizing 2-Sulfonyloxylated Quinoxalines. *Chem. Commun.* **58**, 12357-12360 (2022).
- 3. Gao, Y. et al. Development of on-DNA Vinyl Sulfone Synthesis for DNA-Encoded Chemical Libraries. *Org. Chem. Front.* **9**, 4542-4548 (2022).
- 4. Chen, J.; Li, J.; Plutschack, M. B.; Berger, F. & Ritter, T. Regio- and Stereoselective Thianthrenation of Olefins To Access Versatile Alkenyl Electrophiles. *Angew. Chem. Int. Ed.* **59**, 5616-5620 (2020).
- 5. Liu, M.-S.; Du, H.-W.; Cui, J.-F. & Shu, W. Intermolecular Metal-Free Cyclopropanation and Aziridination of Alkenes with XH₂ (X=N, C) by Thianthrenation. *Angew. Chem. Int. Ed.* **61**, e202209929 (2022).
- 6. Liu, M.-S.; Du, H.-W. & Shu, W. Metal-Free Allylic C-H Nitrogenation, Oxygenation, and Carbonation of Alkenes by Thianthrenation. *Chem. Sci.* 13, 1003-1008 (2022).
- 7. Juliá, F.; Yan, J.; Paulus, F. & Ritter, T. Vinyl Thianthrenium Tetrafluoroborate: A Practical and Versatile Vinylating Reagent Made from Ethylene. *J. Am. Chem. Soc.* 143, 12992-12998 (2021).

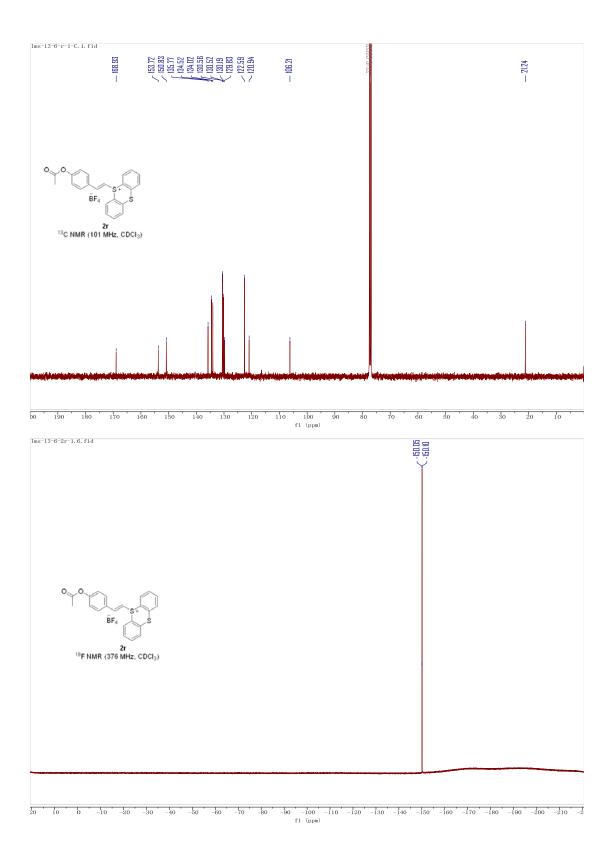

8. Xie, R.; Zhu, J. & Huang, Y. Cu-Catalyzed Highly Selective Silylation and Borylation of Alkenylsulfonium Salts. *Org. Chem. Front.* **8**, 5699-5704 (2021).

