

Appendix

The systematic use of metabolomic epidemiology, biobanks, and electronic medical records for precision medicine initiatives in asthma: new findings suggest new guidelines to optimize treatment

Authors:

Priyadarshini Kachroo Ph.D.^{1*}, Isobel D. Stewart Ph.D.^{2*}, Rachel S. Kelly Ph.D.¹, Meryl Stav M.S.¹, Kevin Mendez M.S.¹, Amber Dahlin Ph.D.¹, Djøra I. Soeteman Ph.D.^{1,3}, Su H. Chu Ph.D.¹, Mengna Huang Ph.D.¹, Margaret Cote¹, Hannah M. Knihiltilä M.D.¹, Kathleen Lee-Sarwar M.D.¹, Michael McGeachie Ph.D.¹, Alberta Wang M.D.¹, Ann Chen Wu M.D.⁴, Yamini Virkud M.D.⁵, Pei Zhang, Ph.D.^{6,8}, Nicholas J. Wareham, M.D.², Elizabeth W. Karlson M.D.⁷, Craig E. Wheelock Ph.D.^{6,8}, Clary Clish Ph.D.⁹, Scott T. Weiss M.D.¹, Claudia Langenberg, Ph.D.², Jessica A. Lasky-Su, Sc.D.¹

¹⁶ ¹ Channing Division of Network Medicine, Department of Medicine, Brigham and Women's
¹⁷ Hospital and Harvard Medical School, Boston, MA, USA

18 ²University of Cambridge, Cambridge, England

18 University of Cambridge, Cambridge, England
19 ³Center for Health Decision Science, Harvard T.H. Chan School of Public Health, Boston, MA,
20 USA

21 ⁴Harvard Pilgrim Health Care Institute and Department of Population Medicine, Harvard
22 Medical School, Boston, MA USA

23 ⁵ Massachusetts General Hospital an

⁶ Gunma University, Gunma, Japan
⁷ Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA

⁸Karolinska Institute, Stockholm, Sweden

27 ⁸Karolinska Institute, Stockholm, Sweden
28 ⁹Emory Institute, Gwinnett, GA, USA

28 'Broad Institute, Cambridge, MA USA
29

Table of Contents

31	Methods	3
32	COHORTS/STUDY POPULATIONS	3
33	Discovery Study Population: EPIC-Norfolk	3
34	Replication Study Population: Mass General Brigham Biobank-Asthma (MGBB-Asthma)	4
35	Metabolomic Profiling for EPIC-Norfolk and MGBB-Asthma	5
36	Randomized controlled trial (RCT) of ICS: Childhood Asthma Management Program (CAMP)	6
37	Clinical Quantification of Cortisol: MGBB-Cortisol	7
38	Statistical Analysis	8
39	Relative Quantification of Steroid Metabolites between Asthma (with and without ICS intake) and	
40	Controls in MGBB-Asthma	8
41		
42	Results	8
43	Metabolite-ICS associations in MGBB-Asthma and CAMP	8
44	Supplementary Figures	11
45	Figure S1	11
46	Figure S2	13
47	Supplementary Tables	14

48	Table S1	14
49	Table S2	16
50	Table S3	17
51	Table S4	20
52	Table S5	22
53	Table S6	23
54	Table S7	24
55	Table S8	24
56	<i>References</i>	27
57		

58 **METHODS**

59 **COHORTS/STUDY POPULATIONS**

60 ***Discovery Study Population: EPIC-Norfolk***

61 The European Prospective Investigation of Cancer (EPIC)¹ is a large multi-center, longitudinal
62 cohort study investigating the impact of nutrition and lifestyle factors on cancer risk in 519,978
63 men and women (aged 35-70 years) from 23 locations across 10 European countries. EPIC-
64 Norfolk¹ includes 25,000 men and women, of predominantly European descent. Plasma samples
65 were obtained at the baseline visit between 1993 and 1998 and were stored in the gas phase of
66 liquid nitrogen at -175 degrees Celsius from this collection onward. At baseline, participants
67 provided blood samples and completed a health and lifestyle questionnaire. Asthma status was
68 ascertained based on a combination of self-report of previous diagnosis (where the question was:
69 “Has the doctor ever told you that you have any of the following: Asthma”?), and any additional
70 cases ascertained at a baseline health check performed by a registered nurse.

71 Plasma metabolomic data generated on a subset of 10,754 participants from the EPIC-Norfolk
72 cohort were used as the discovery population in this analysis. Of these 10,754 participants, 661
73 (6%) individuals had a positive asthma status (as previously defined), while the remainder were
74 considered non-asthmatic controls. Individuals with a self-reported previous doctor’s diagnosis
75 of bronchitis, and/or emphysema at baseline were excluded. Participants provided consent to
76 participate in the study. Participants were not requested to fast prior to blood sampling and were
77 largely unfasted. The study was approved by the Norwich Local Ethics Committee (REC Ref.
78 98CN01). **Table 1A** summarizes the characteristics of the EPIC-Norfolk participants in this
79 study.

81 ***Replication Study Population: Mass General Brigham Biobank-Asthma (MGBB-Asthma)***

82 The Mass General Brigham Biobank (MGBB) (<https://biobank.partners.org>) is a collection of
83 DNA, serum, and plasma samples from 81,502 fully consented subjects recruited from the Partners
84 Healthcare System, that is linked to the Research Patient Data Registry (RPDR), a data warehouse
85 that gathers data from multiple electronic medical record (EMR) systems throughout Partners
86 Healthcare and stores it in a SQL Server database. Researchers may query the RPDR using an
87 online query tool; RPDR currently contains data on 4.6M patients, with 227M encounters, and
88 approximately 900M distinct, coded clinical facts stored in the database dating back to 1986
89 including demographic data, diagnoses (e.g., ICD-9/ICD-10 codes), procedures (e.g., Current
90 Procedural Terminology (CPT) codes), pharmacy data (e.g. RxNorm), inpatient and outpatient
91 encounter information, provider information, laboratory data, imaging, and pathology data. We
92 applied a validated phenotyping algorithm² for asthma diagnosis using RPDR. For our study, we
93 identified 287 individuals with asthma (positive predictive value > 85%) and 323 controls
94 (negative predictive value > 99%) generating the MGBB-Asthma population (total N = 610
95 subjects, **Table 1A**). Plasma samples for the MGBB asthma cohort were collected between
96 October 2010 and March 2017 and were stored immediately in an -80 degree freezer. Non-fasted
97 plasma samples were available on all of these individuals, which were used for metabolomic
98 profiling. This study was approved by the IRB of Mass General Brigham and all study
99 participants provided written consent at enrollment.