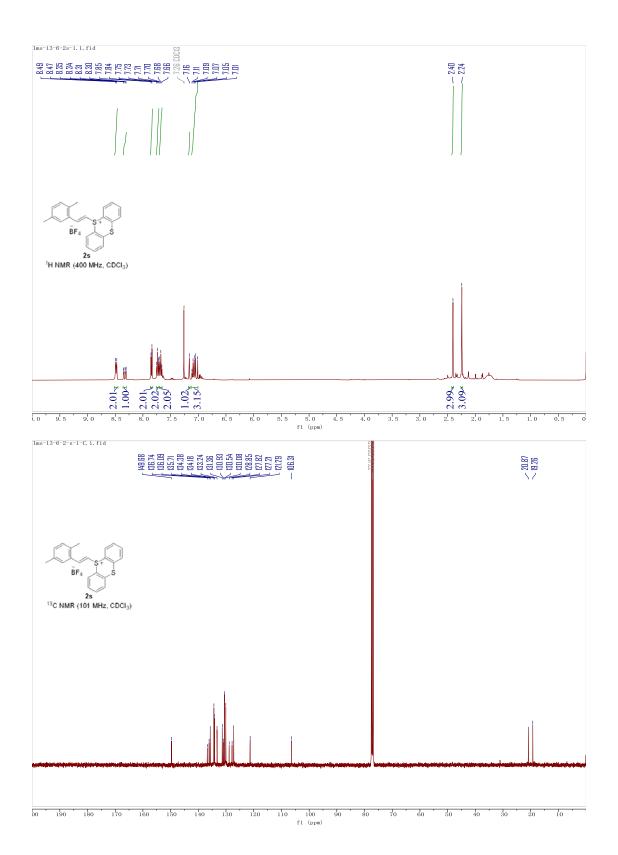

X. Copies of ¹H, ¹³C and ¹⁹F NMR Spectra

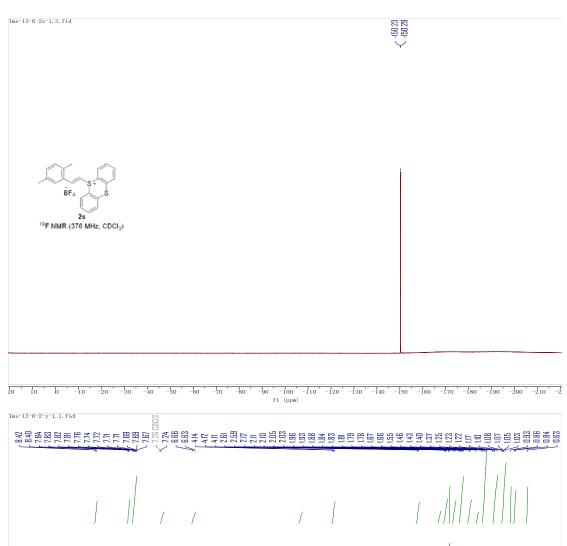


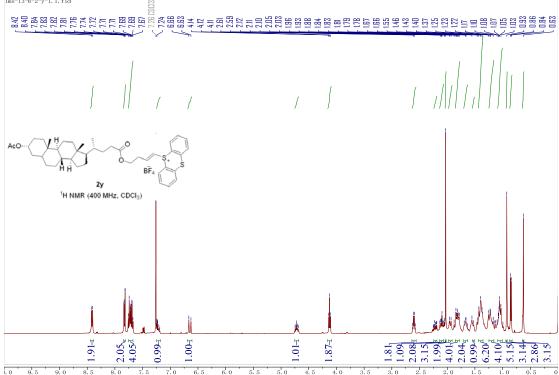


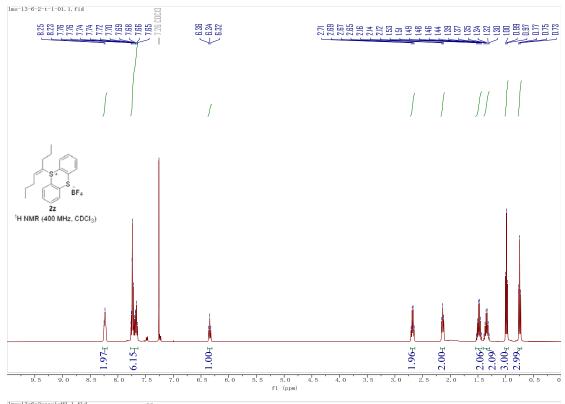


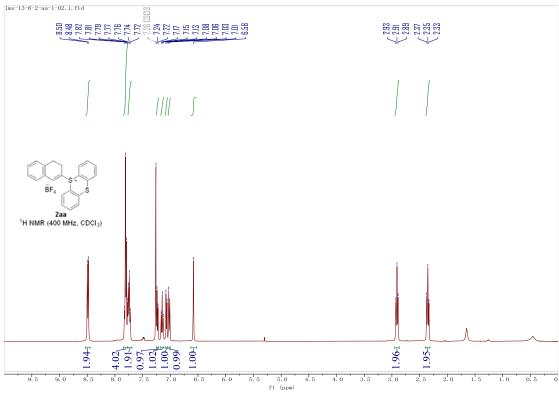


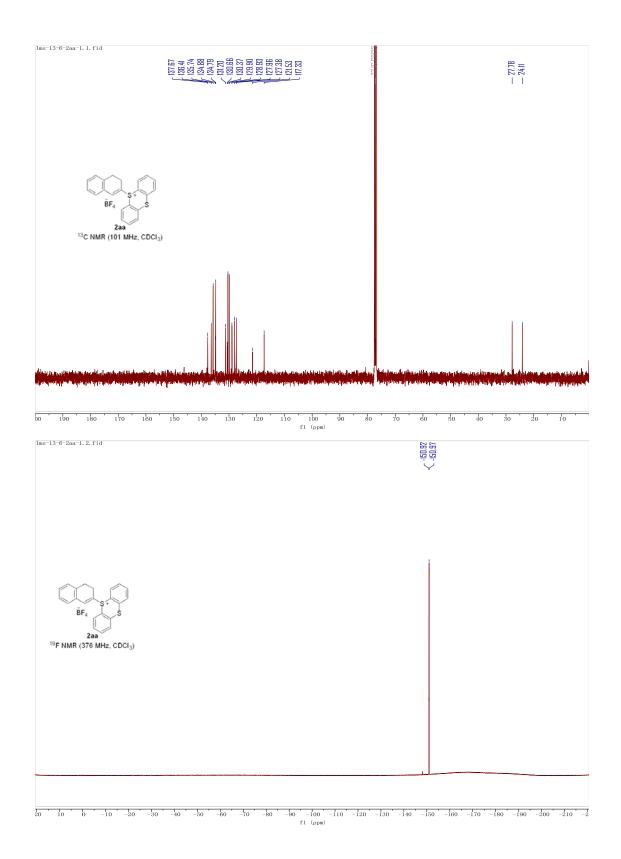


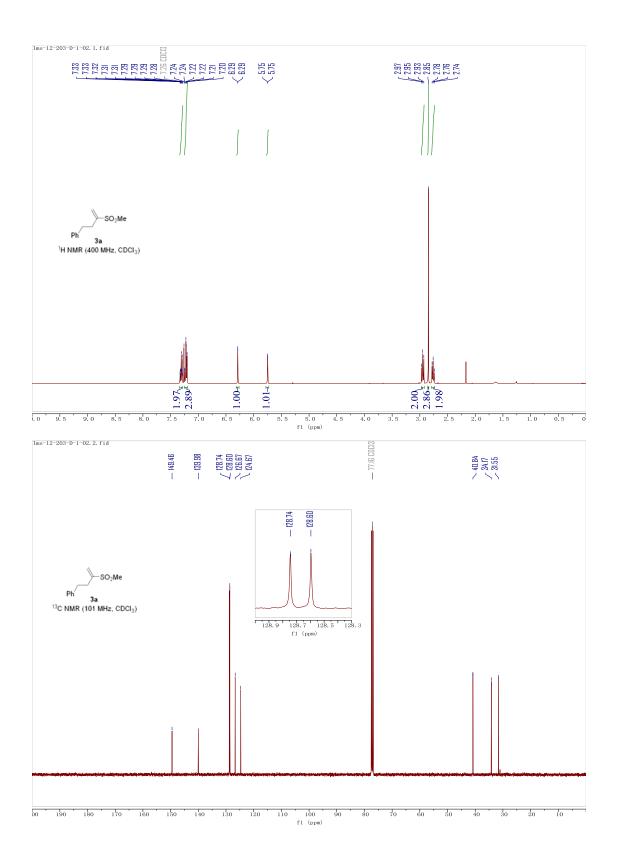


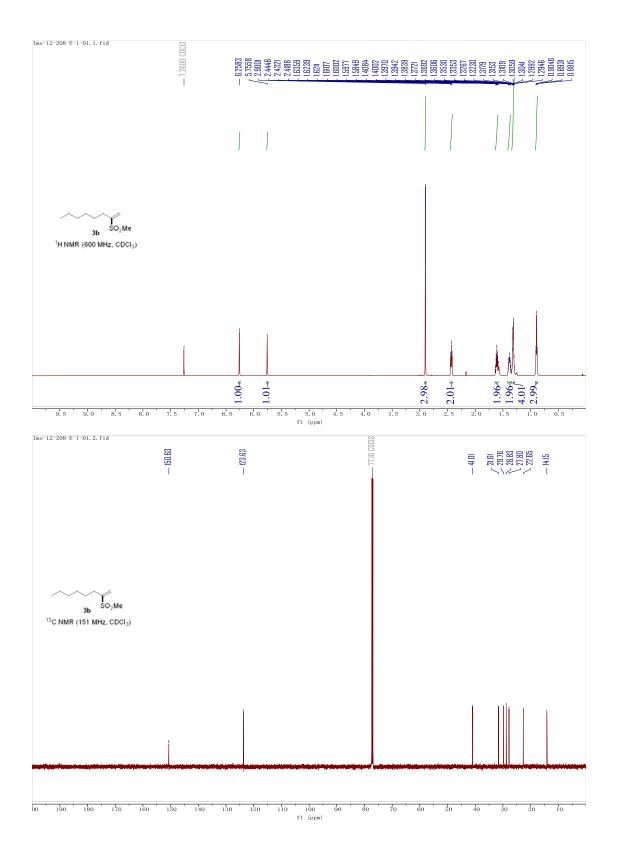


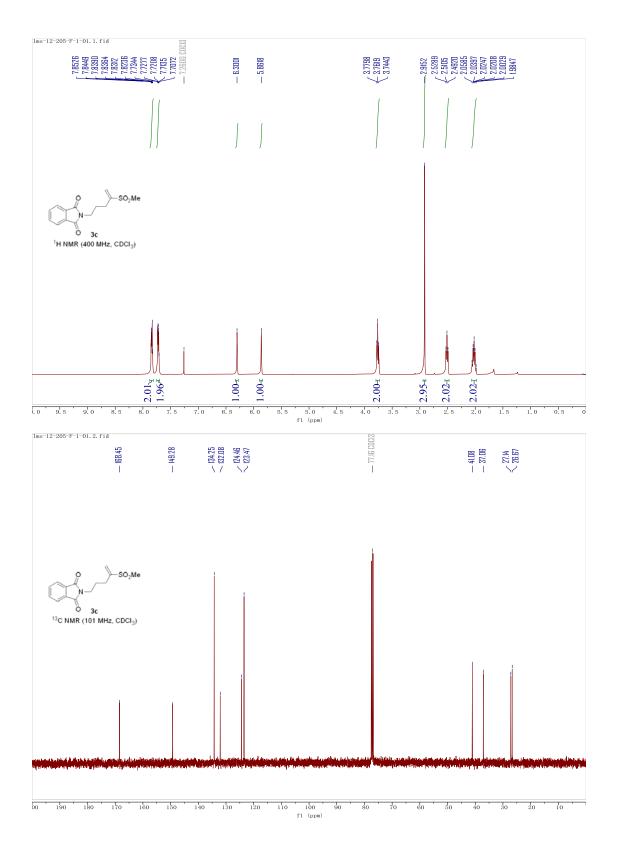


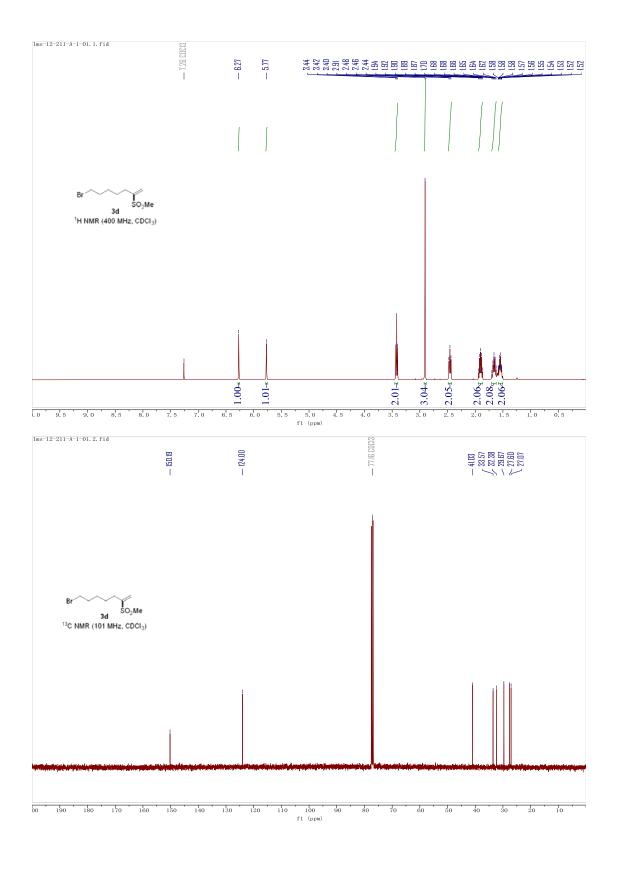


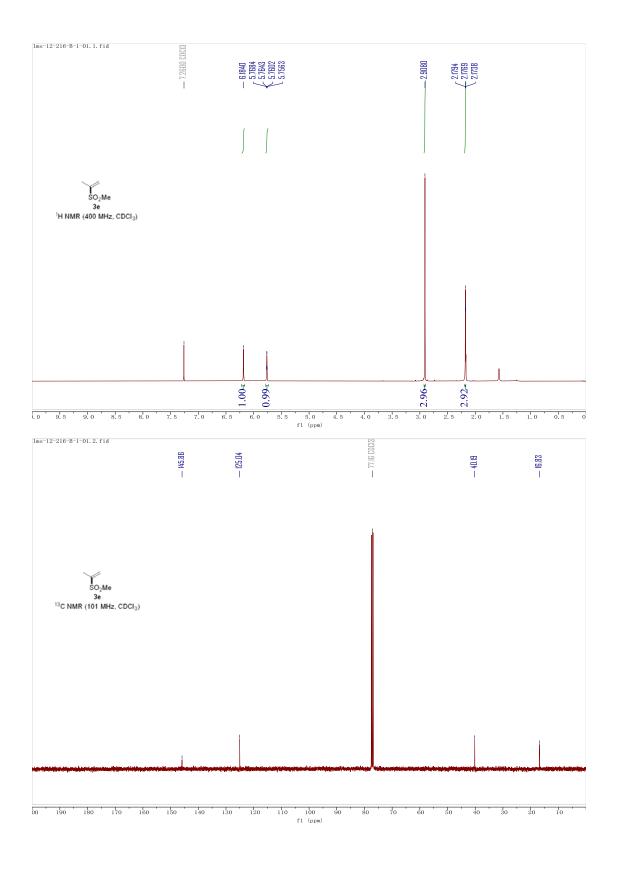


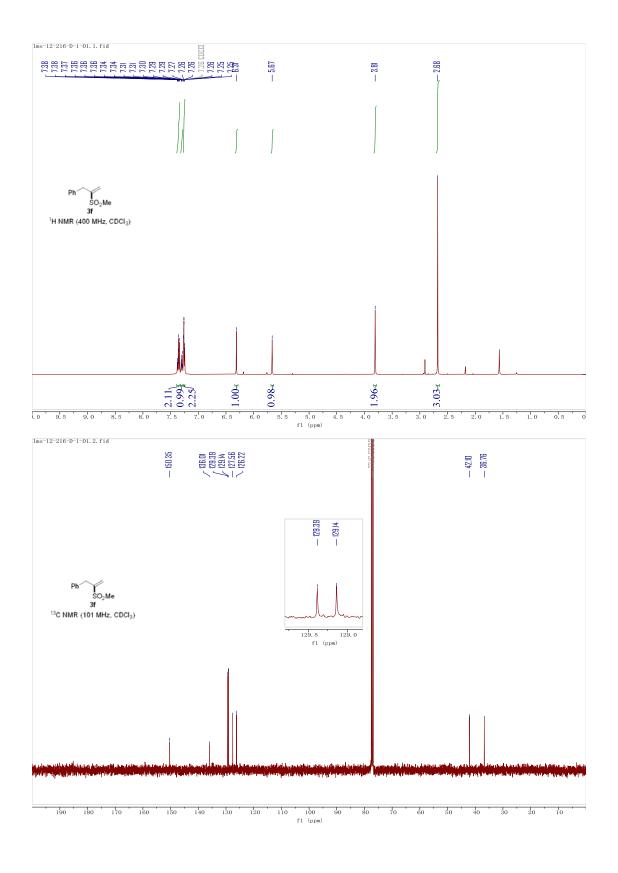


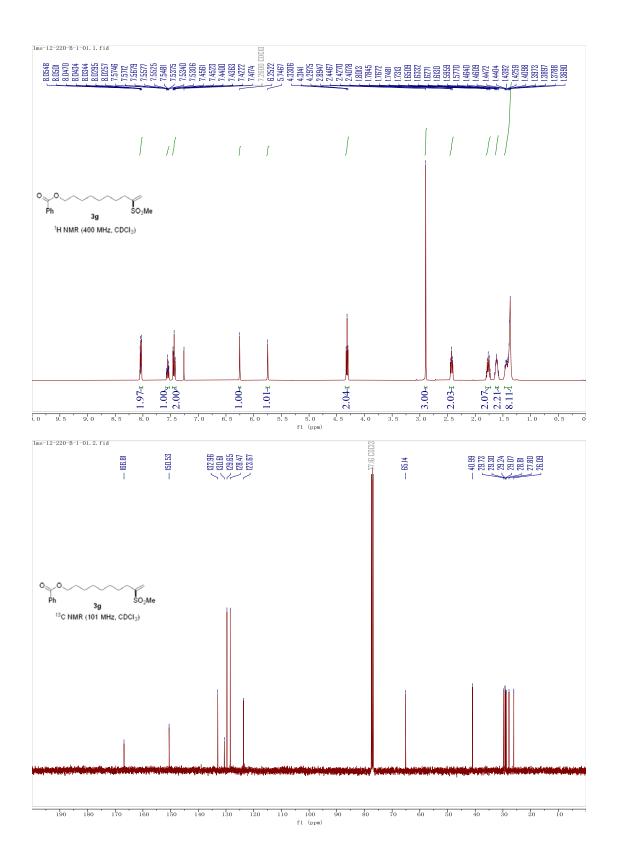


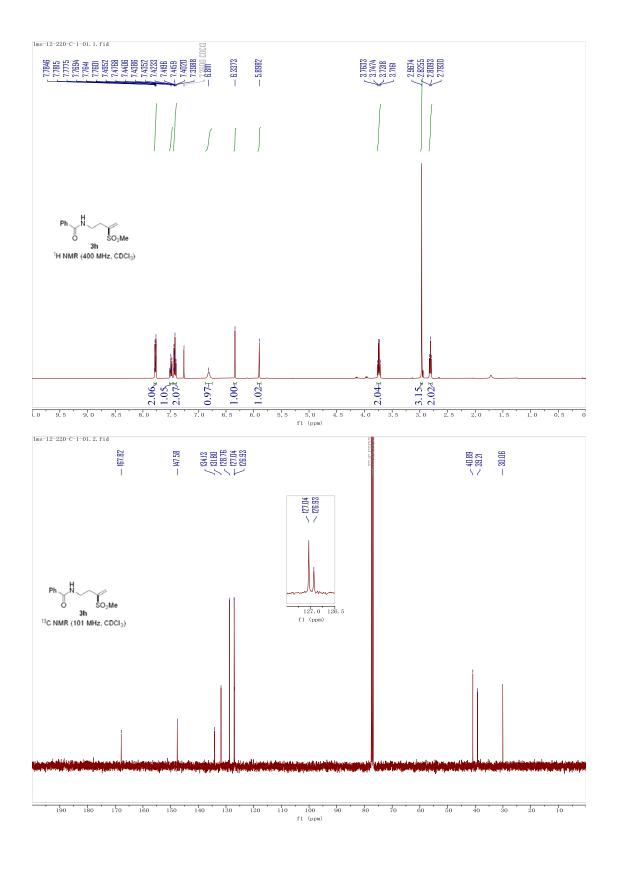


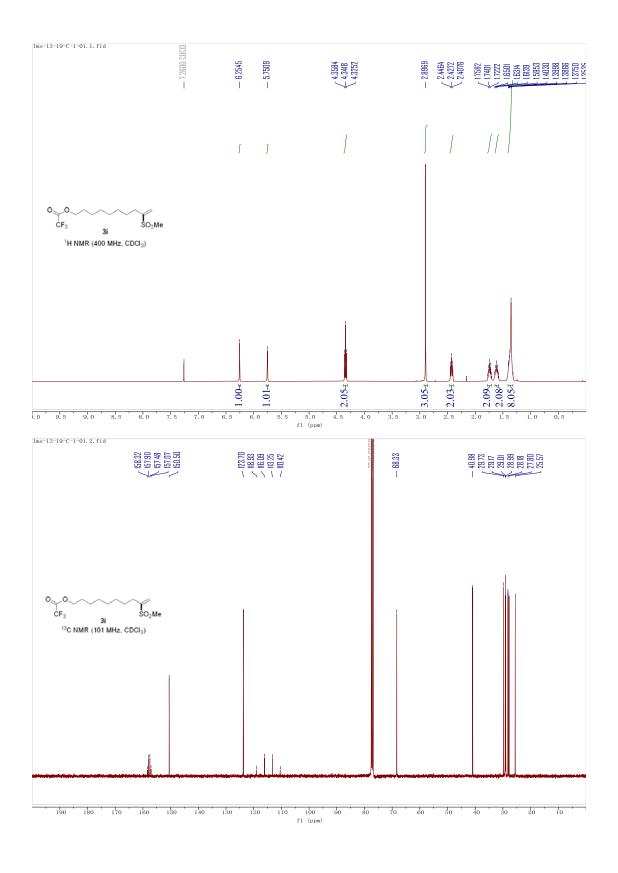


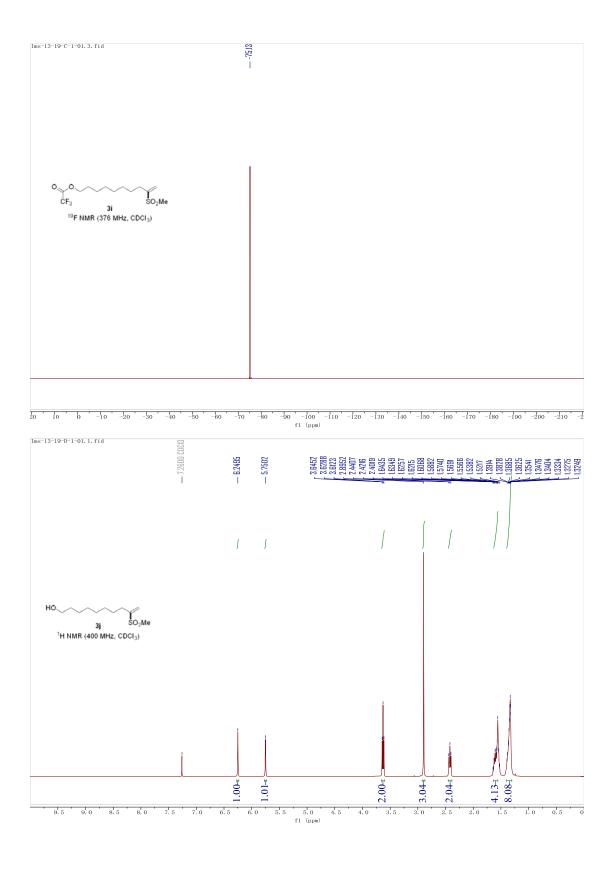


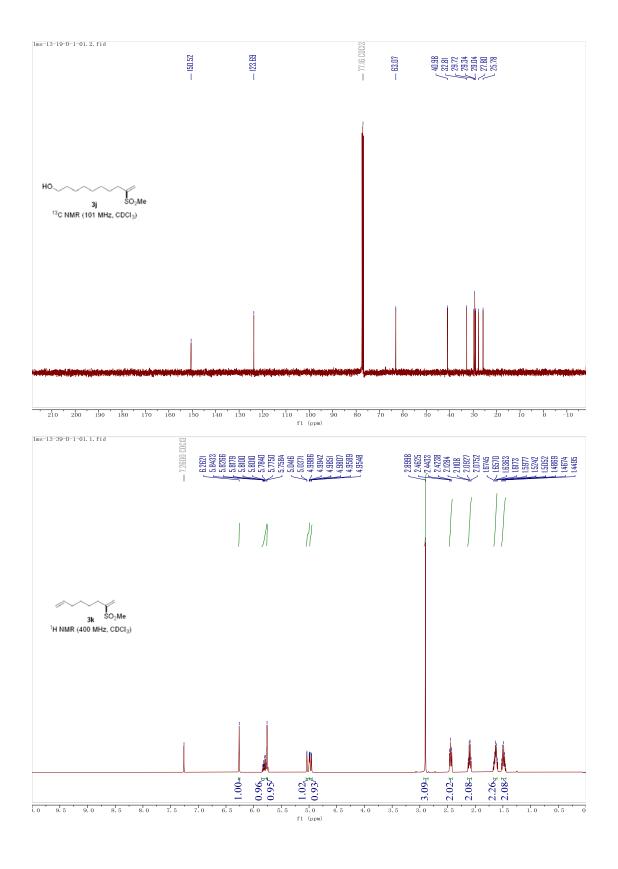


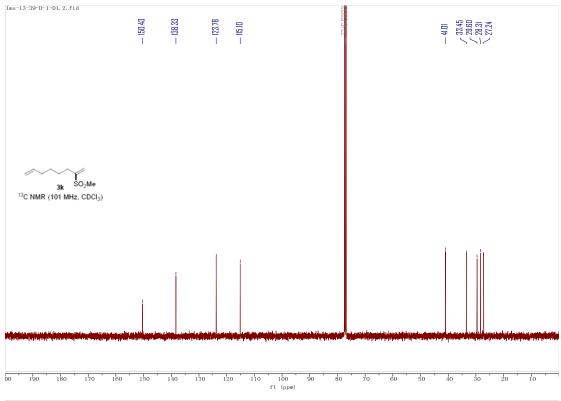


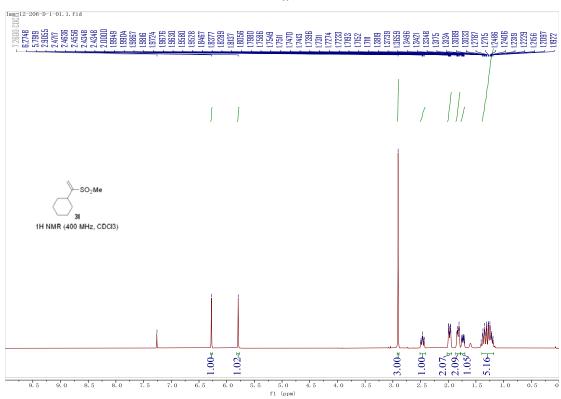


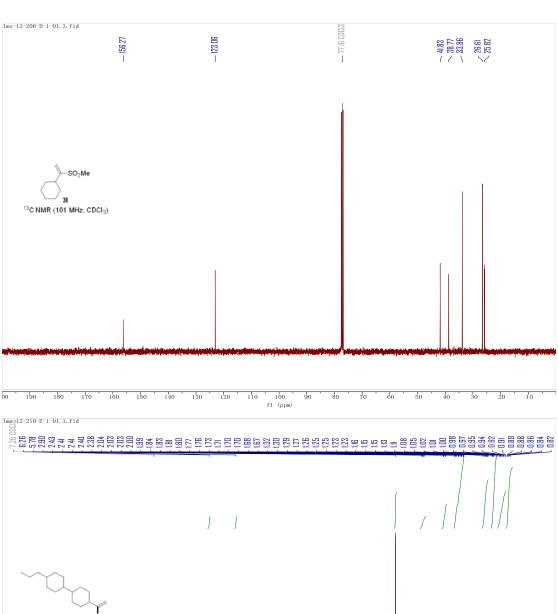


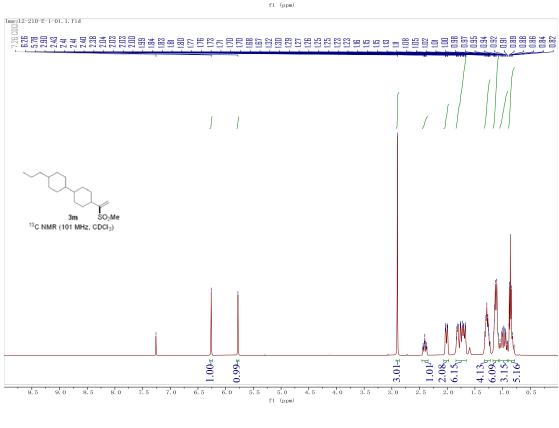


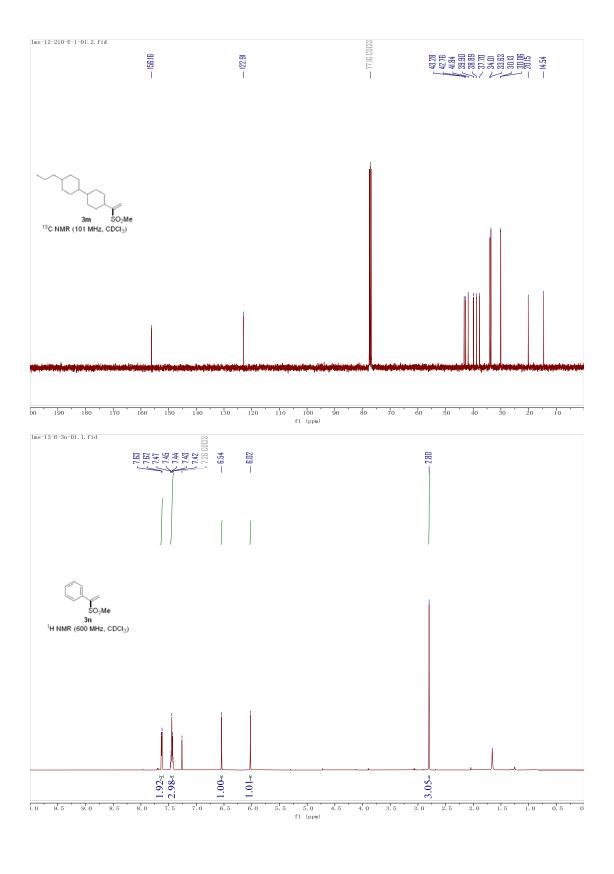


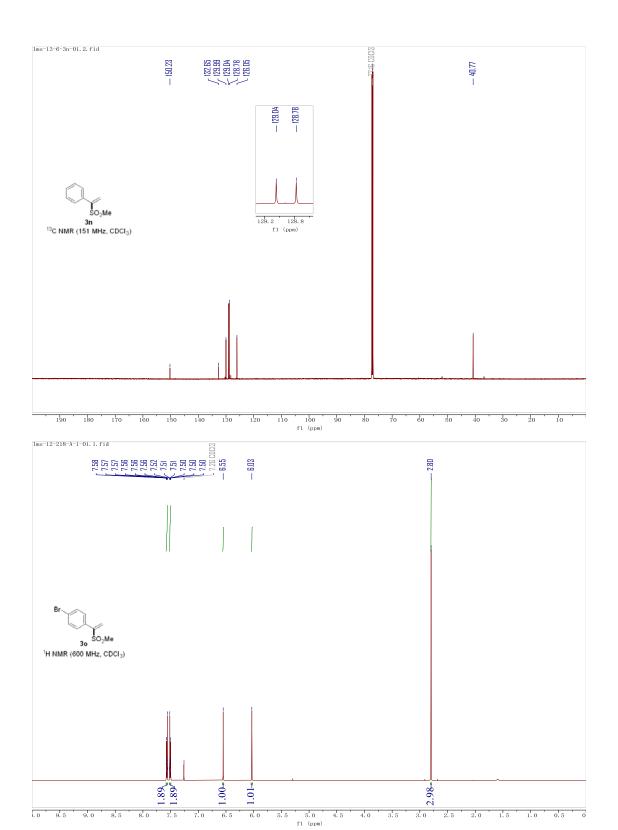


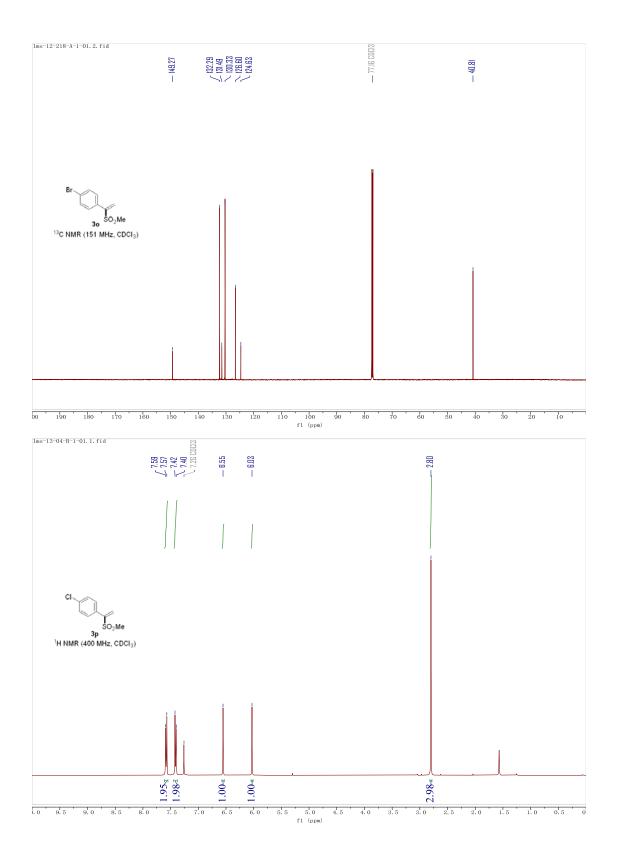


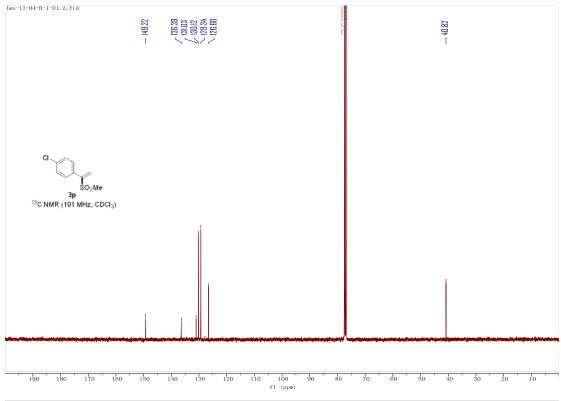


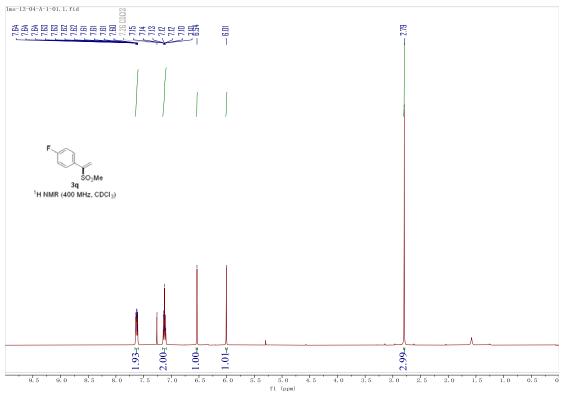


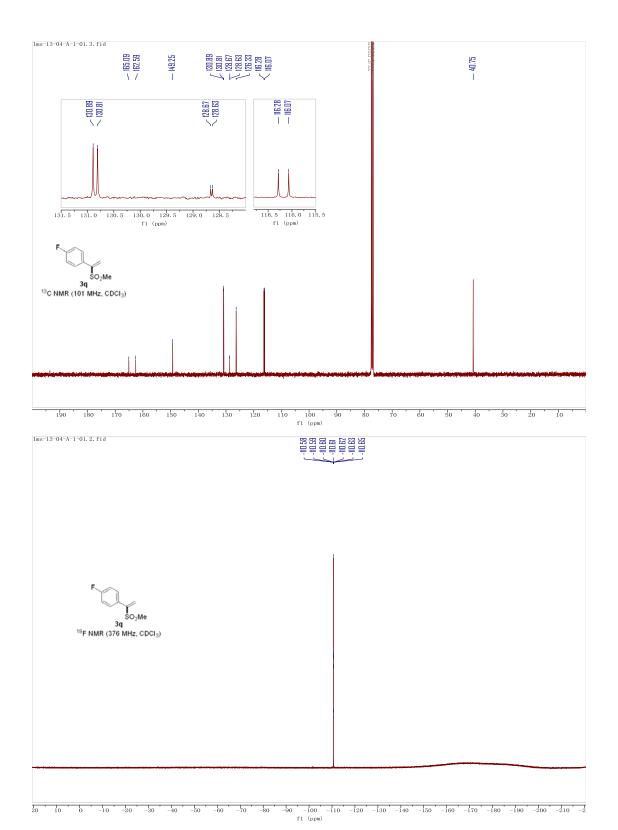


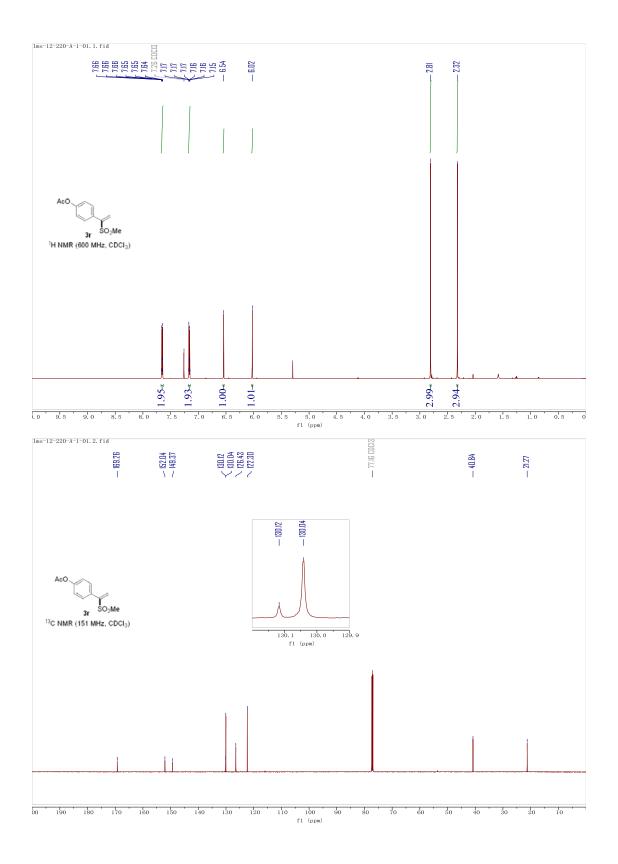


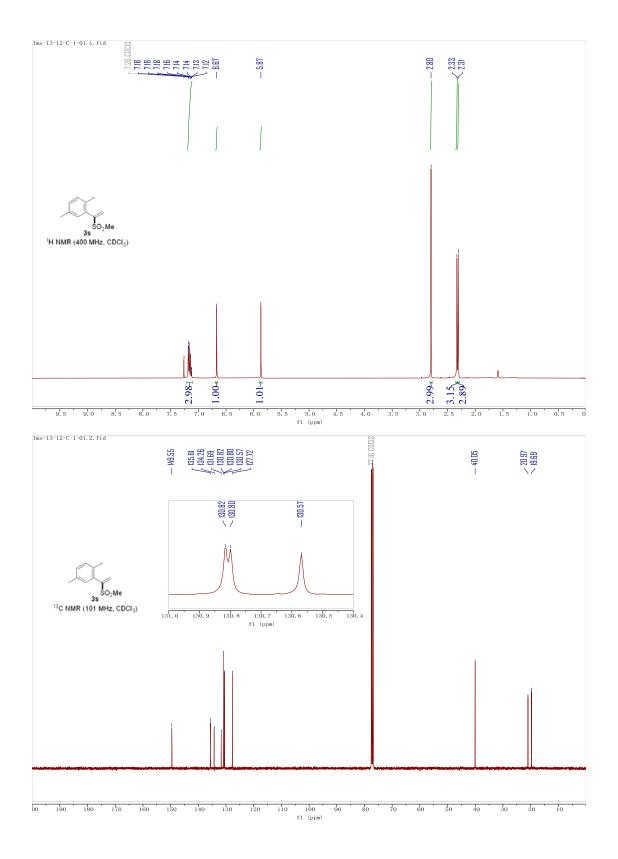


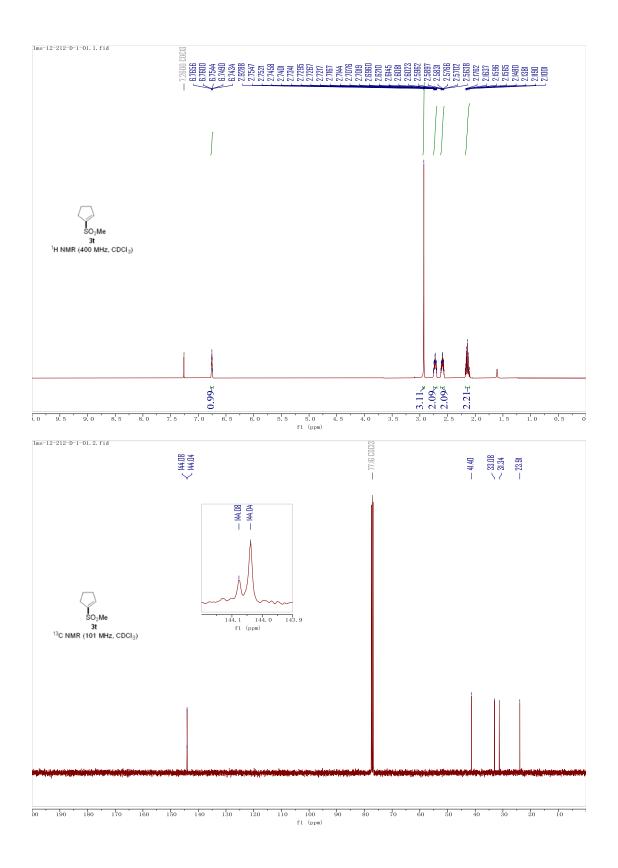


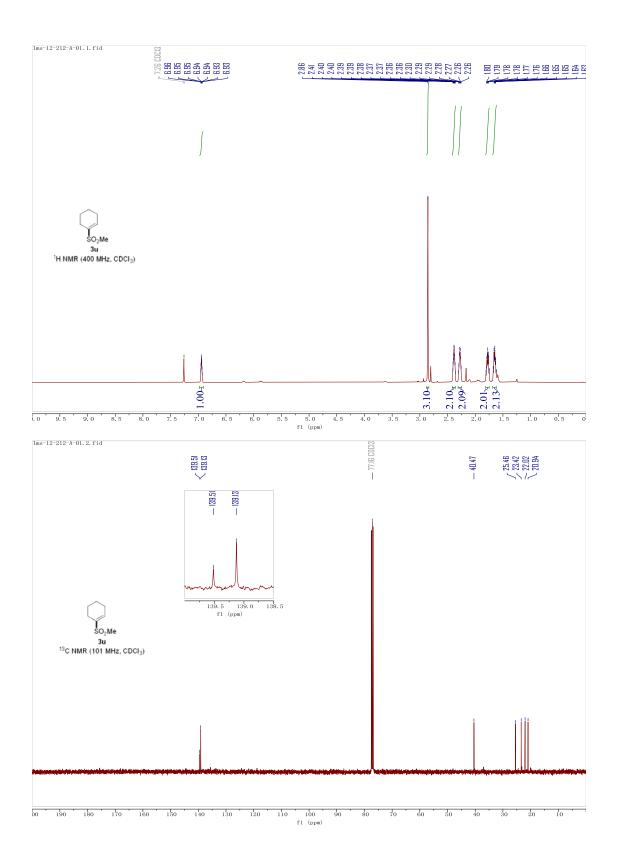