100

101 Using the MGBB, we also obtained information on asthma medication use (**Table S1**).
102 Quantitative ICS intake was ascertained using presence and total prescription count of the
103 following medications: Beclomethasone, Dipropionate, Budenoside, Ciclesonide,

104 Dexamethasone, Flunisolide, Fluticasone, Fluticasone/Salmeterol, Mometasone and
105 Triamcinolone. To avoid misclassification, we further created stringent binary classifications for
106 presence/absence of ICS medications. Based on the frequency/distribution of subjects with ICS
107 intake, subjects with at least four ICS prescriptions were categorized as subjects with ICS intake.
108 Subjects with less than four prescription counts of their ICS medication were categorized as
109 without ICS intake including those without any ICS intake. Any healthy controls with intake of
110 ICS and individuals with COPD were excluded from the analysis.

111

112 ***Metabolomic Profiling for EPIC-Norfolk and MGBB-Asthma***

113 In both studies, metabolomic profiling was conducted by Metabolon Inc. (Durham, NC, USA).
114 The methods have been described in detail previously³. In short, four non-targeted Liquid
115 Chromatography Couple Mass Spectroscopy (LCMS) platforms were performed enabling the
116 broadest coverage of the metabolome: 1) Amines and polar metabolites that ionize in the positive
117 ion mode; 2) Central metabolites and polar metabolites that ionize in the negative ion mode; 3)
118 Polar and non-polar lipids; 4) Free fatty acids, bile acids, and metabolites of intermediate
119 polarity. All reagents and columns for this project were purchased in bulk from a single lot and
120 all instruments were calibrated for mass resolution and mass accuracy daily. Coefficients of
121 variation were measured in blinded QC samples randomly distributed among study samples, and
122 batch variation is controlled for. Metabolites were identified by their mass-to-charge ratio (m/z),
123 retention time (rt), and through a comparison to a library of purified known standards. Peaks
124 were quantified using the area-under-the-(ROC) curve. Metabolite measures were median
125 normalized across run days (with medians set to 1).

126 In EPIC-Norfolk, measurements were made in citrate plasma samples taken at baseline, for two
127 sets of samples, each consisting of approximately 6,000 quasi-randomly selected individuals.
128 Individuals with high levels of metabolite missingness were excluded. Metabolites present in at
129 least 30 asthma cases in both measurement sets were included in the analyses. Metabolite
130 measures were natural log transformed, windsorized at 5 SD and standardized ($\mu = 0$, $SD = 1$).
131 Analyses were performed within each of the two metabolite measurements sets individually, and
132 results were meta-analysed to pool the associations from the two measurement sets, using a fixed
133 effects inverse variance weighted meta-analysis. In the MGBB-Asthma, missing metabolite
134 values were imputed by replacement with half the minimum value for each metabolite in all
135 samples. Metabolites with an interquartile range of zero were excluded from further analysis
136 (n=129) with 904 metabolites remaining for the analysis (**Table S2**).
137

138 ***Randomized controlled trial (RCT) of ICS: Childhood Asthma Management Program
(CAMP)***

140 CAMP is a double blind RCT that randomized 1,041 children with mild-to-moderate asthma
141 aged 5 to 12 years to inhaled steroid budesonide or nedocromil (each compared with placebo),
142 treatment twice daily during 4.3 years of the trial^{4,5}. The participants were managed further by
143 their physician for a 4.8-year post-trial period. Approval was obtained from the institutional
144 review boards at each of the participating institutions of CAMP. Samples for the CAMP clinical
145 trial were obtained from the clinical sites at the randomization visit between December 1993 and
146 September 1995 and again at the end of the clinical trial between December 1997 and December
147 1999. Samples were stored in an -80 degree freezer. Cortisone and cortisol were both among the
148 metabolites measured via global untargeted metabolomic profiling at the Broad Institute using

149 560 serum samples (**Table 1B**) collected from CAMP individuals at baseline and four years later
150 at the end of the trial. The quality control information is detailed elsewhere^{6,7}. The RCT design
151 of CAMP was used to further validate the cause-effect relationship between long-term ICS use
152 and changes in cortisone and cortisol levels.

153

154 ***Clinical Quantification of Cortisol: MGBB-Cortisol***

155 We queried the RPDR in MGBB to identify individuals who obtained cortisol testing (most often
156 as a part of adrenal insufficiency testing, specifically the ACTH stim test) during the course of
157 their recorded EMRs. Given the diurnal variation in cortisol levels, we obtained detailed
158 information on specifications of the cortisol measurement; including the time and date of the
159 blood draw. For individuals with multiple cortisol measurements on different dates, we recorded
160 the minimum, maximum, mean, and median cortisol values, only considering the initial
161 measurement from any single visit. To avoid confounding by other medications and to avoid
162 misclassification due to controls that may have taken ICS medications for reasons other than
163 asthma, we used a stringent measure of ICS intake: subjects having a count of greater than or
164 equal to at least 10 prescriptions of their most common ICS medication were categorized as “ICS
165 use”, while subjects with less than 10 prescription counts of their most common ICS medication
166 were categorized as “no ICS use”. We then stratified these groups based on asthma affection,
167 resulting in the following four categories: 1) no asthma/no ICS use; 2) no asthma/ICS use; 3)
168 asthma/no ICS use; 4) asthma/ICS use. Subjects with COPD were excluded from this analysis.
169 We identified a total of 2,235 individuals that were included in these analyses to generate the
170 MGBB-Cortisol cohort (**Table 1B**).

171

172 **Statistical Analysis**

173 An overview of analytic approach and methods describing discovery and replication for
174 associations between metabolites (independent predictor variable) and asthma affection status
175 (dependent variable) is described in the main paper.

176

177 ***Relative Quantification of Steroid Metabolites between Asthma (with and without ICS intake)
178 and Controls in MGBB-Asthma***

179 To quantify the relative reduction in steroid metabolite levels based on ICS use, asthmatics were
180 stratified by the Asthma Status/ICS variable used in the clinical quantification of cortisol.
181 Multivariable logistic regression models were utilized to assess steroid metabolite levels between
182 asthma cases and controls; asthma cases with ICS intake and controls; asthma cases with no ICS
183 and controls; and, asthma cases with and without ICS intake. All models were adjusted for age,
184 gender, race, and BMI.

185

186 **RESULTS**

187 ***Metabolite-ICS associations in MGBB-Asthma and CAMP***

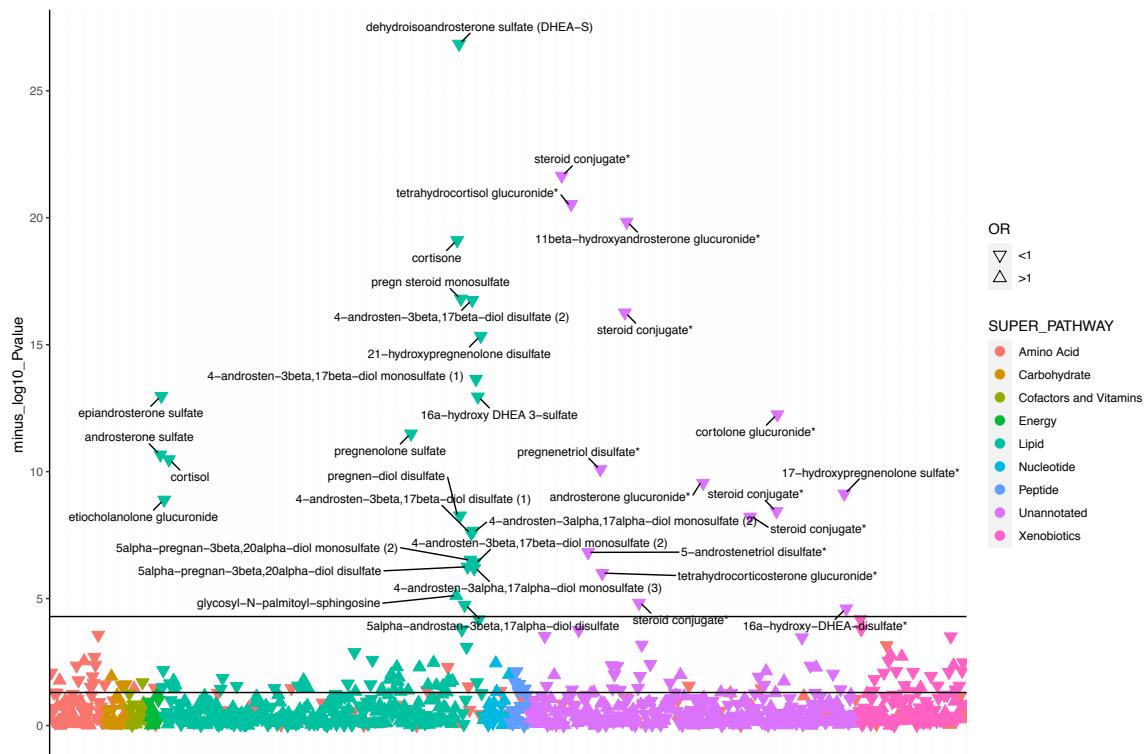
188 Seventeen of the 35 significant metabolites in EPIC-Norfolk cohort (**Figure S1A-B**, details in
189 main paper) were replicated in MGBB-Asthma cohort at an FDR threshold of 5% that were
190 annotated to major steroid hormone biosynthesis pathways (**Figure S2**). In MGBB-Asthma, we
191 focused on the 34 steroid metabolites that were measured by Metabolon Inc. (Durham, NC,
192 USA): 20 androgenic steroids, five pregnenolone steroids, two corticosteroids, and seven
193 progestin steroids. All steroid metabolites except five progestin steroids were significantly
194 lowered in asthmatics with ICS intake and with asthmatics overall compared with controls at an

195 FDR threshold of 5% (**Table S4, Figure 2B**). In asthmatics with ICS intake compared to
196 asthmatics with no ICS, all steroid metabolites except two androgenic steroids and seven
197 progestin steroids were significantly lowered (**Figure 2B, Table S4**). For asthmatics with no ICS
198 compared to controls, none of the steroid metabolites were significant at an FDR threshold of
199 5%, however at a nominal P-value cut-off of 5%, nine androgenic steroids and two pregnenolone
200 steroids were significantly lowered (**Figure 2B, Table S4**). Across all measured steroid
201 metabolites, the median OR was 0.95 between asthmatics with no ICS and controls, which is
202 0.09 (9%) higher than between asthmatics with ICS intake and controls. Stratified by steroid
203 pathway into androgenic, pregnenolone, corticosteroid, and progestin steroids, the median ORs
204 between asthmatics with no ICS and controls were 0.95, 0.94, 0.96, 0.96, and between asthmatics
205 with ICS intake and controls were 0.85, 0.84, 0.86, 0.90, respectively (**Figure 2B, Table S5-S8**).
206 Across all four analyses, no steroid metabolite levels were significantly increased (OR > 1) even
207 at a P-value cut-off of 5%.

208 The overall reduction in steroid levels metabolites (median OR = 0.86) in asthmatics with ICS
209 intake is consistent with adrenal suppression. This reduction was highly significant (FDR
210 threshold of 5%) in all androgenic steroids, pregnenolone steroids, and corticosteroids, but only
211 in 2/7 (28.6%) of progestin steroids. As classification of asthmatics with no ICS is based on less
212 than four prescription counts of their ICS medication, there may be mild adrenal suppression
213 associated with low ICS usage. Therefore, while no steroids were highly significant (FDR
214 threshold of 5%), there was a suggestive decrease in 9/20 (45%) androgenic steroids and 2/5
215 (40%) pregnanolone steroids, but 0/2 (0%) of corticosteroids. This result suggests that a panel
216 including androgenic steroids and pregnanolone steroid metabolites would be preferred over

217 cortisol measures to identify decreases in steroid levels prior to clinical-grade adrenal
218 suppression.