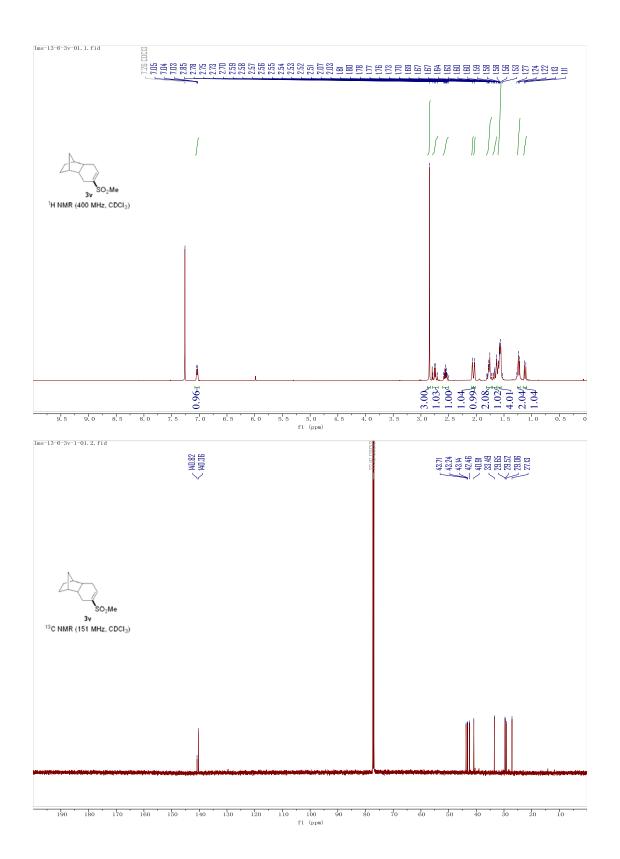


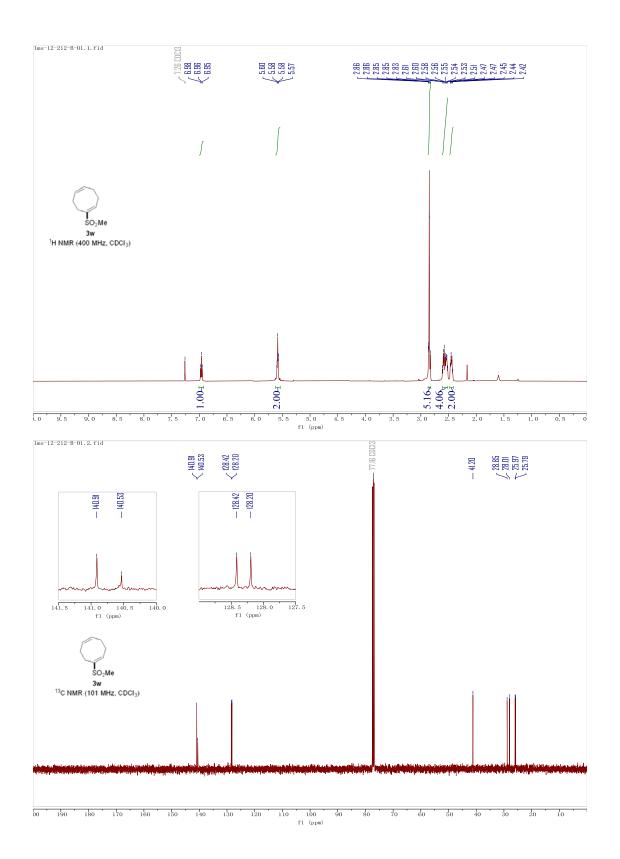


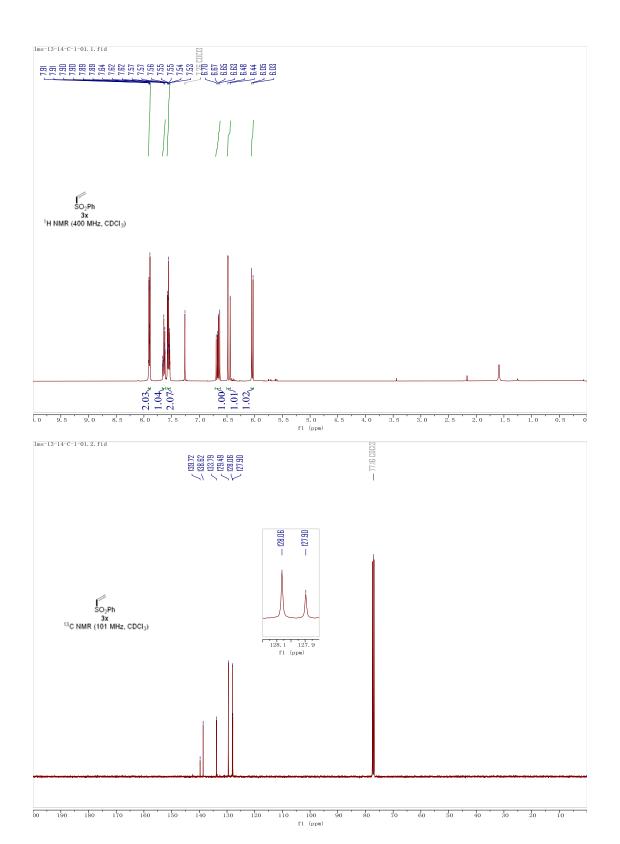


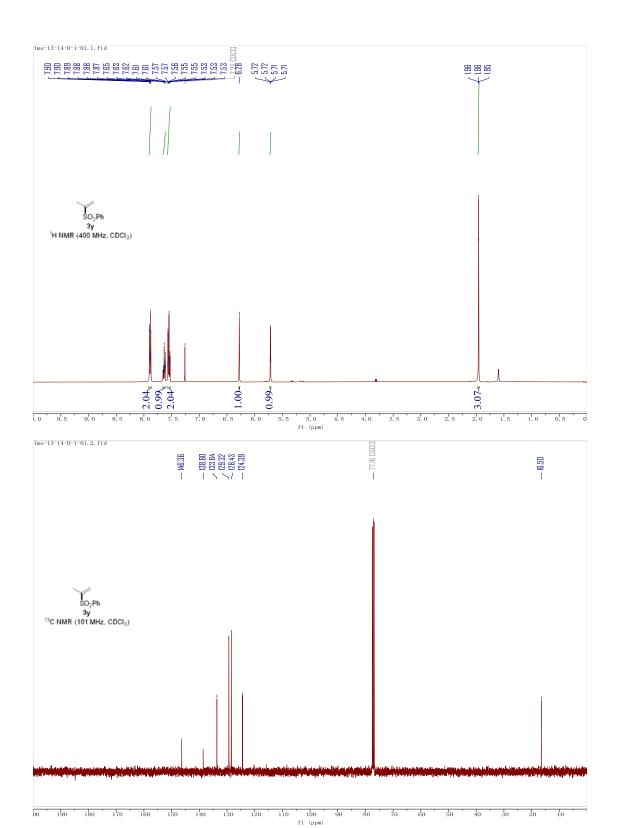


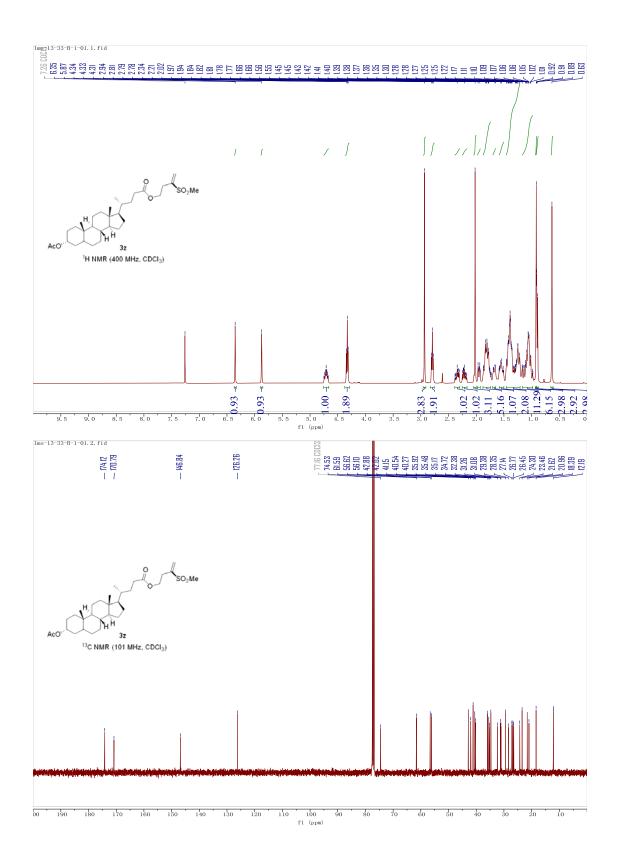


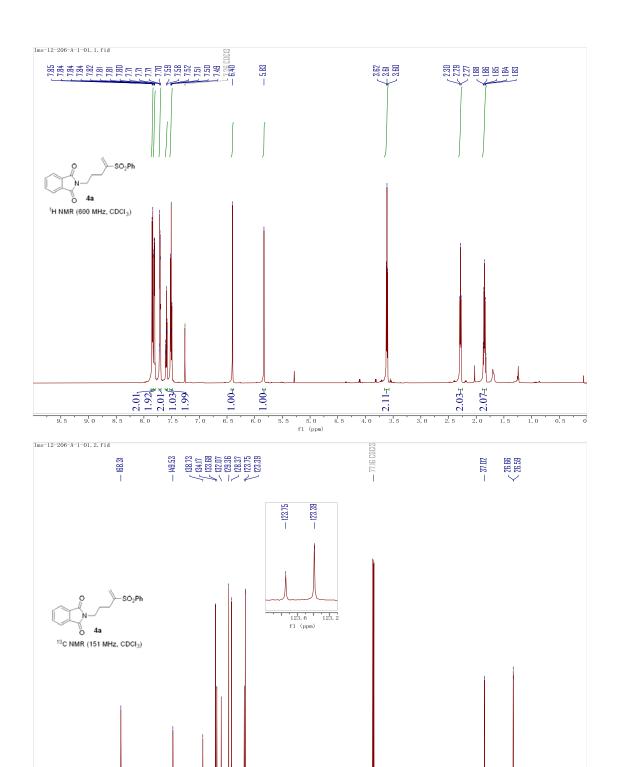


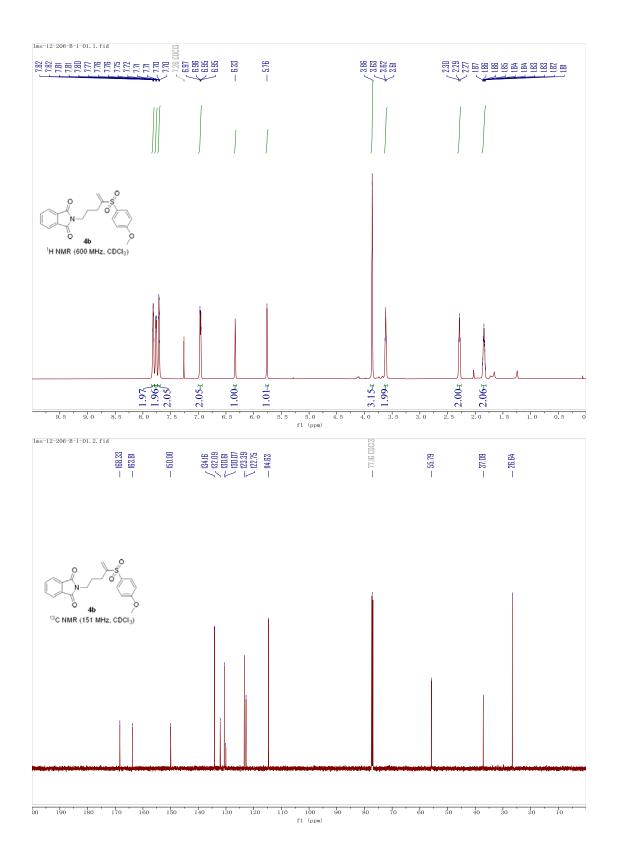


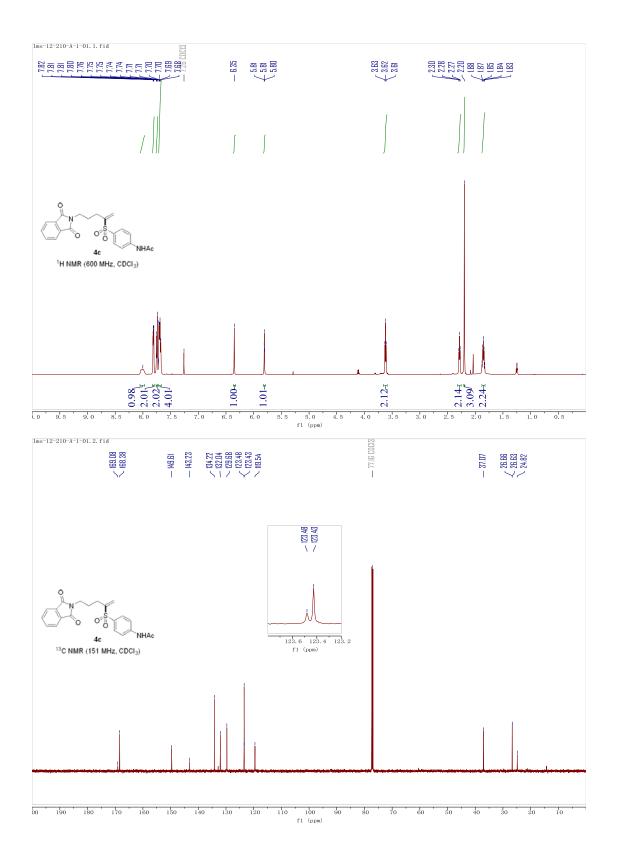


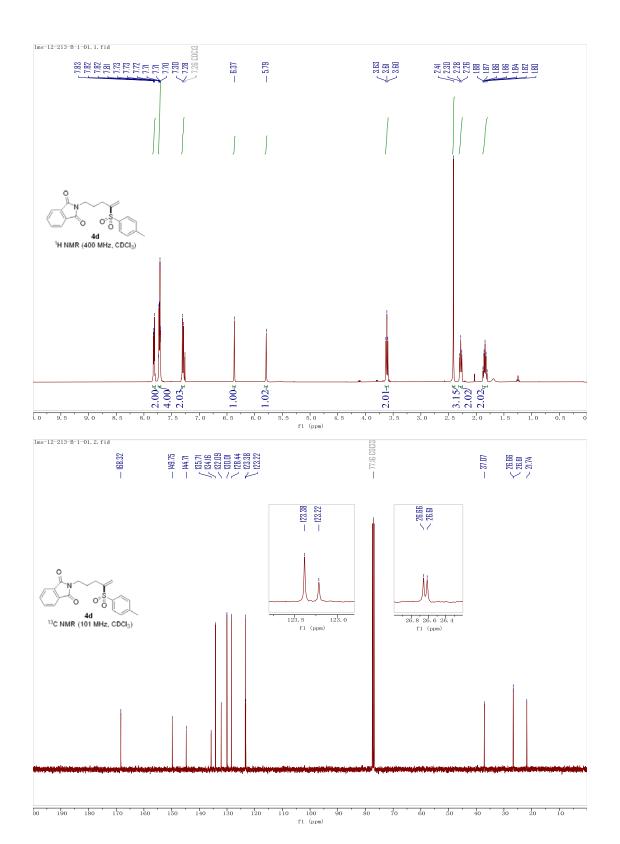


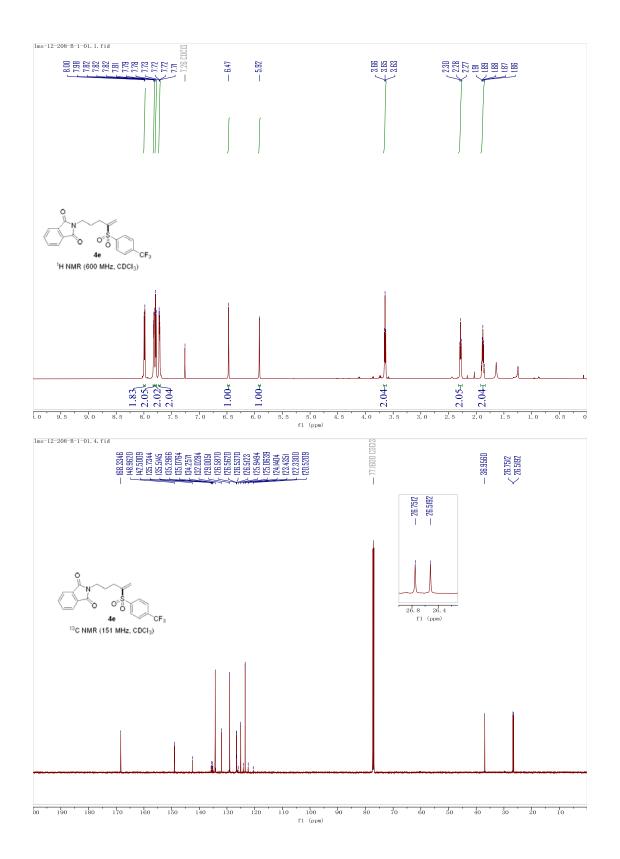


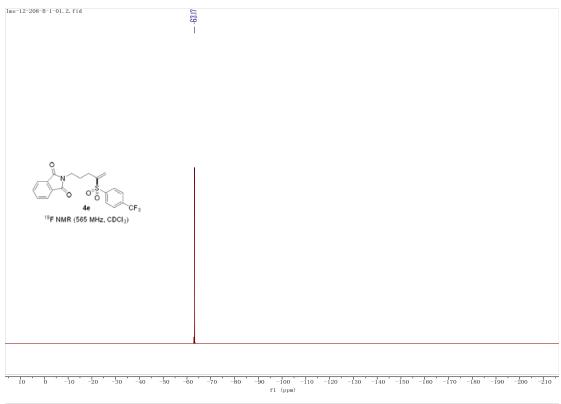


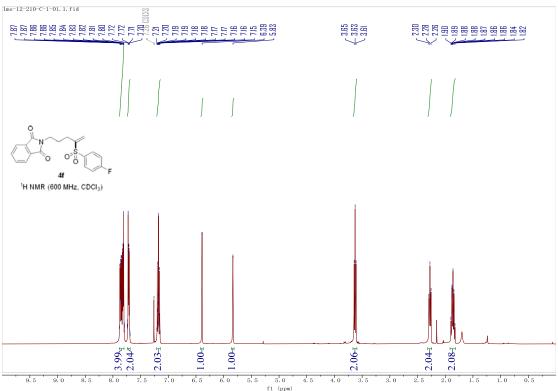


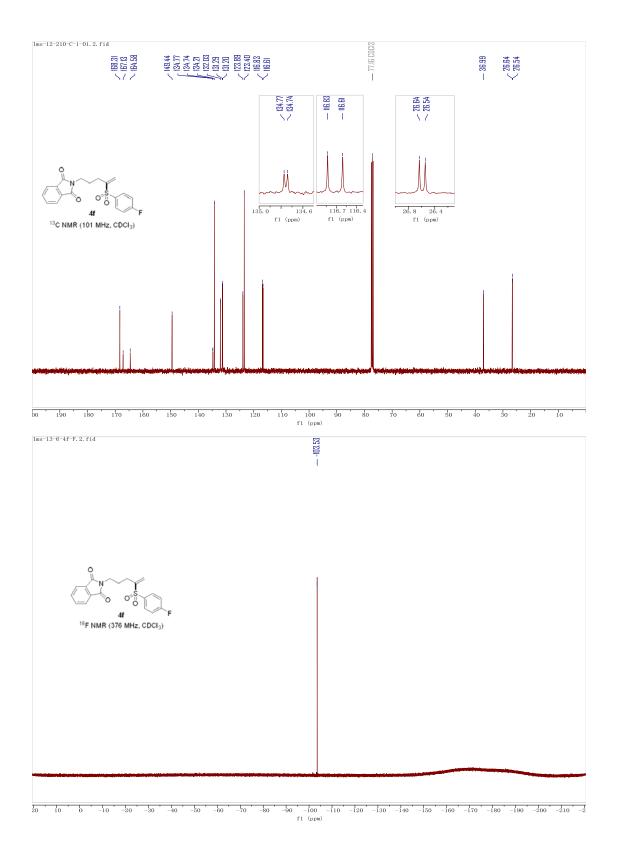


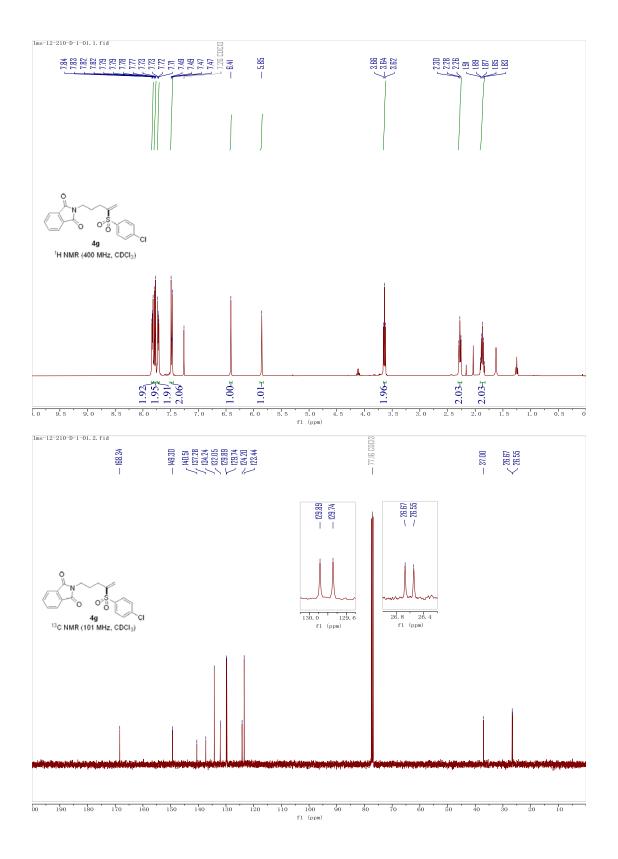


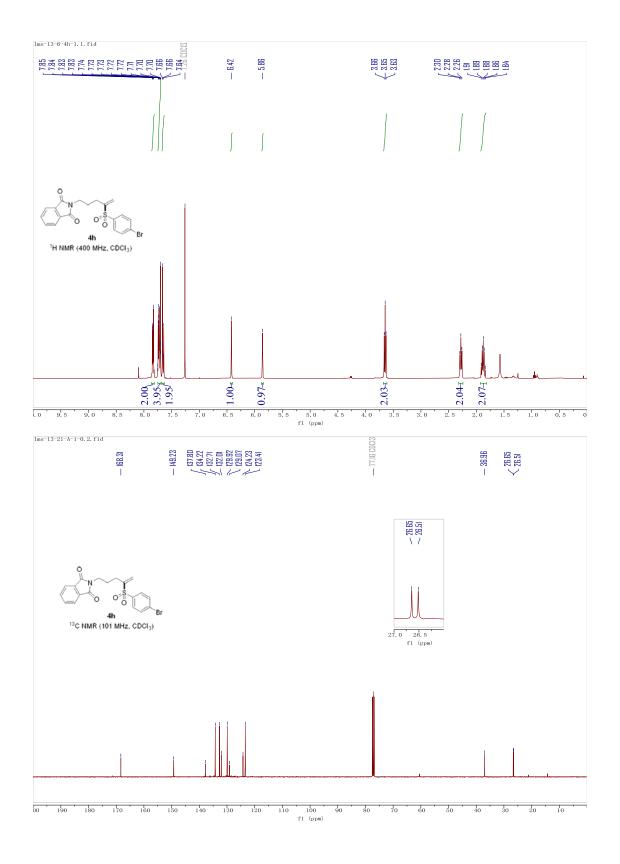

100 f1 (ppm)