219

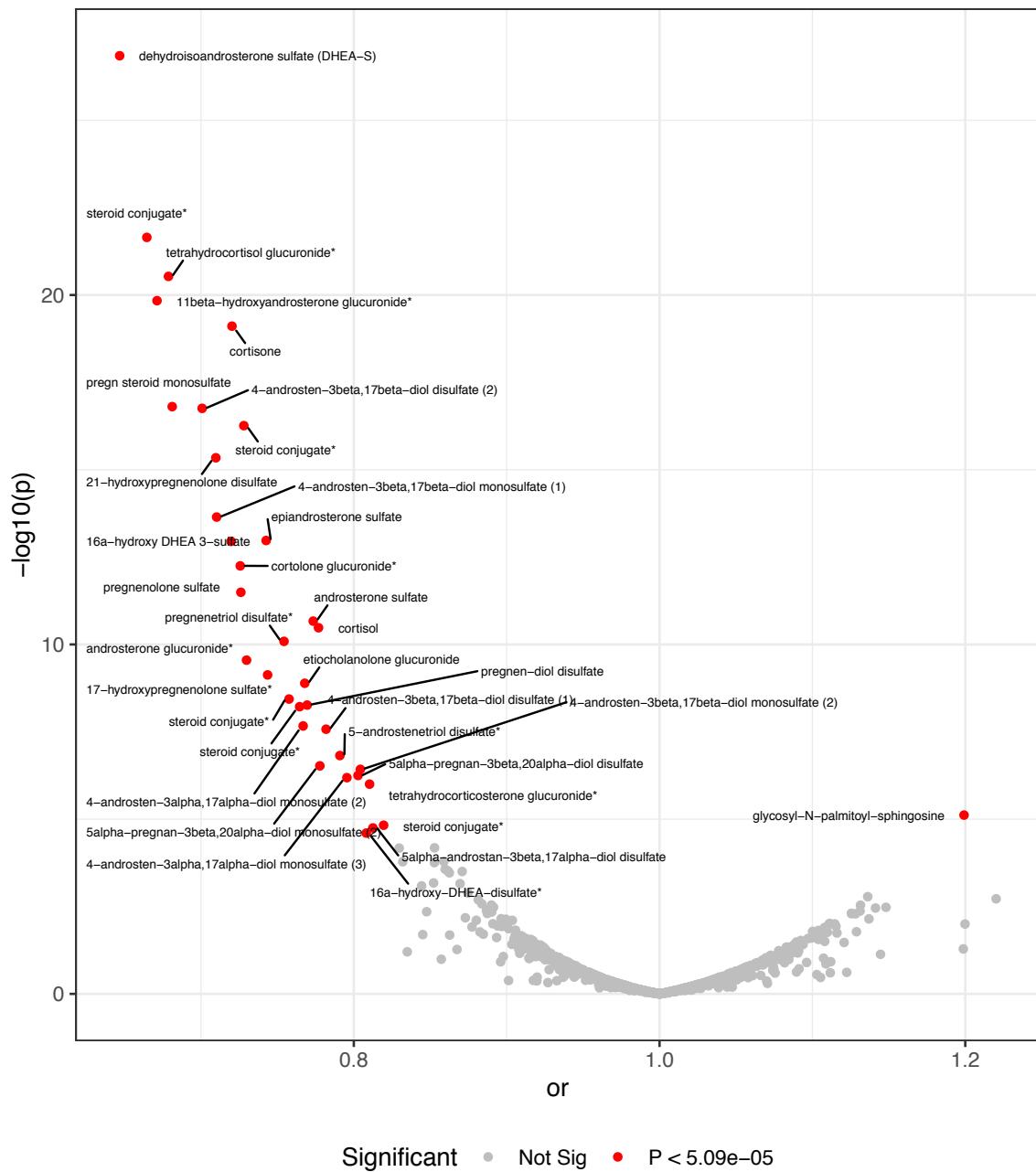

220 **Supplementary Figures**

221
 222 **Figure S1.** Plasma metabolites in EPIC-Norfolk cohort. A.) Manhattan plot of metabolites sorted
 223 by their pathways on x-axis and negative log10 of P-value on the y-axis. The cut off horizontal
 224 lines on the y-axis highlight the metabolites significantly associated with asthma outcome at a P-
 225 value <0.05 and at the bonferroni threshold (n=35 metabolites, P-value<5.14x10⁻⁵). The legend
 226 key shape and color shows the direction of effect for the metabolites and the main pathway they
 227 belong to, respectively. B.) Volcano Plot showing the effect size of the metabolites with OR on
 228 the x-axis and negative log10 of P-value on the y-axis. The metabolites colored in red are
 229 significant at a bonferroni threshold of P-value<5.14x10⁻⁵.

230

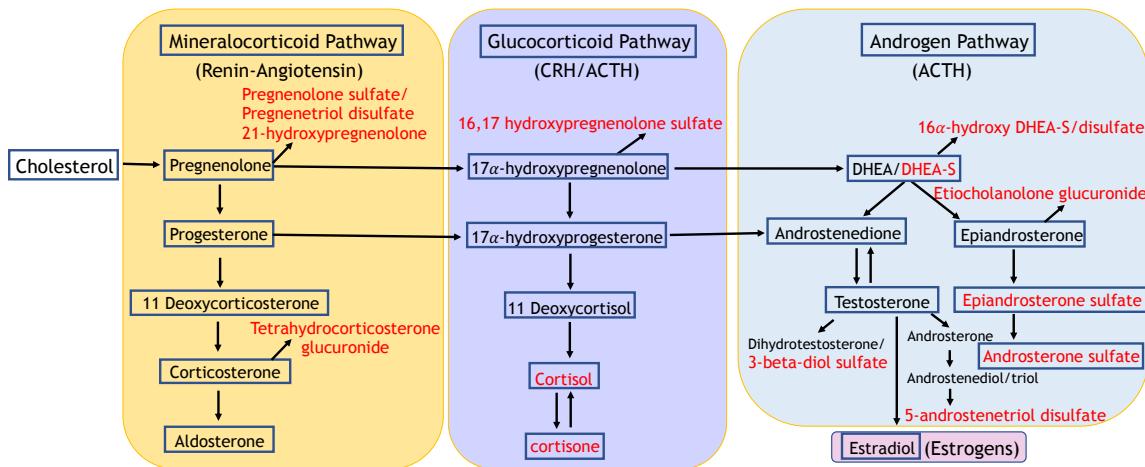
231

232 A.



233

234


235

236 B.

237
238
239

240 **Figure S2.** Principal steroid hormone biosynthesis pathways with mineralocorticoid,
 241 glucocorticoid and androgen metabolites highlighting the replicated metabolites between EPIC-
 242 Norfolk cohort and Mass General Brigham Biobank. Our annotated metabolites colored in red
 243 have been mapped to these pathways with their precursors or intermediates.
 244 Abbreviations: CRH: Corticotropin releasing hormone; ACTH: Adrenocorticotrophic hormone

245
 246
 247

248
249
250
251
252
253

Supplementary Tables

Table S1. Inclusion and exclusion definitions and data dictionary for asthma and asthma medications from Mass General Brigham Biobank electronic medical health record (MGBB EMR) data. Since the data in biobank is dynamic, the data download was restricted till March 24, 2020 (the date at the time of last pull for final analysis)

Diagnosis/Medications	Folder one level up in MGBB	International Classification of Diseases (ICD)-9 and ICD-10 codes where applicable/available
Asthma - current or past history (custom PPV) [\geq 0.80PPV]	Asthma (AST)	NA
Asthma - current or past history (PPV 0.90)	Asthma (AST)	NA
Asthma - no history (NPV 0.99)	Asthma (AST)	Absence of J45
Plasma	Biobank Sample Types	NA
Asthma	Chronic lower respiratory diseases (J40-J47)	J45
Chronic obstructive pulmonary disease with (acute) exacerbation	Other chronic obstructive pulmonary disease	J44.1
Prednisone	Glucocorticoids	RXNORM:8640
Methylprednisolone	Glucocorticoids	RXNORM:6902
Dexamethasone	Glucocorticoids	RXNORM:3264
Dexamethasone	Anti-inflammatories,inhalation	RXNORM:3264
Ipratropium	Bronchodilators,anticholinergic	RXNORM:7213
Tiotropium	Bronchodilators,anticholinergic	RXNORM:69120
Omalizumab	Immune Suppressants	RXNORM:302379
Beclomethasone dipropionate	Anti-inflammatories,inhalation	RXNORM:1348
Triamcinolone	Glucocorticoids	RXNORM:10759
Triamcinolone	Anti-inflammatories,inhalation	RXNORM:10759
Fluticasone	Anti-inflammatories,inhalation	RXNORM:41126
Budesonide	Glucocorticoids	RXNORM:19831

Budesonide	Anti-inflammatories,inhalation	RXNORM:19831
Mometasone	Anti-inflammatories,inhalation	RXNORM:108118
Ciclesonide	Anti-inflammatories,inhalation	RXNORM:274964
Flunisolide	Anti-inflammatories,inhalation	RXNORM:25120
Fluticasone/salmeterol	Antiasthma,other	RXNORM:284635
Budesonide/formoterol	Antiasthma,other	RXNORM:389132
Formoterol/mometasone	Antiasthma,other	RXNORM:1002293
Fluticasone/vilanterol	Antiasthma,other	RXNORM:1424888
Montelukast	Antiasthma,other	RXNORM:88249
Zafirlukast	Antiasthma,other	RXNORM:114970
Zileuton	Antiasthma,other	RXNORM:40575
Albuterol	Bronchodilators,sympathomimetic,inhalation	RXNORM:435
Albuterol	Bronchodilators,sympathomimetic,oral	RXNORM:435
Levalbuterol	Bronchodilators,sympathomimetic,inhalation	RXNORM:237159
Ipratropium/albuterol 3ml	Antiasthma,antileukotrienes	B00913606
Albuterol/ipratropium	Antiasthma,other	RXNORM:214199

254
255

256
257

Table S2. Distribution of metabolites in MGBB by platform and by super-pathway (n=904)

Platform	n	%
LC/MS Neg	508	56.2
LC/MS Polar	83	11.9
LC/MS Pos Early	242	2.7
LC/MS Pos Late	71	19.7

Super-pathway	n	%
Lipid	184	20.4
Xenobiotics	108	11.9
Carbohydrate	24	2.7
Amino Acid	178	19.7
Cofactors and Vitamins	29	3.2
Nucleotide	31	3.4
Energy	9	1
Peptide	29	3.2
Partially Characterized molecules	3	0.3
Unannotated metabolites	309	34.2

258
259

260
261
262**Table S3.** Plasma metabolites significantly associated with prevalent asthma outcome (n=35, FDR < 5.14x10⁻⁵) in discovery EPIC-Norfolk cohort

Metabolite	Names from metabolon*	HMDB	N	Ncase	se	p	or	or_95 I	or_95 h
dehydroisoandrosterone sulfate (DHEA-S)		HMDB0001032	10,751	661	0.04	1.42E-27	0.65	0.60	0.70
X - 21364	possibly a steroid conjugate		10,665	642	0.04	2.24E-22	0.66	0.61	0.72
X - 11444	tetrahydrocortisol glucuronide		10,717	648	0.04	2.93E-21	0.68	0.63	0.74
X - 12846	retired for 11beta-hydroxyandrosterone glucuronide		10,342	607	0.04	1.45E-20	0.67	0.62	0.73
cortisone		HMDB0002802	10,712	649	0.04	7.77E-20	0.72	0.67	0.77
Pregn steroid monosulfate			10,751	660	0.05	1.56E-17	0.68	0.62	0.74
4-androsten-3beta,17beta-diol disulfate (2)		HMDB0003818	10,739	658	0.04	1.75E-17	0.70	0.65	0.76
X - 12844	possibly a steroid conjugate		10,744	656	0.04	5.47E-17	0.73	0.68	0.78
21-hydroxypregnенolone disulfate		HMDB0004026	10,655	642	0.04	4.54E-16	0.71	0.65	0.77
4-androsten-3beta,17beta-diol monosulfate (1)		HMDB0003818	10,711	653	0.04	2.26E-14	0.71	0.65	0.78
epiandrosterone sulfate		HMDB0000365	10,720	656	0.04	1.06E-13	0.74	0.69	0.80
16a-hydroxy DHEA 3-sulfate			10,696	647	0.04	1.12E-13	0.72	0.66	0.79
X - 17359	retired for cortolone glucuronide		10,382	615	0.04	5.63E-13	0.73	0.67	0.79
pregnenolone sulfate		HMDB0000774	10,187	593	0.05	3.21E-12	0.73	0.66	0.79
androsterone sulfate		HMDB0002759	10,741	661	0.04	2.15E-11	0.77	0.72	0.83