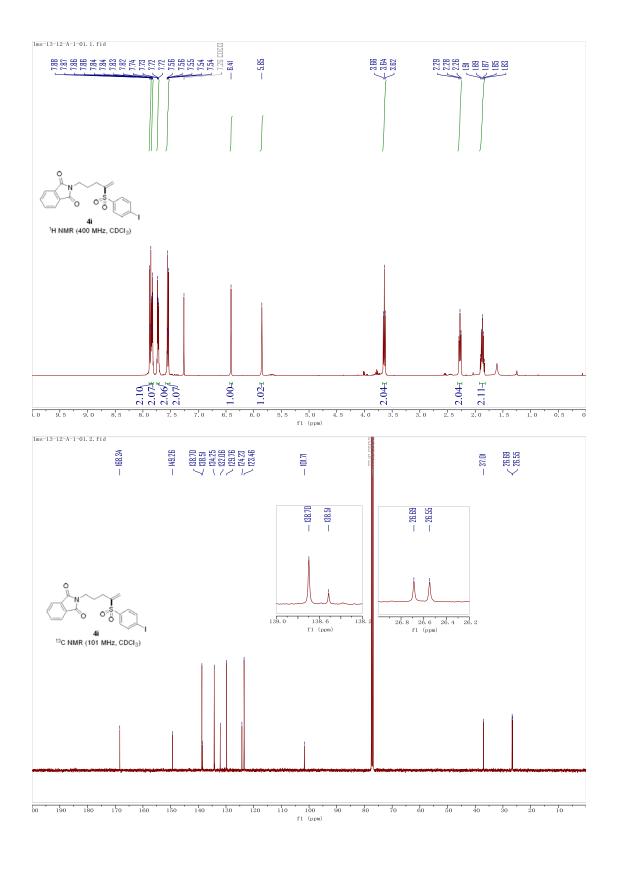

190 180 170 160 150 140 130

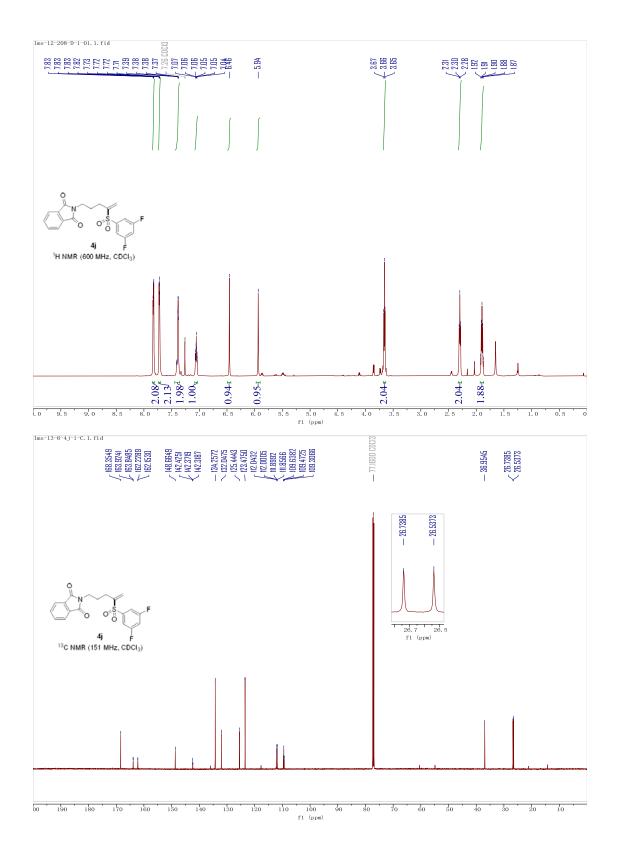


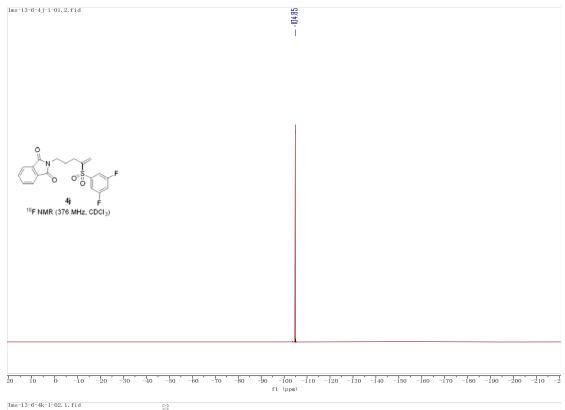


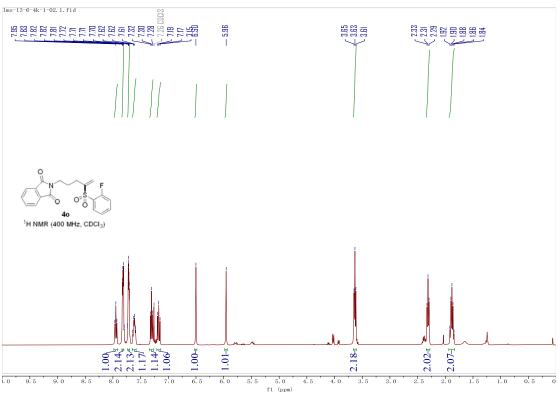


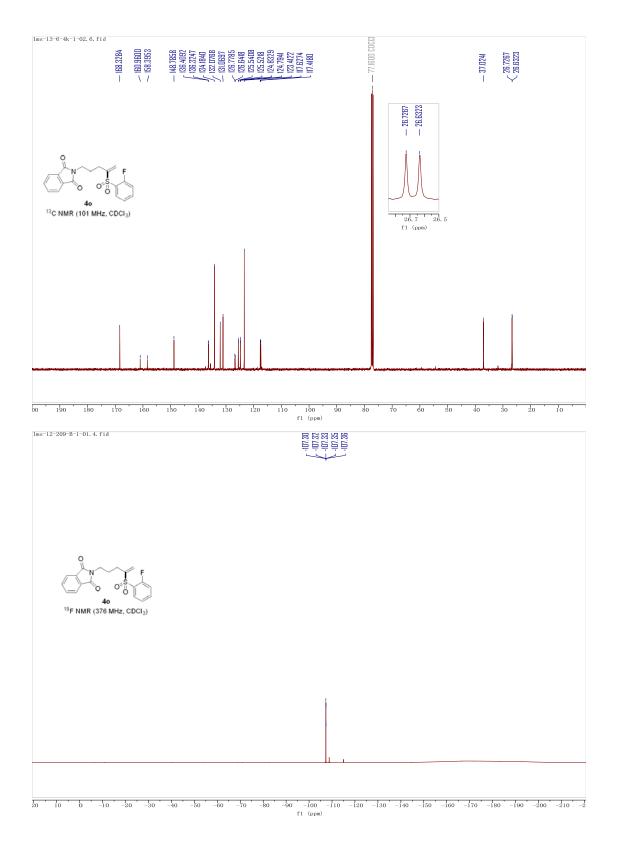


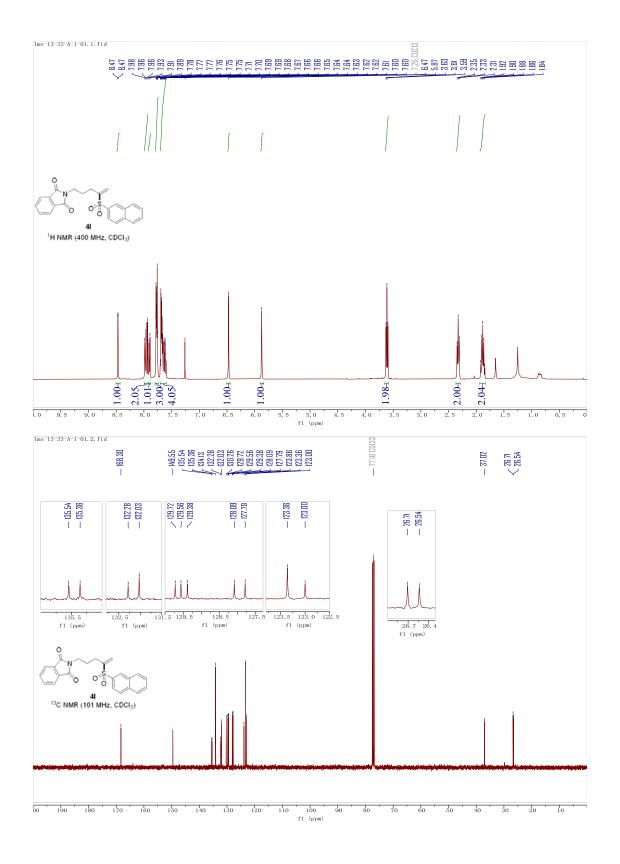


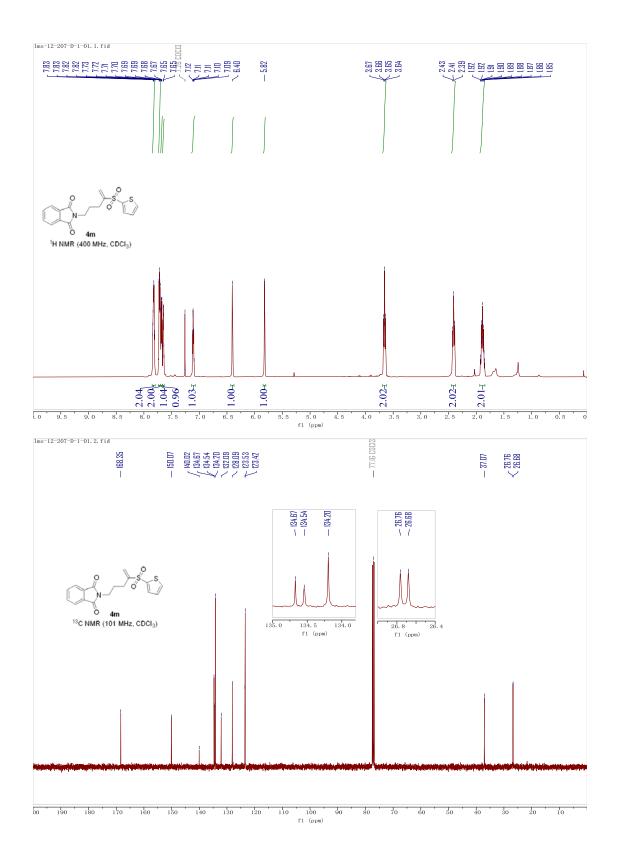


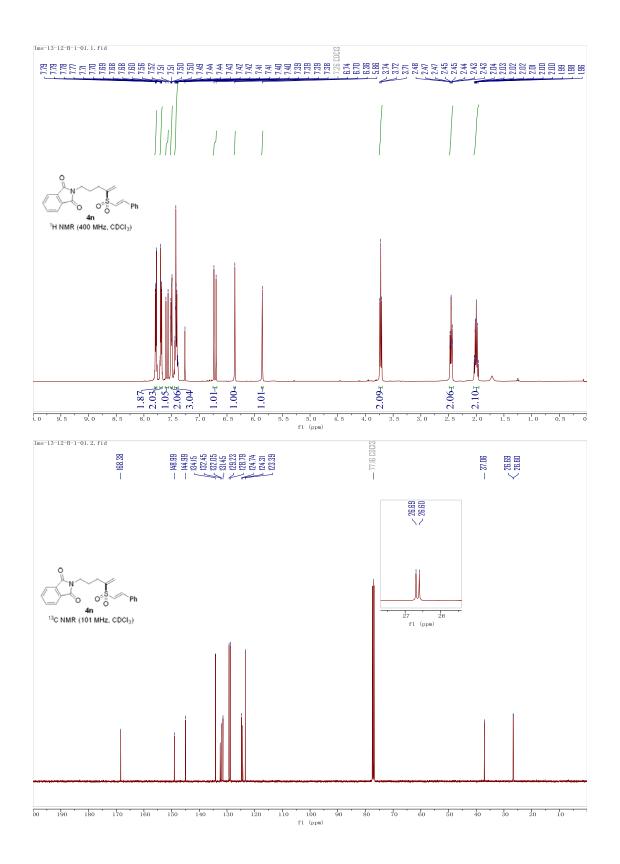


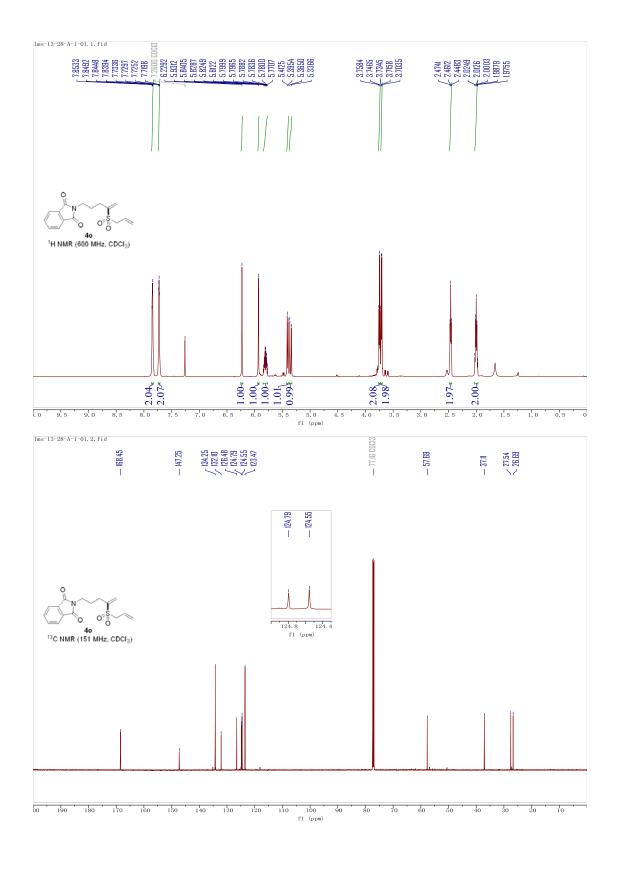


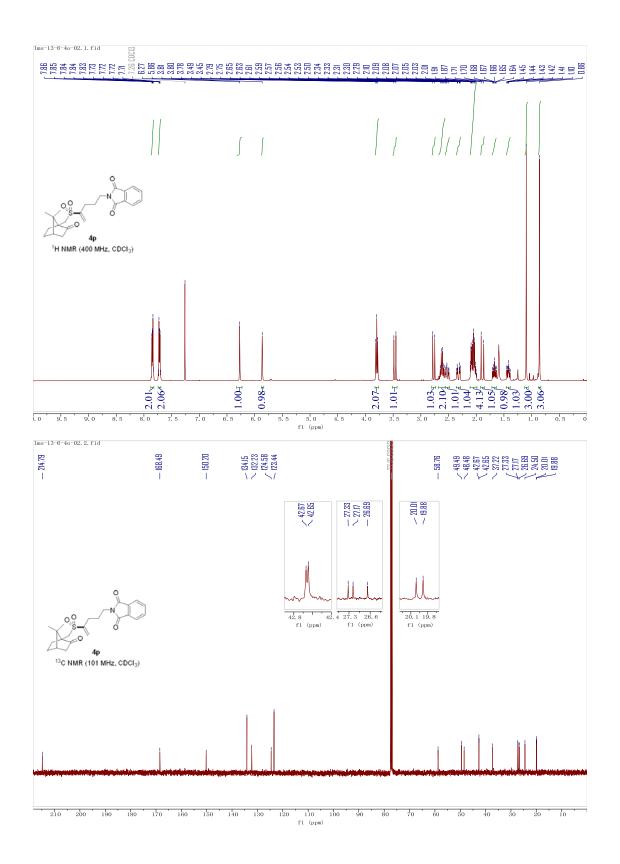


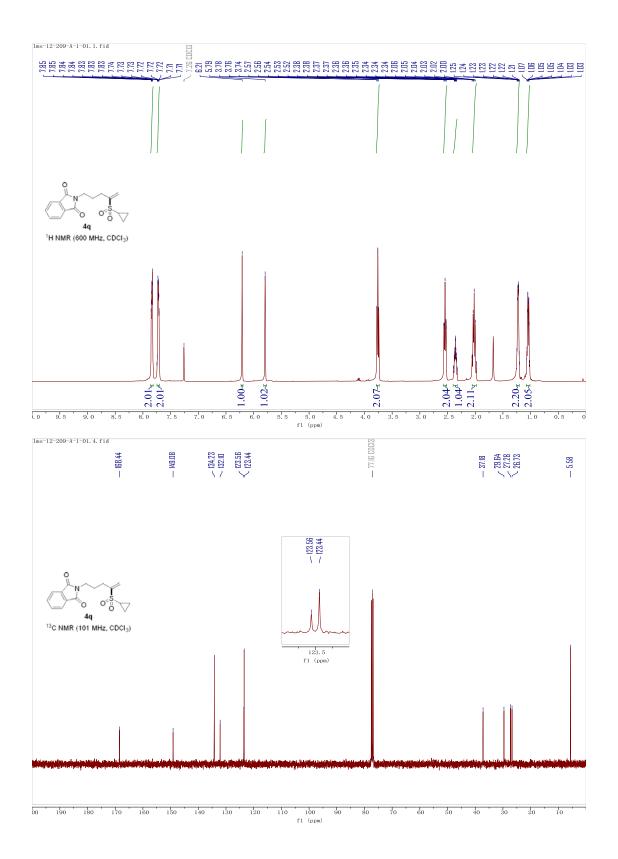


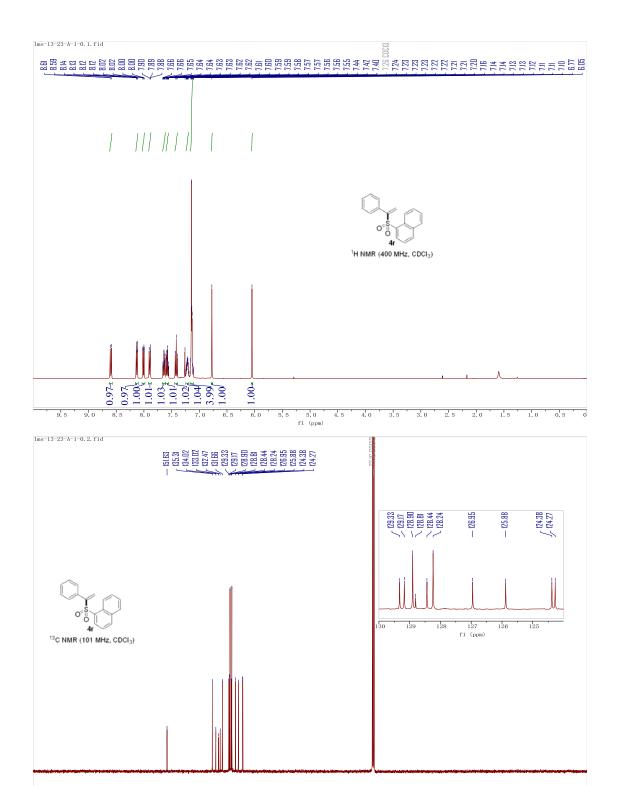