cortisol		HMDB0000063	10,738	657	0.04	3.32E-11	0.78	0.72	0.84
X - 11440	retired for pregnenetriol disulfate		10,738	661	0.04	8.15E-11	0.75	0.69	0.82
X - 22379	retired for androsterone glucuronide		10,524	617	0.05	2.81E-10	0.73	0.66	0.80
X - 24544	17-hydroxypregnolone sulfate	HMDB0000416	9,580	547	0.05	7.44E-10	0.74	0.68	0.82
etiocholanolone glucuronide		HMDB0004484	10,468	623	0.04	1.29E-09	0.77	0.71	0.84
X - 17357	possibly a steroid conjugate		8,923	502	0.05	3.65E-09	0.76	0.69	0.83
pregnen-diol disulfate			10,754	661	0.04	5.43E-09	0.77	0.70	0.84
X - 17340	possibly a steroid conjugate		9,992	593	0.05	6.04E-09	0.76	0.70	0.84
4-androsten-3alpha,17alpha-diol monosulfate (2)			9,775	563	0.05	2.15E-08	0.77	0.70	0.84
4-androsten-3beta,17beta-diol disulfate (1)		HMDB0003818	10,750	660	0.04	2.66E-08	0.78	0.72	0.85
X - 21470	5-androstenetriol disulfate		10,099	581	0.04	1.51E-07	0.79	0.72	0.86
5alpha-pregn-3beta,20alpha-diol monosulfate (2)			9,551	547	0.05	2.98E-07	0.78	0.71	0.86
4-androsten-3beta,17beta-diol monosulfate (2)			10,462	628	0.04	3.75E-07	0.80	0.74	0.87
5alpha-pregn-3beta,20alpha-diol disulfate			10,257	611	0.04	5.61E-07	0.80	0.74	0.87
4-androsten-3alpha,17alpha-diol monosulfate (3)			10,675	647	0.05	6.48E-07	0.80	0.73	0.87

X - 11470	tetrahydrocorticosterone glucuronide		10,069	589	0.04	9.95E-07	0.81	0.74	0.88
glycosyl-N-palmitoyl-sphingosine			10,742	659	0.04	7.64E-06	1.20	1.11	1.30
X - 15492	possibly a steroid conjugate		10,612	635	0.05	1.49E-05	0.82	0.75	0.90
5alpha-androstan-3beta,17alpha-diol disulfate			8,839	505	0.05	1.78E-05	0.81	0.74	0.89
X - 24546	16a-hydroxy-DHEA-disulfate		8,880	500	0.05	2.50E-05	0.81	0.73	0.89

263

264

265
266
267
268**Table S4.** Steroid metabolite associations based on logistic regression models (adjusted for confounders) between asthma cases and controls; asthma cases with ICS intake and controls; asthma cases with no ICS and controls; and asthma cases with ICS intake and with no ICS in MGBB-Asthma