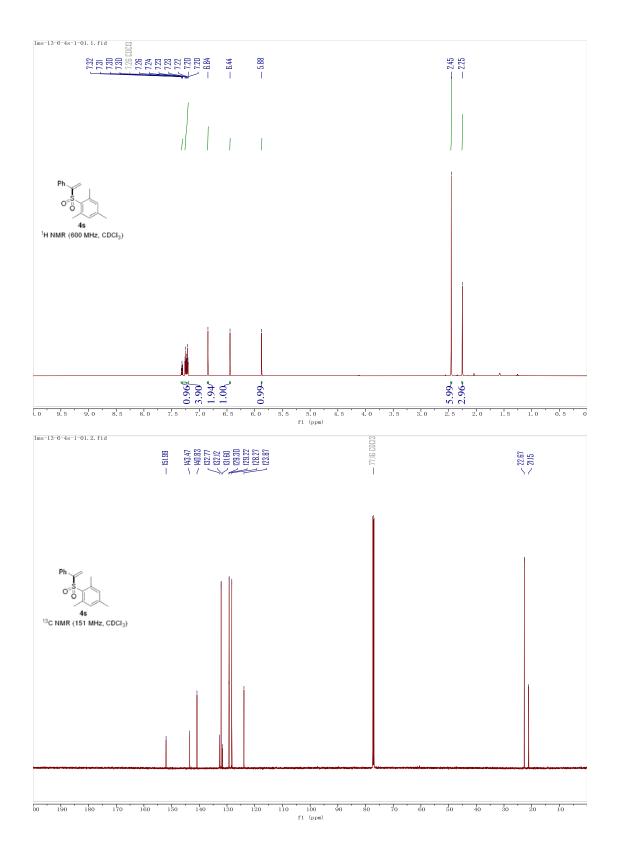


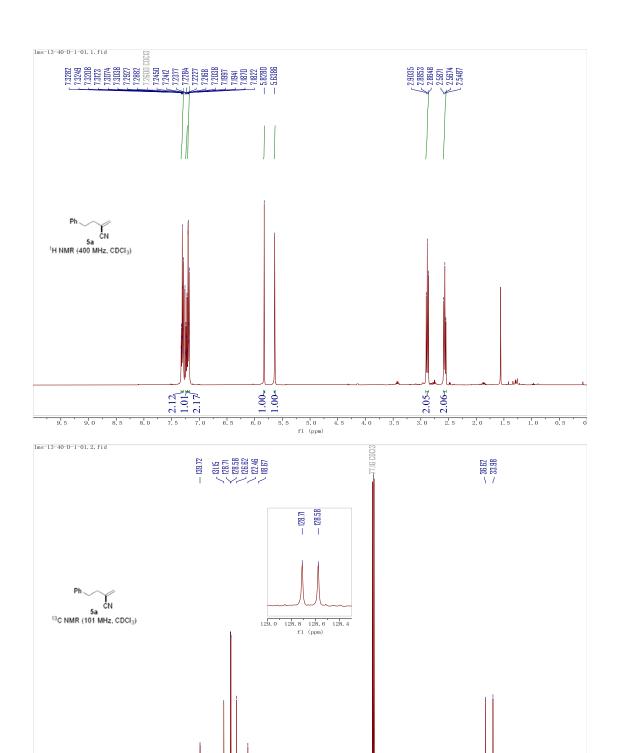




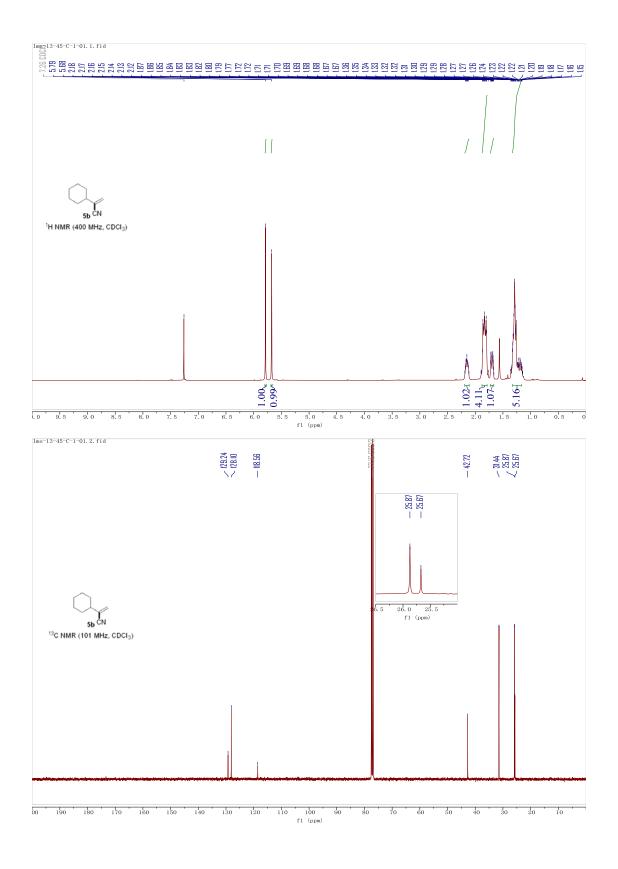


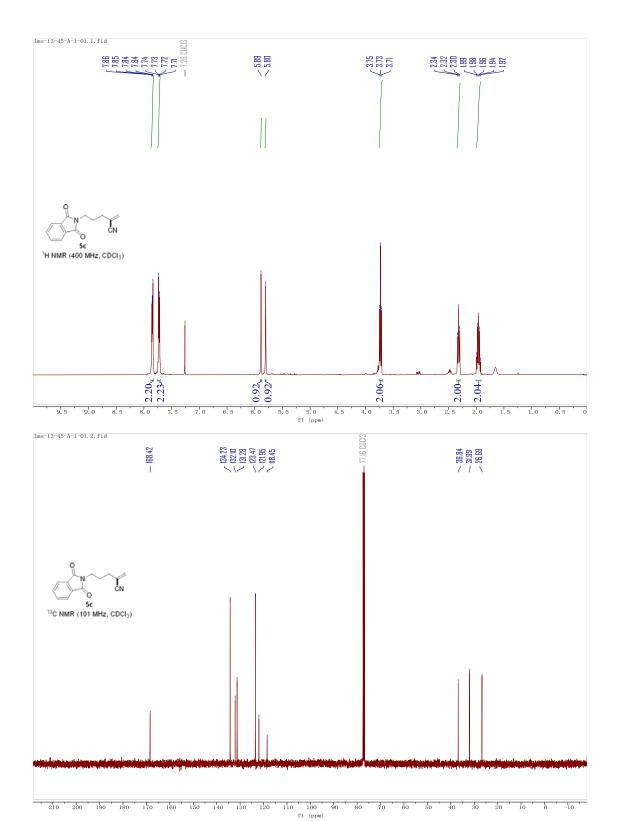


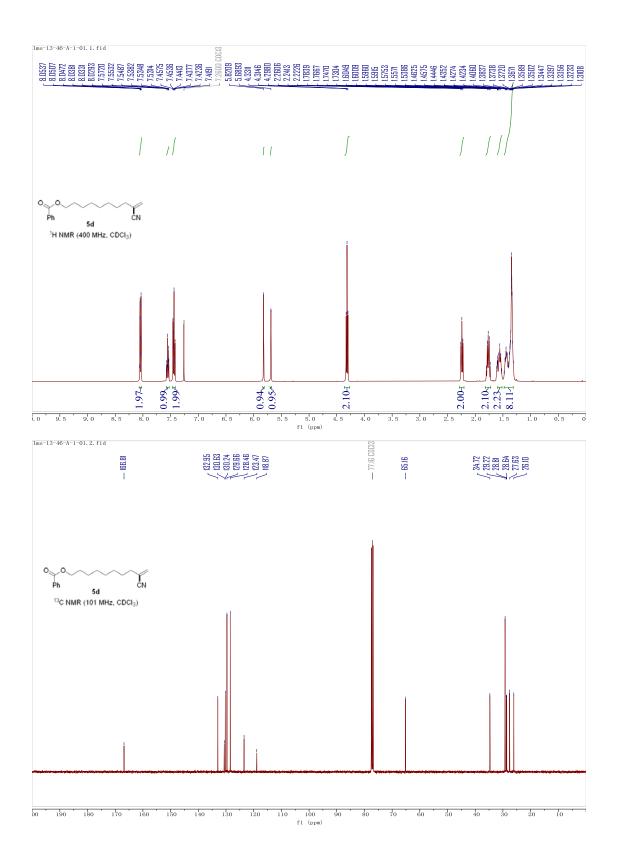


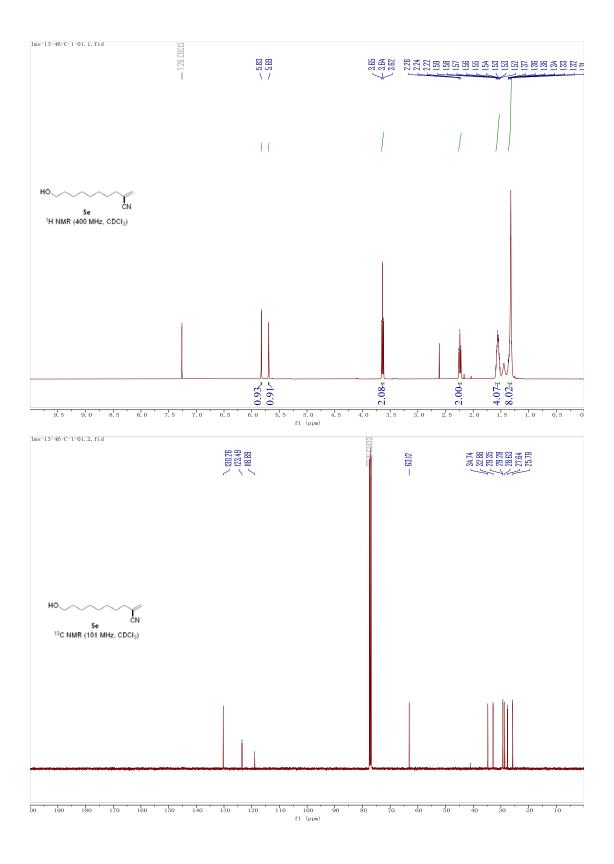


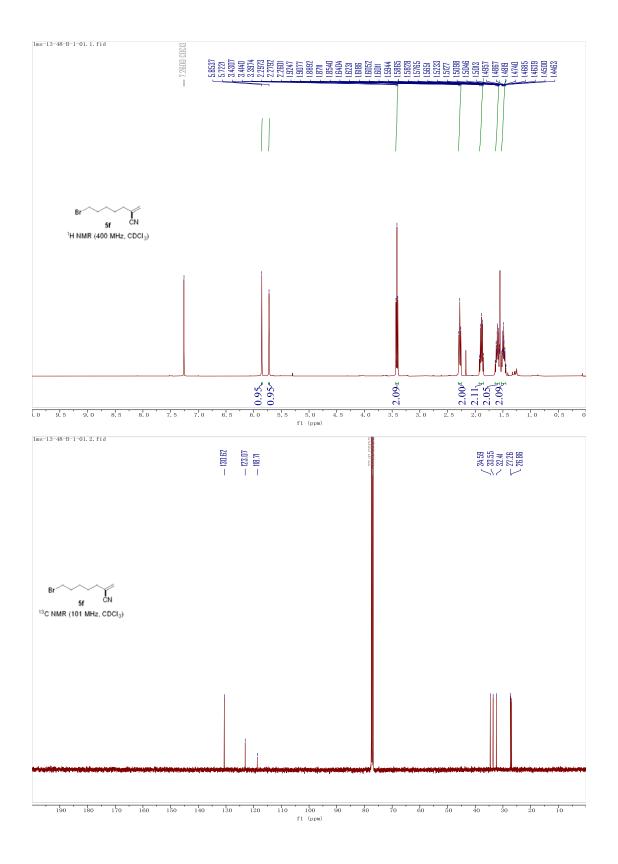
100 f1 (ppm)

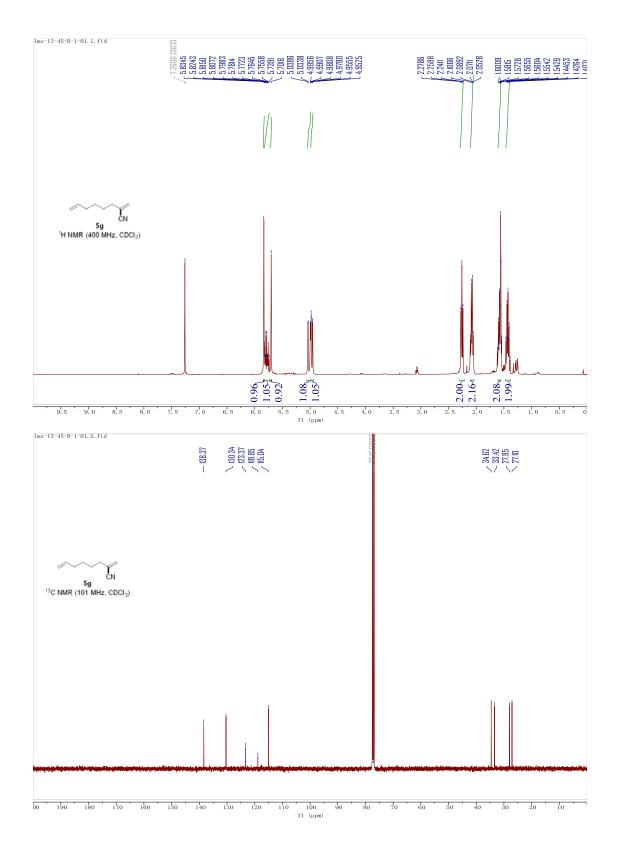

190 180 170 160 150 140 130

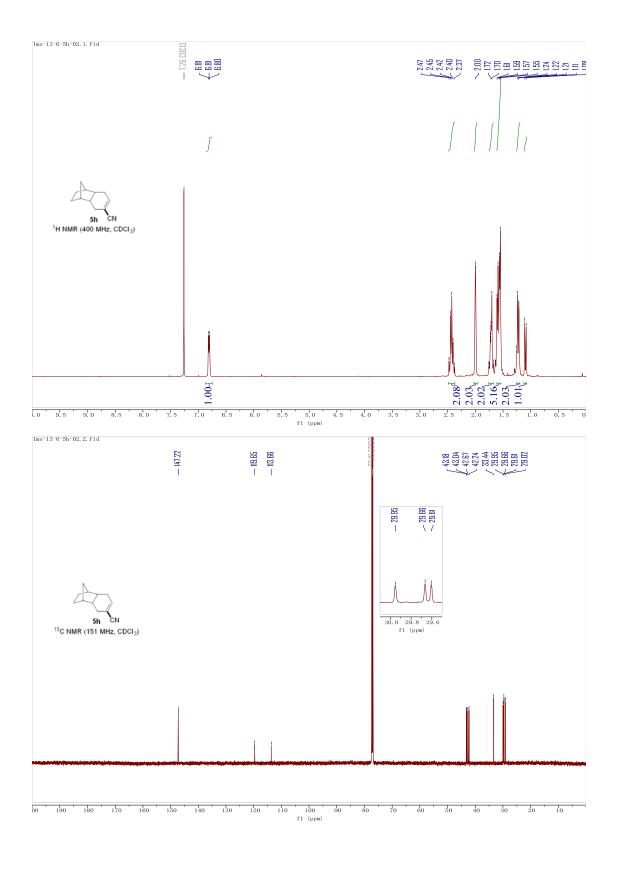


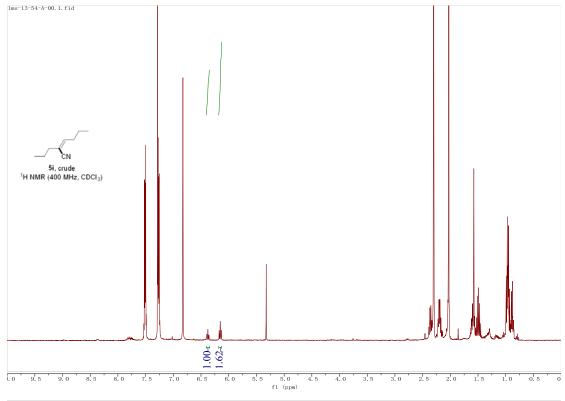


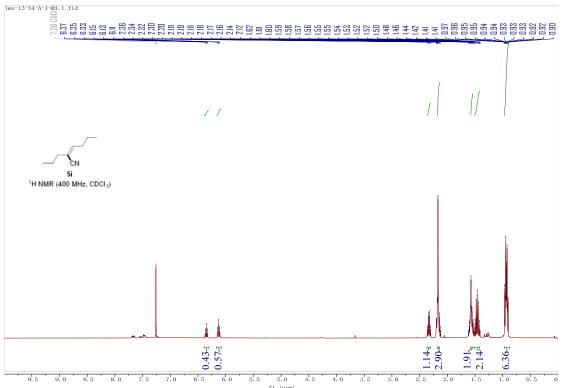

100 f1 (ppm)