Metabolite	Metabolite Subclass	Asthma vs. Control			Asthma ICS vs. Control			Asthma NO ICS vs. Control			Asthma ICS vs. Asthma NO ICS		
		OR (95% CI)	P-Value	FDR	OR (95% CI)	P-Value	FDR	OR (95% CI)	P-Value	FDR	OR (95% CI)	P-Value	FDR
androstenediol (3beta,17beta) monosulfate (1)	Androgenic Steroids	0.84 (0.79, 0.88)	5.5x10 ⁻¹¹	1.9x10 ⁻⁹	0.81 (0.77, 0.86)	1.8x10 ⁻¹⁴	6.0x10 ⁻¹³	0.92 (0.86, 0.98)	0.006	0.07	0.90 (0.83, 0.97)	0.005	0.01
androstenediol (3beta,17beta) disulfate (2)	Androgenic Steroids	0.84 (0.79, 0.89)	4.6x10 ⁻⁹	3.2x10 ⁻⁸	0.81 (0.77, 0.86)	3.2x10 ⁻¹²	2.0x10 ⁻¹¹	0.92 (0.85, 0.99)	0.03	0.13	0.90 (0.83, 0.97)	0.007	0.02
androstenediol (3beta,17beta) disulfate (1)	Androgenic Steroids	0.84 (0.80, 0.89)	8.0x10 ⁻⁹	4.5x10 ⁻⁸	0.81 (0.77, 0.86)	6.4x10 ⁻¹³	7.3x10 ⁻¹²	0.93 (0.87, 1.00)	0.06	0.15	0.89 (0.82, 0.96)	0.005	0.01
androstenediol (3alpha, 17alpha) monosulfate (3)	Androgenic Steroids	0.84 (0.80, 0.90)	1.8x10 ⁻⁸	7.6x10 ⁻⁸	0.82 (0.78, 0.87)	3.0x10 ⁻¹¹	1.3x10 ⁻¹⁰	0.93 (0.86, 0.99)	0.03	0.13	0.90 (0.83, 0.98)	0.02	0.03
androstenediol (3beta,17beta) monosulfate (2)	Androgenic Steroids	0.85 (0.80, 0.89)	4.5x10 ⁻¹⁰	7.6x10 ⁻⁹	0.84 (0.80, 0.88)	2.0x10 ⁻¹¹	9.7x10 ⁻¹¹	0.91 (0.86, 0.97)	0.003	0.07	0.91 (0.85, 0.98)	0.02	0.03
5alpha-androstan-3beta,17beta-diol disulfate	Androgenic Steroids	0.85 (0.80, 0.90)	1.3x10 ⁻⁸	6.3x10 ⁻⁸	0.83 (0.79, 0.88)	1.0x10 ⁻¹⁰	3.5x10 ⁻¹⁰	0.92 (0.86, 0.98)	0.02	0.13	0.91 (0.85, 0.99)	0.03	0.04
epiandrosterone sulfate	Androgenic Steroids	0.85 (0.81, 0.90)	4.7x10 ⁻⁹	3.2x10 ⁻⁸	0.83 (0.79, 0.87)	3.0x10 ⁻¹²	2.0x10 ⁻¹¹	0.93 (0.87, 1.00)	0.04	0.13	0.91 (0.85, 0.98)	0.01	0.03
dehydroisoandrosterone sulfate (DHEA-S)	Androgenic Steroids	0.86 (0.81, 0.90)	3.6x10 ⁻⁸	1.2x10 ⁻⁷	0.83 (0.79, 0.87)	3.6x10 ⁻¹²	2.0x10 ⁻¹¹	0.95 (0.89, 1.02)	0.16	0.24	0.89 (0.82, 0.96)	0.003	0.01
androsterone sulfate	Androgenic Steroids	0.86 (0.81, 0.91)	1.0x10 ⁻⁷	3.2x10 ⁻⁷	0.84 (0.80, 0.89)	3.9x10 ⁻¹⁰	1.1x10 ⁻⁹	0.93 (0.87, 1.00)	0.04	0.14	0.93 (0.86, 1.00)	0.06	0.07
androstenediol (3alpha, 17alpha) monosulfate (2)	Androgenic Steroids	0.87 (0.83, 0.92)	4.2x10 ⁻⁷	1.1x10 ⁻⁶	0.84 (0.80, 0.89)	1.3x10 ⁻¹⁰	3.9x10 ⁻¹⁰	0.95 (0.89, 1.02)	0.13	0.24	0.90 (0.84, 0.96)	0.004	0.01
5alpha-androstan-3beta,17beta-diol monosulfate (2)	Androgenic Steroids	0.88 (0.84, 0.93)	6.0x10 ⁻⁷	1.5x10 ⁻⁶	0.87 (0.83, 0.91)	3.8x10 ⁻⁸	7.1x10 ⁻⁸	0.94 (0.89, 0.99)	0.03	0.13	0.92 (0.85, 0.99)	0.03	0.05
androsterone glucuronide	Androgenic Steroids	0.88 (0.84, 0.93)	4.0x10 ⁻⁶	7.2x10 ⁻⁶	0.86 (0.82, 0.91)	2.3x10 ⁻⁸	4.9x10 ⁻⁸	0.95 (0.90, 1.02)	0.15	0.24	0.90 (0.84, 0.97)	0.005	0.01
etiocholanolone glucuronide	Androgenic Steroids	0.88 (0.84, 0.93)	3.5x10 ⁻⁷	9.8x10 ⁻⁷	0.86 (0.82, 0.90)	4.3x10 ⁻¹⁰	1.1x10 ⁻⁹	0.95 (0.90, 1.01)	0.10	0.22	0.90 (0.84, 0.96)	0.002	0.01
5alpha-androstan-3alpha,17beta-diol monosulfate (1)	Androgenic Steroids	0.89 (0.85, 0.93)	9.0x10 ⁻⁷	2.1x10 ⁻⁶	0.89 (0.85, 0.93)	4.5x10 ⁻⁷	7.7x10 ⁻⁷	0.93 (0.88, 0.98)	0.006	0.07	0.97 (0.90, 1.04)	0.35	0.41
5alpha-androstan-3beta,17alpha-diol disulfate	Androgenic Steroids	0.90 (0.86, 0.94)	1.8x10 ⁻⁶	3.4x10 ⁻⁶	0.89 (0.85, 0.92)	3.5x10 ⁻⁸	7.0x10 ⁻⁸	0.96 (0.92, 1.01)	0.12	0.23	0.91 (0.85, 0.98)	0.009	0.02
5alpha-androstan-3alpha,17beta-diol monosulfate	Androgenic Steroids	0.90 (0.86, 0.95)	1.3x10 ⁻⁴	1.9x10 ⁻⁴	0.88 (0.84, 0.93)	1.8x10 ⁻⁶	2.7x10 ⁻⁶	0.98 (0.92, 1.03)	0.39	0.46	0.90 (0.82, 0.97)	0.01	0.02
5alpha-androstan-3alpha,17beta-diol disulfate	Androgenic Steroids	0.91 (0.87, 0.95)	1.2x10 ⁻⁴	1.9x10 ⁻⁴	0.89 (0.85, 0.93)	1.2x10 ⁻⁶	1.8x10 ⁻⁶	0.97 (0.92, 1.02)	0.30	0.39	0.90 (0.84, 0.97)	0.008	0.02
16a-hydroxy DHEA 3-sulfate	Androgenic Steroids	0.92 (0.87, 0.97)	0.003	0.005	0.89 (0.84, 0.94)	8.8x10 ⁻⁶	1.3x10 ⁻⁵	1.01 (0.95, 1.07)	0.76	0.78	0.89 (0.82, 0.96)	0.002	0.01
5alpha-androstan-3alpha,17beta-diol monosulfate (2)	Androgenic Steroids	0.93 (0.88, 1.00)	0.04	0.05	0.91 (0.86, 0.97)	0.007	0.008	0.98 (0.92, 1.05)	0.64	0.68	0.87 (0.77, 0.98)	0.03	0.04