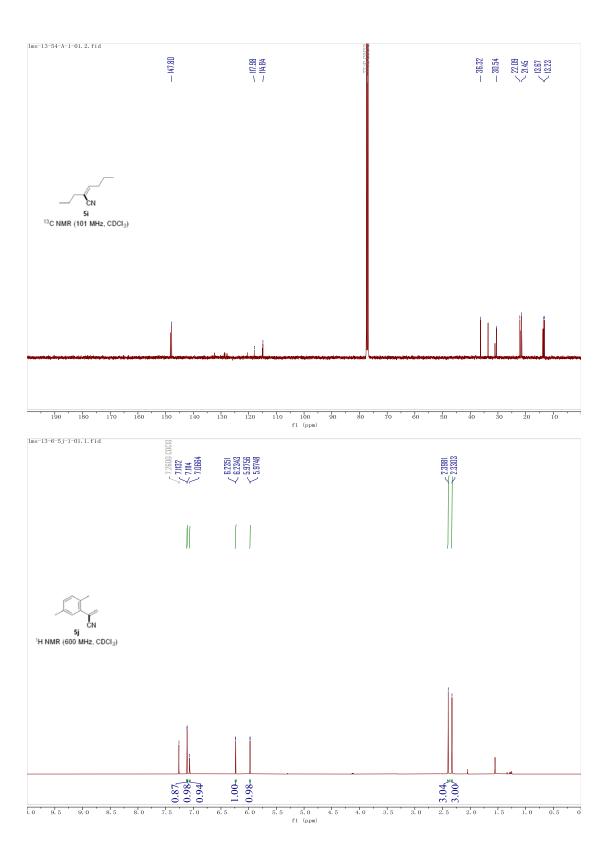

190 180 170 160 150 140 130 120

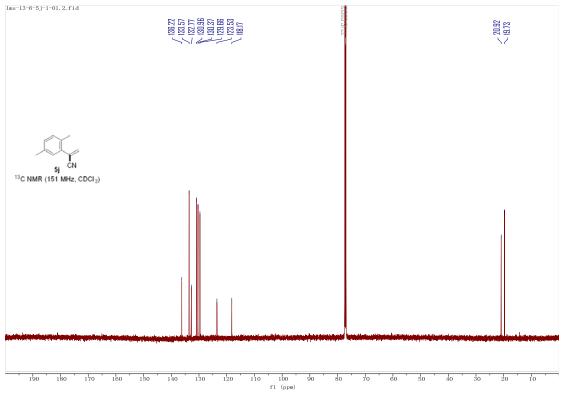


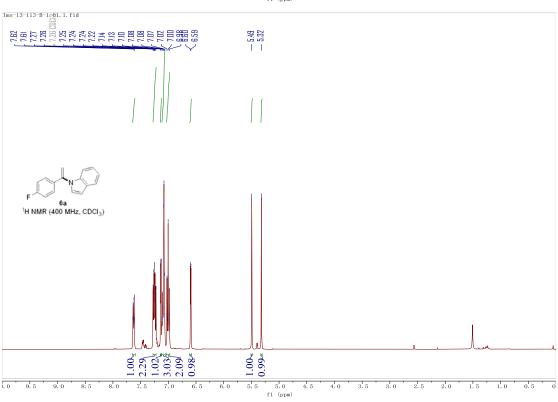


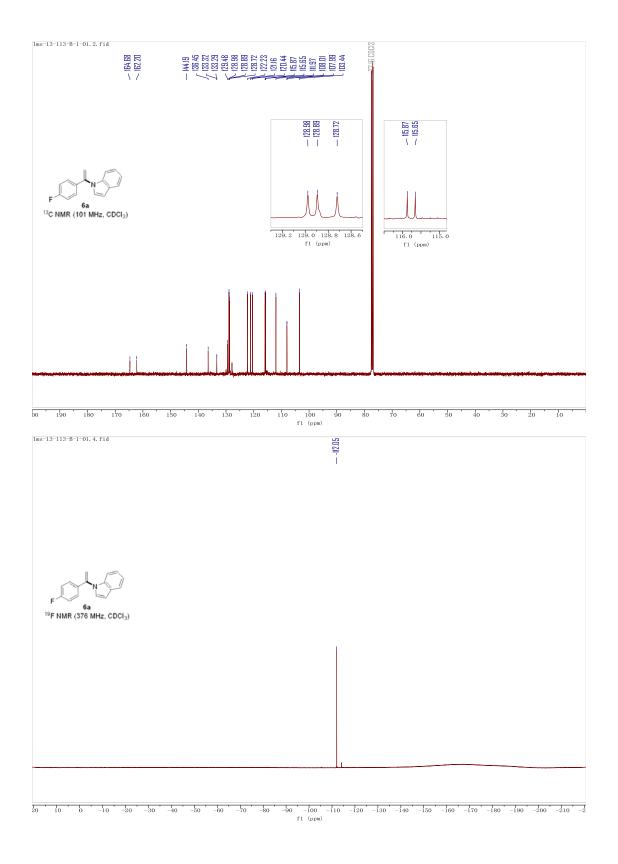


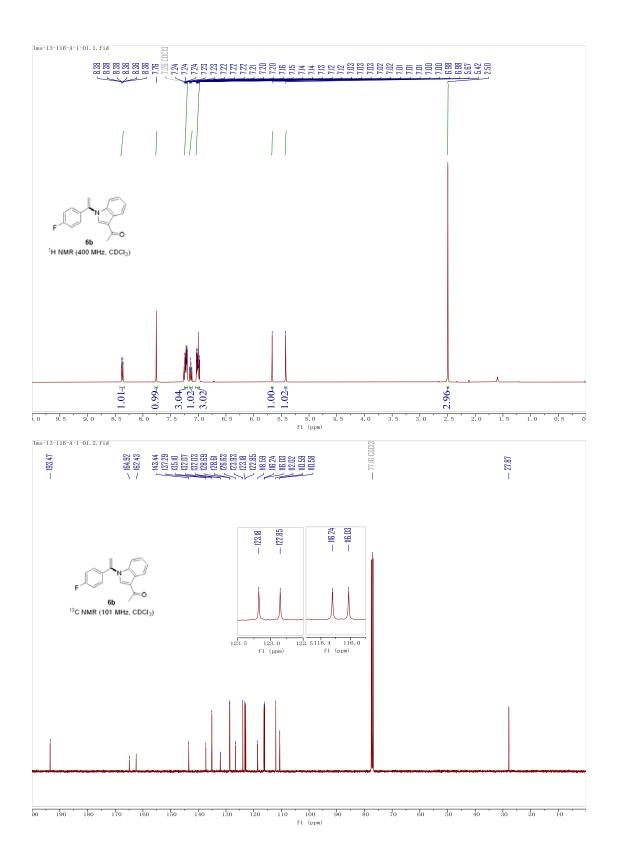


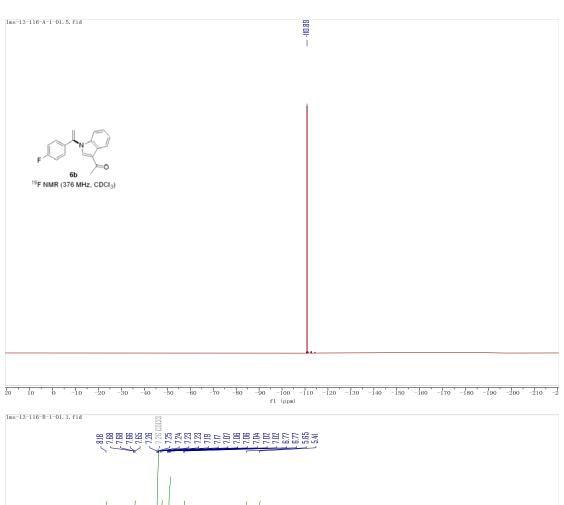


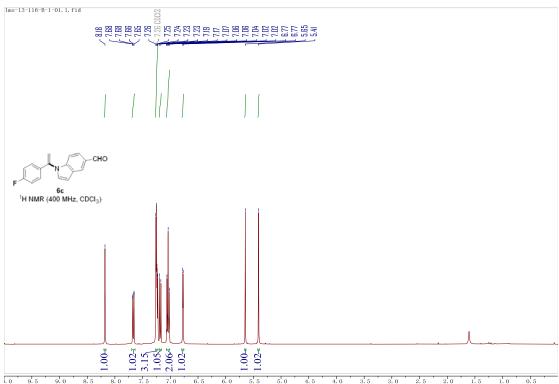


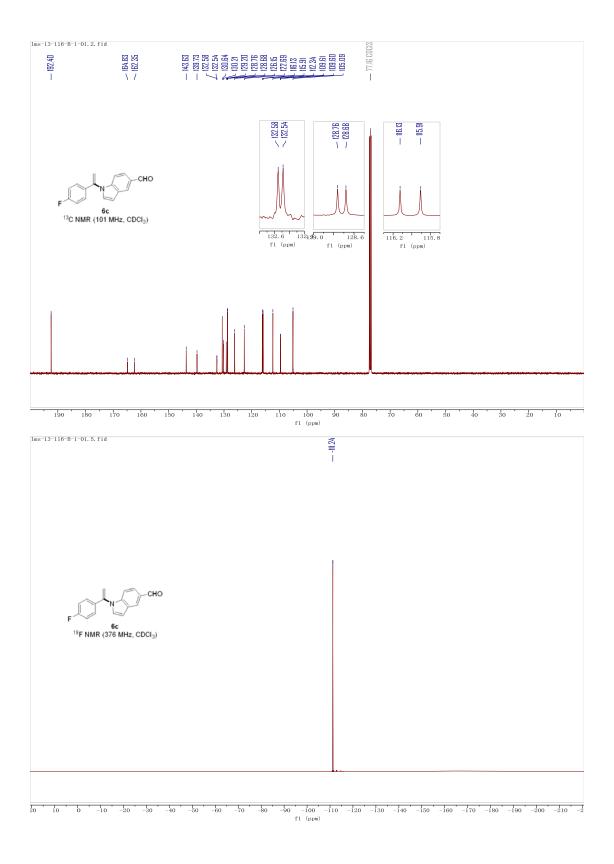


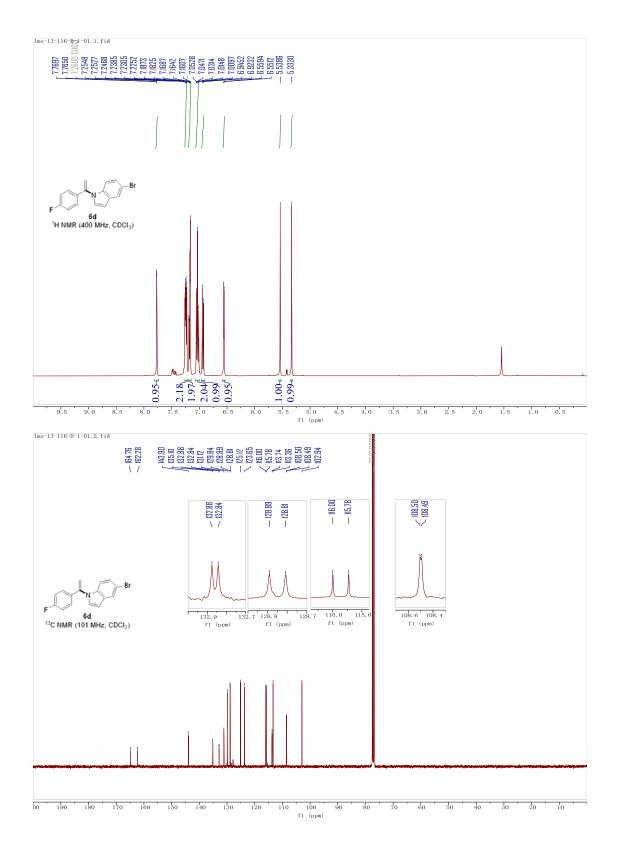


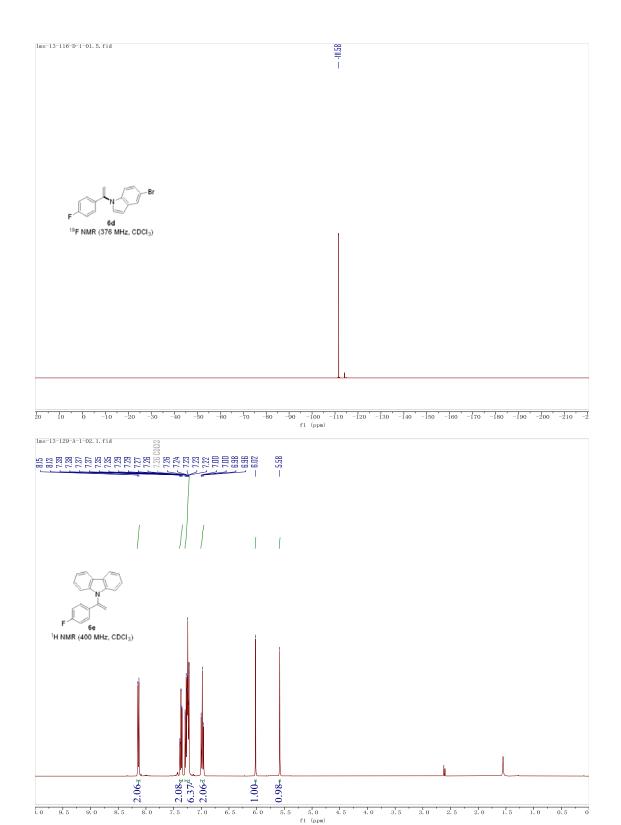


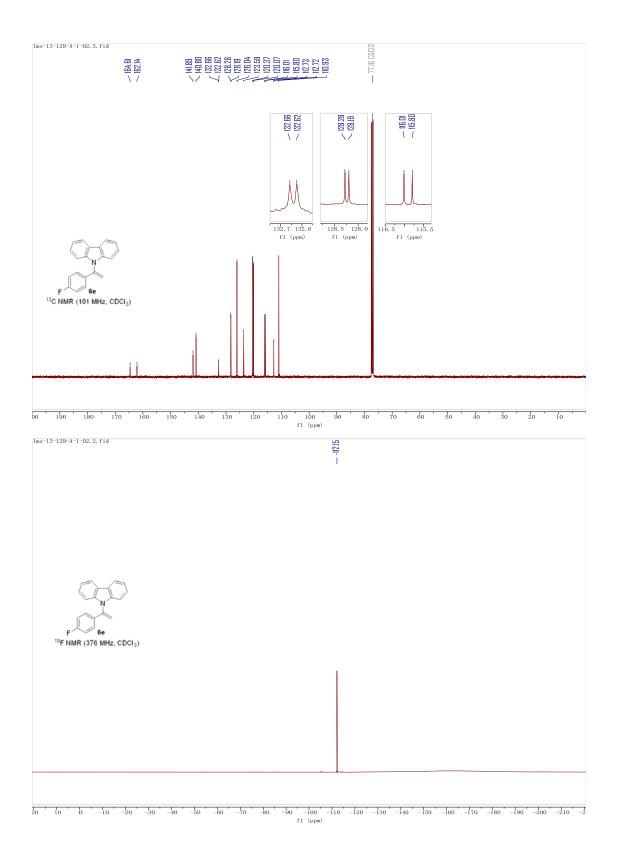


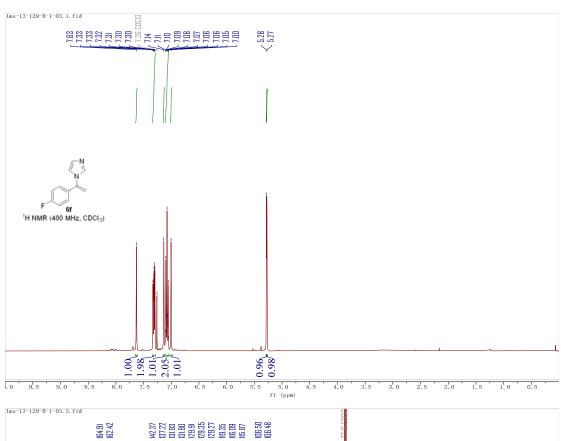


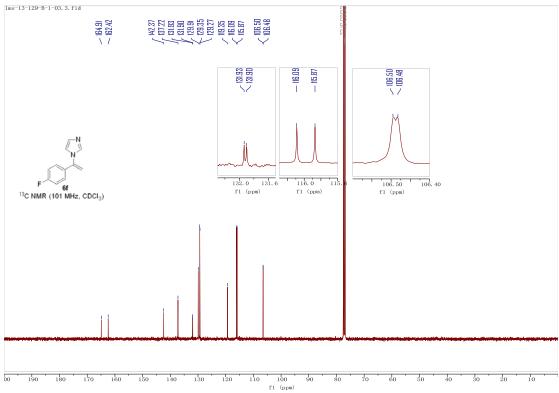


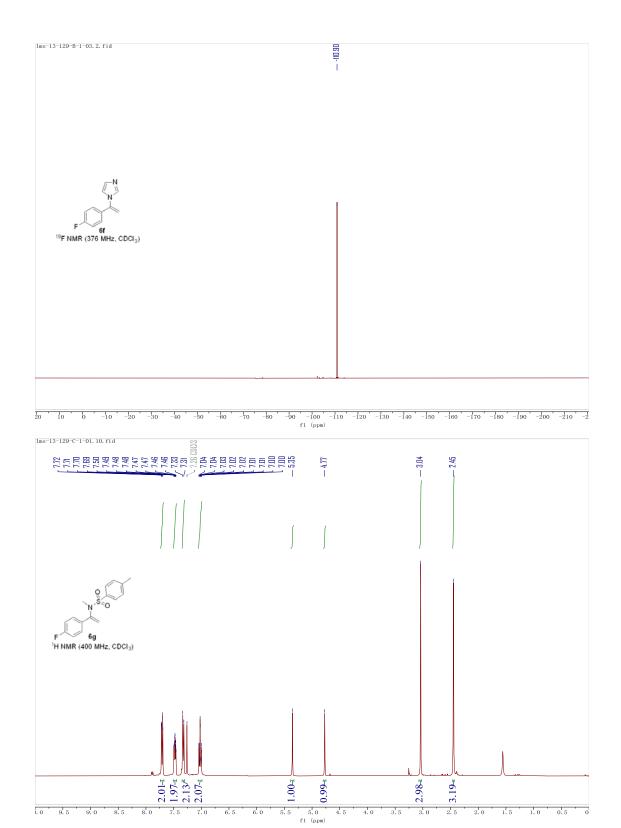


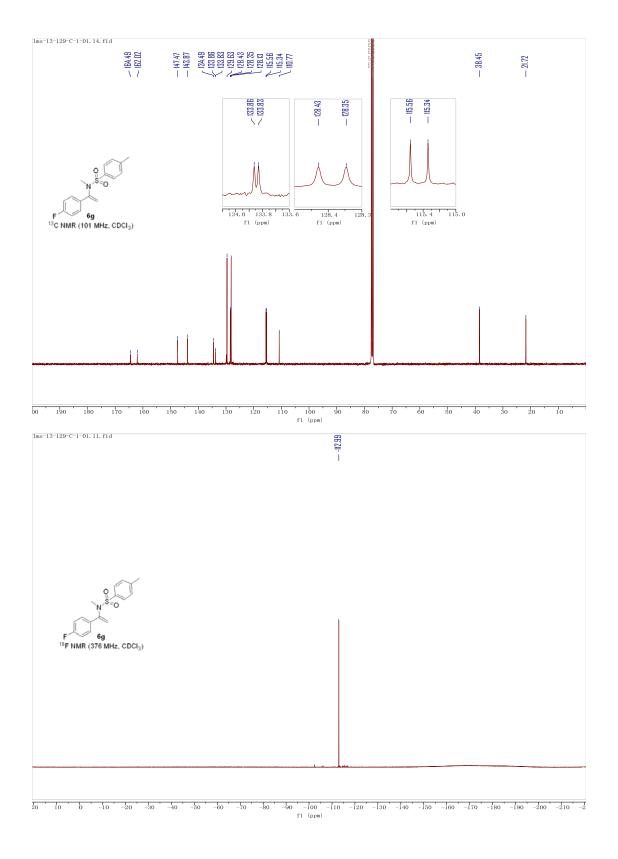


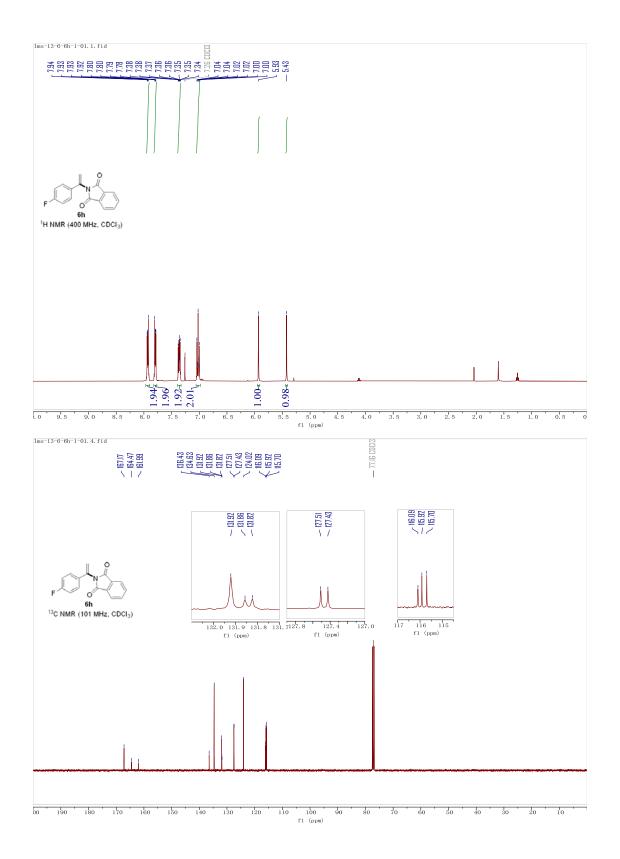


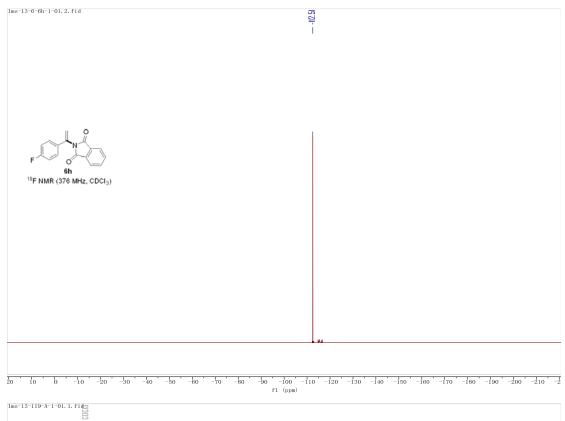


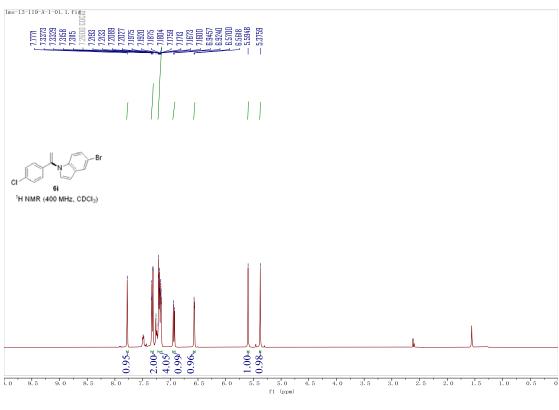


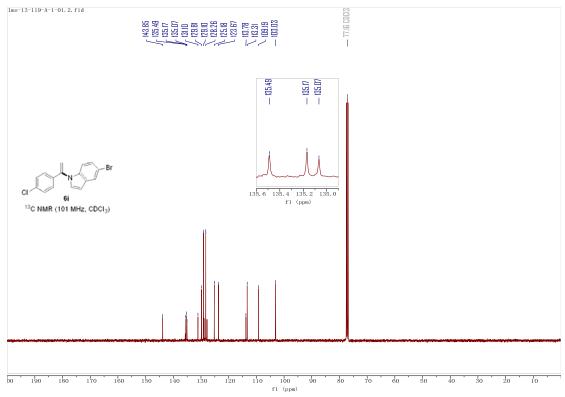


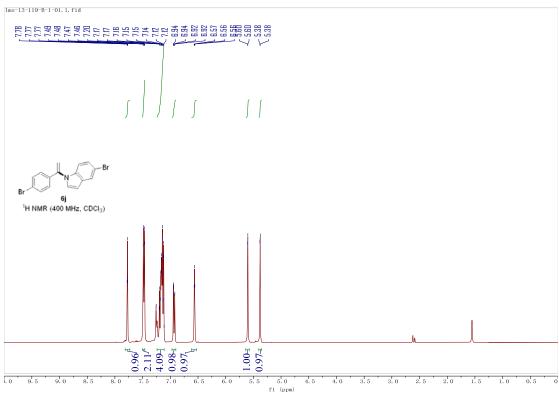


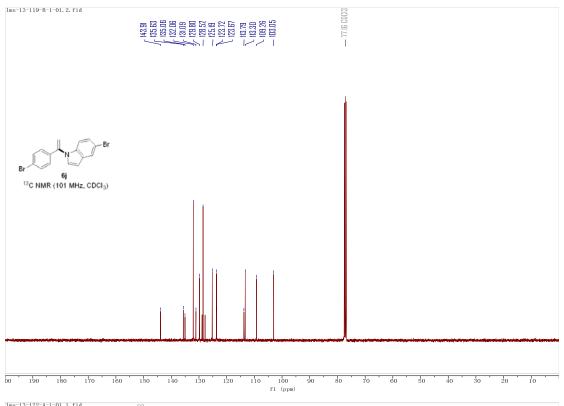


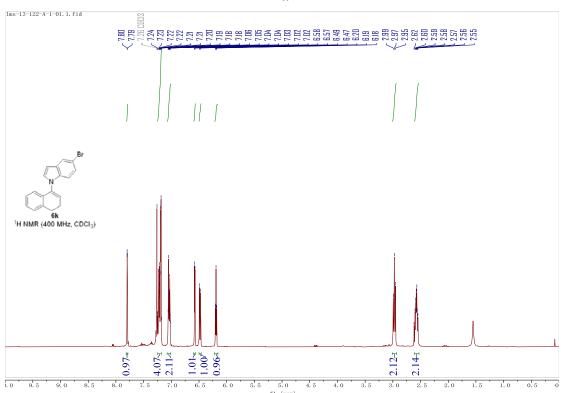


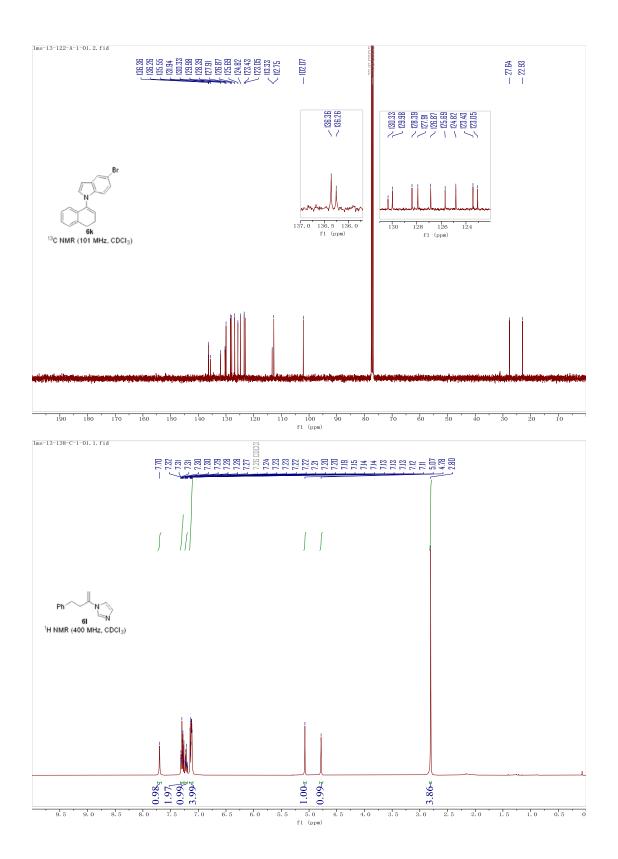


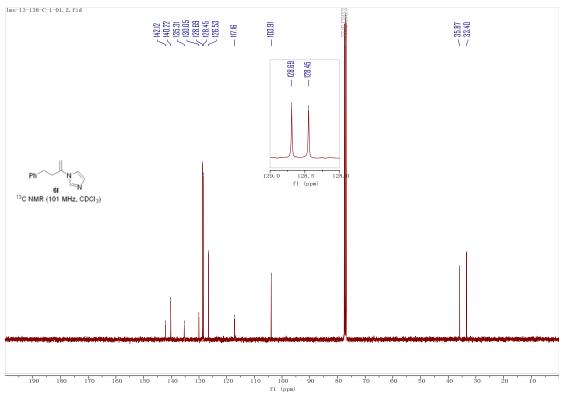


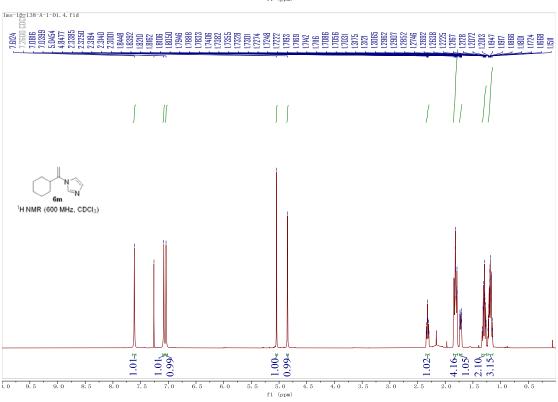


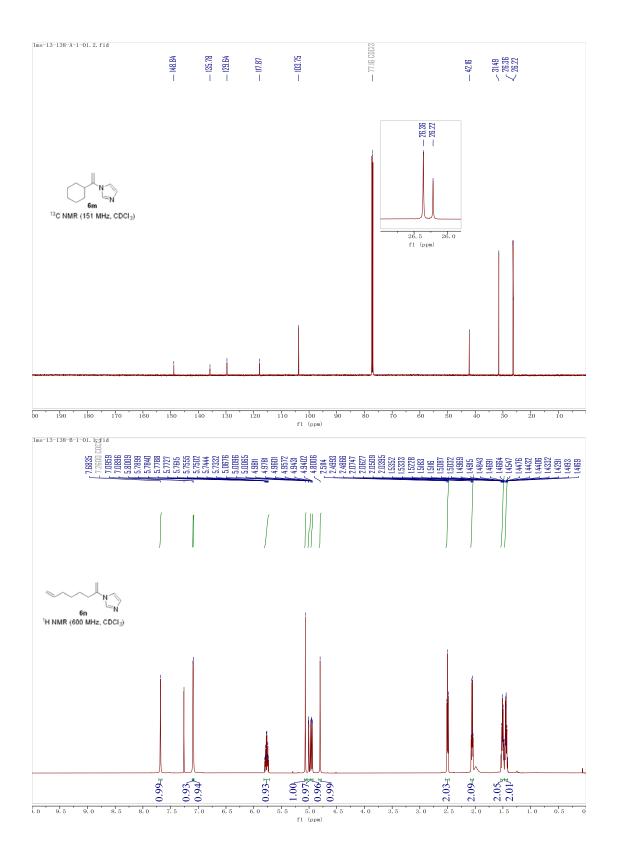


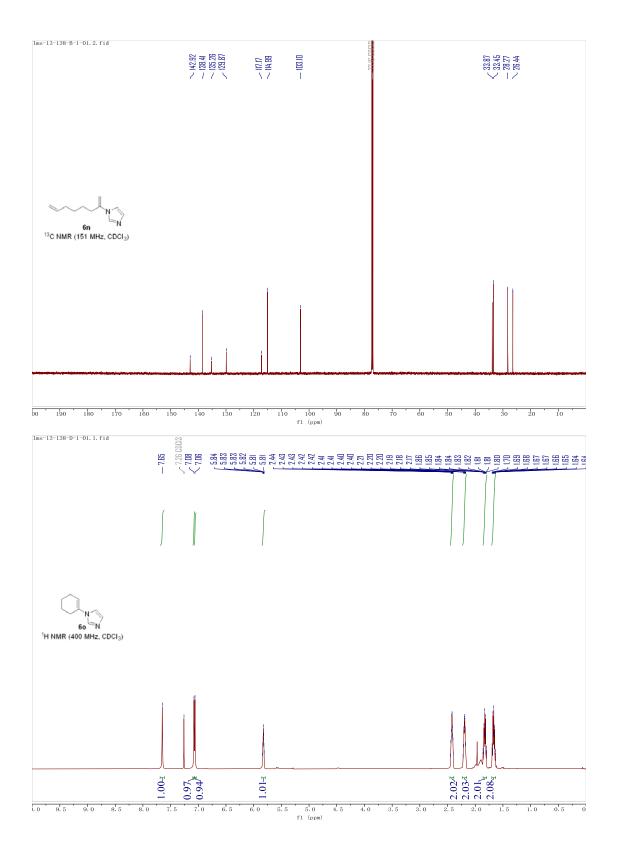


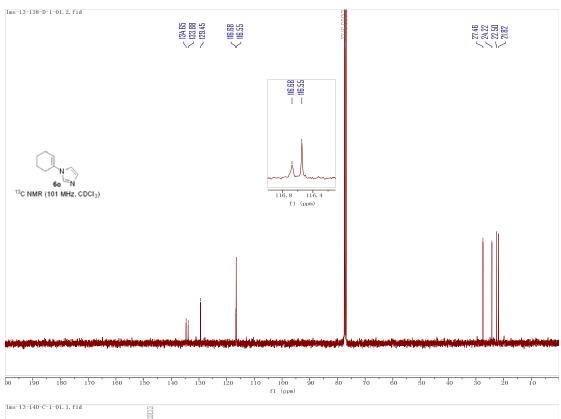


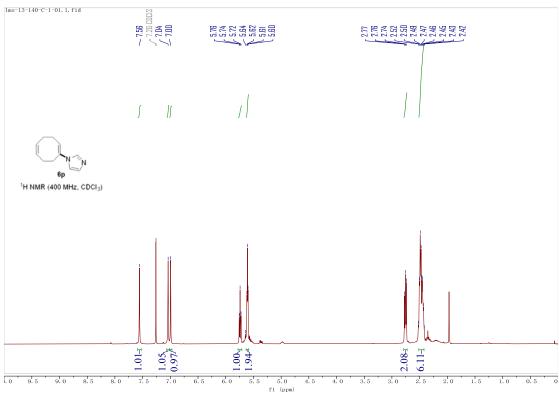


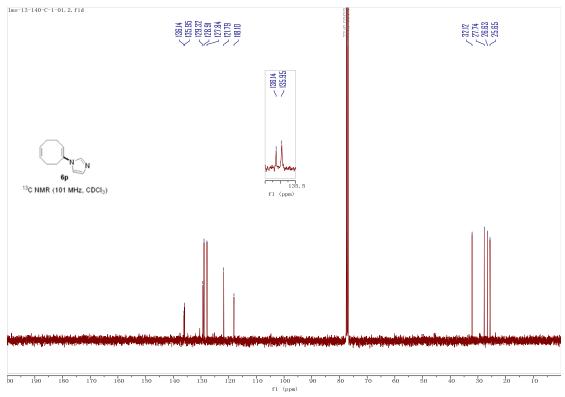


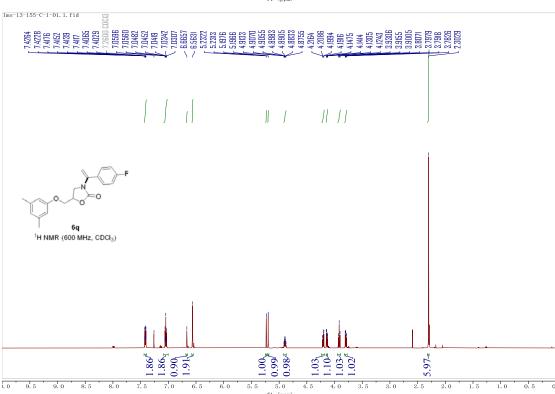


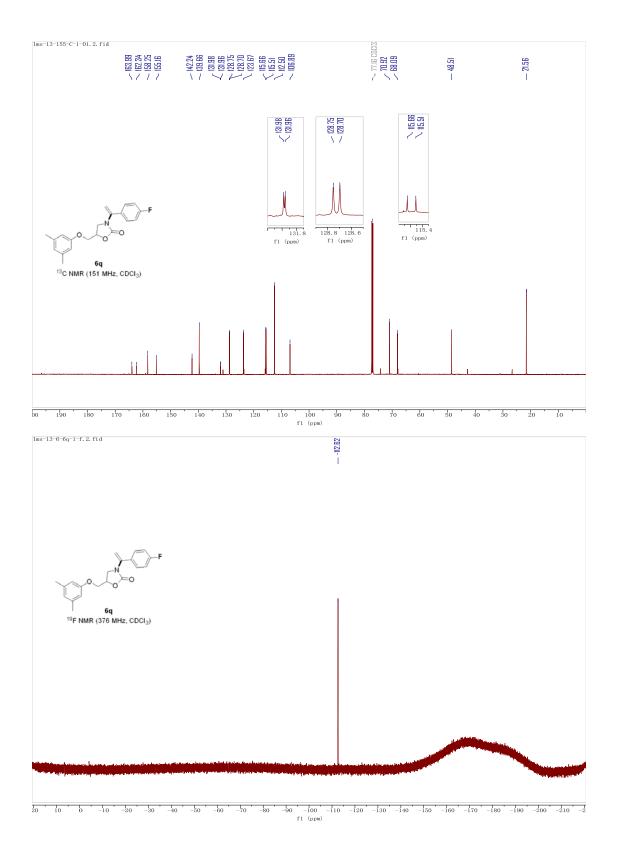


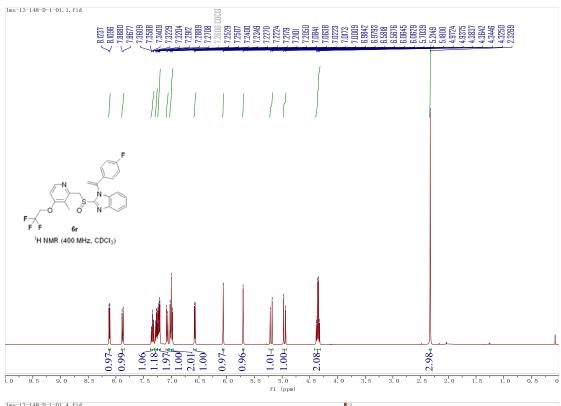


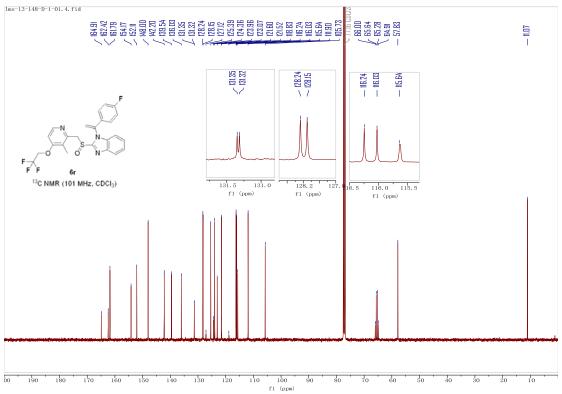


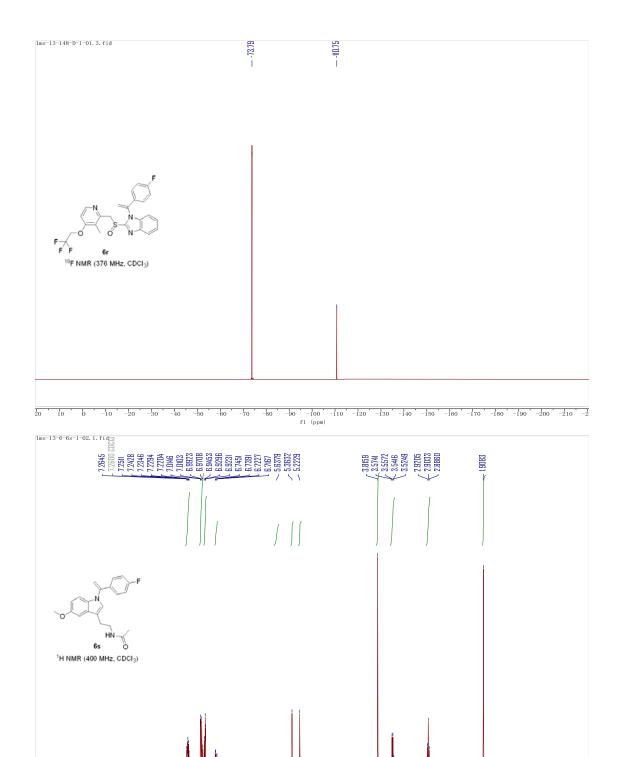


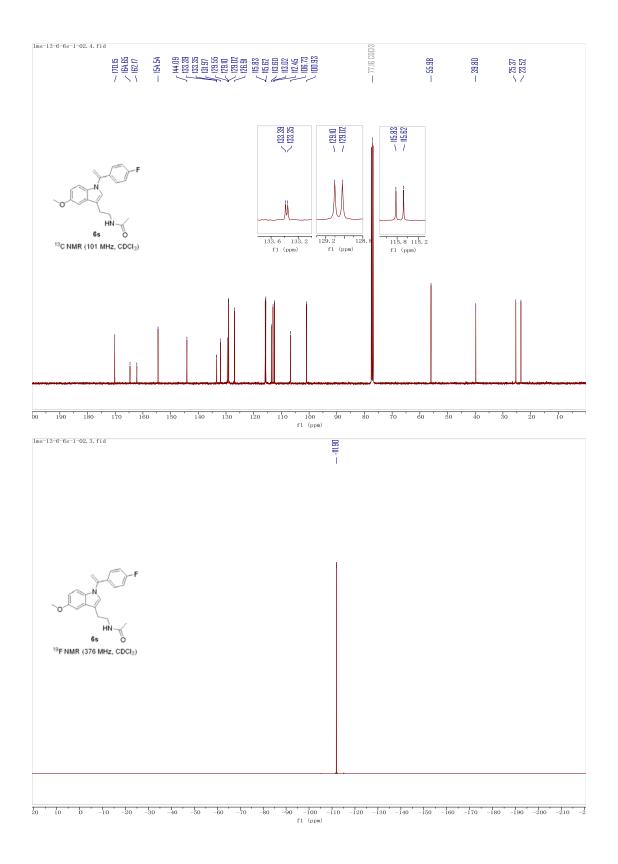


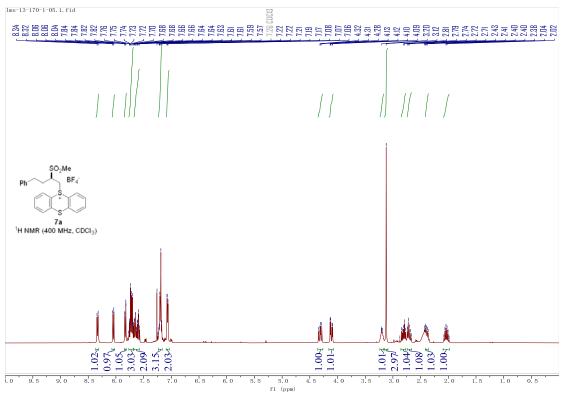


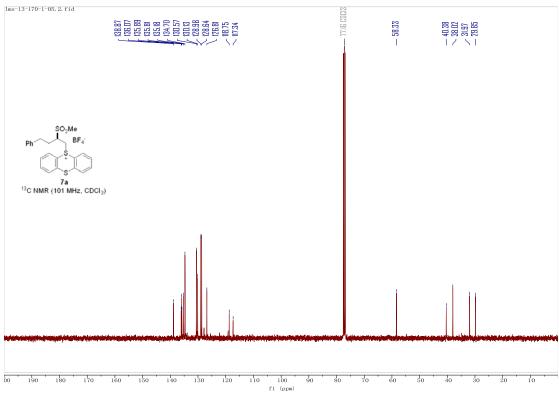


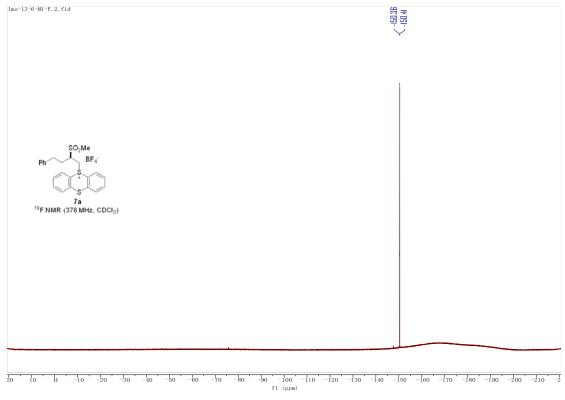


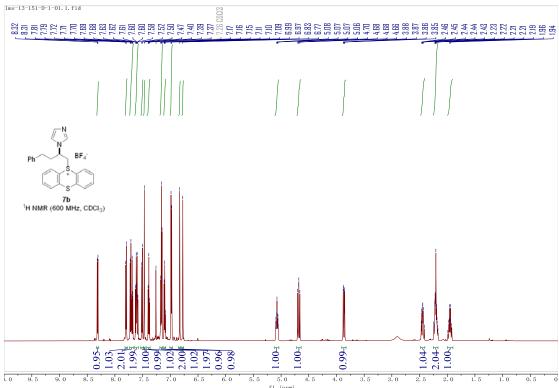





5.5 5.0 f1 (ppm)


8. 0


H86.1 4.0 3.5 12.01±


2.90ਜ