andro steroid monosulfate C19H28O6S (1)	Androgenic Steroids	0.94 (0.89, 0.98)	0.006	0.008	0.91 (0.87, 0.95)	7.1x10 ⁻⁵	9.2x10 ⁻⁵	1.00 (0.95, 1.06)	0.88	0.88	0.89 (0.82, 0.95)	8.0x10 ⁻⁴	0.01
pregnenediol sulfate (C21H34O5S)	Pregnenolone Steroids	0.84 (0.79, 0.89)	2.2x10 ⁻⁸	8.2x10 ⁻⁸	0.82 (0.77, 0.87)	3.9x10 ⁻¹¹	1.5x10 ⁻¹⁰	0.91 (0.85, 0.99)	0.02	0.13	0.89 (0.82, 0.97)	0.007	0.02
pregnenolone sulfate	Pregnenolone Steroids	0.85 (0.81, 0.90)	2.6x10 ⁻⁹	3.0x10 ⁻⁸	0.82 (0.78, 0.86)	1.4x10 ⁻¹³	2.4x10 ⁻¹²	0.93 (0.87, 0.99)	0.02	0.13	0.90 (0.83, 0.97)	0.004	0.01
pregnenediol disulfate (C21H34O8S2)	Pregnenolone Steroids	0.86 (0.81, 0.91)	1.0x10 ⁻⁶	2.1x10 ⁻⁶	0.84 (0.79, 0.89)	3.4x10 ⁻⁹	8.3x10 ⁻⁹	0.95 (0.88, 1.02)	0.13	0.24	0.88 (0.81, 0.96)	0.003	0.01
21-hydroxypregnenolone disulfate	Pregnenolone Steroids	0.87 (0.83, 0.92)	1.1x10 ⁻⁶	2.2x10 ⁻⁶	0.85 (0.81, 0.90)	4.0x10 ⁻⁹	9.0x10 ⁻⁹	0.94 (0.88, 1.01)	0.09	0.21	0.90 (0.84, 0.97)	0.007	0.02
17alpha- hydroxypregnenolone 3- sulfate	Pregnenolone Steroids	0.92 (0.87, 0.97)	1.4x10 ⁻³	2.0x10 ⁻³	0.89 (0.84, 0.94)	2.2x10 ⁻⁵	3.0x10 ⁻⁵	0.98 (0.93, 1.04)	0.48	0.54	0.86 (0.78, 0.94)	0.001	0.01
cortisone	Corticosteroid s	0.89 (0.83, 0.94)	5.8x10 ⁻⁵	9.8x10 ⁻⁵	0.86 (0.81, 0.91)	8.3x10 ⁻⁸	1.5x10 ⁻⁷	0.95 (0.87, 1.04)	0.28	0.39	0.90 (0.83, 0.97)	0.005	0.01
cortisol	Corticosteroid s	0.89 (0.84, 0.95)	4.0x10 ⁻⁴	6.0x10 ⁻⁴	0.86 (0.81, 0.91)	5.9x10 ⁻⁷	9.5x10 ⁻⁷	0.97 (0.90, 1.06)	0.53	0.59	0.89 (0.82, 0.96)	0.005	0.01
pregnanediol-3-glucuronide	Progestin Steroids	0.95 (0.90, 0.99)	0.02	0.03	0.94 (0.90, 0.99)	0.02	0.02	0.97 (0.91, 1.03)	0.27	0.38	0.94 (0.88, 1.00)	0.07	0.08
5alpha-pregnan- 3beta,20beta-diol monosulfate (1)	Progestin Steroids	0.95 (0.90, 0.99)	0.02	0.03	0.95 (0.91, 1.00)	0.04	0.05	0.96 (0.90, 1.01)	0.14	0.24	0.97 (0.90, 1.03)	0.29	0.36
5alpha-pregnan-diol disulfate	Progestin Steroids	0.96 (0.92, 1.00)	0.06	0.07	0.98 (0.94, 1.02)	0.22	0.25	0.96 (0.92, 1.00)	0.07	0.17	0.99 (0.94, 1.05)	0.79	0.82
5alpha-pregnan- 3beta,20alpha-diol disulfate	Progestin Steroids	0.96 (0.92, 1.01)	0.14	0.15	0.97 (0.93, 1.02)	0.21	0.23	0.97 (0.92, 1.03)	0.33	0.40	0.98 (0.92, 1.05)	0.54	0.57
pregnanolone/allopregnан one sulfate	Progestin Steroids	0.97 (0.92, 1.01)	0.13	0.15	0.98 (0.94, 1.03)	0.44	0.44	0.95 (0.90, 1.00)	0.06	0.15	1.01 (0.94, 1.07)	0.86	0.86
5alpha-pregnan-3beta- ,20alpha-diol monosulfate (2)	Progestin Steroids	0.97 (0.93, 1.02)	0.19	0.19	0.97 (0.93, 1.02)	0.25	0.27	0.97 (0.92, 1.03)	0.32	0.40	0.98 (0.92, 1.04)	0.50	0.55
5alpha-pregnan-3beta- ol,20-one sulfate	Progestin Steroids	1.00 (0.95, 1.06)	0.93	0.93	1.03 (0.98, 1.08)	0.33	0.34	0.96 (0.91, 1.02)	0.21	0.32	1.03 (0.96, 1.11)	0.44	0.50

Abbreviations: ICS, Inhaled Corticosteroid Use

269
270
271
272
273
274
275
276
277

278 **Table S5:** Steroid metabolite associations (stratified by sub-pathways - Corticosteroids) based on logistic regression models
 279 (adjusted for confounders) between asthma cases and controls; asthma cases with ICS intake and controls; asthma cases with no
 280 ICS and controls; and asthma cases with ICS intake and with no ICS in MGBB-Asthma

Metabolite	Metabolite Subclass	Asthma vs. Control			Asthma ICS vs. Control			Asthma NO ICS vs. Control			Asthma ICS vs. Asthma NO ICS		
		OR (95% CI)	P-Value	FDR	OR (95% CI)	P-Value	FDR	OR (95% CI)	P-Value	FDR	OR (95% CI)	P-Value	FDR
cortisone	Corticosteroids	0.89 (0.83, 0.94)	5.8x10 ⁻⁵	9.8x10 ⁻⁵	0.86 (0.81, 0.91)	8.3x10 ⁻⁸	1.5x10 ⁻⁷	0.95 (0.87, 1.04)	0.28	0.39	0.90 (0.83, 0.97)	0.005	0.01
cortisol	Corticosteroids	0.89 (0.84, 0.95)	4.0x10 ⁻⁴	6.0x10 ⁻⁴	0.86 (0.81, 0.91)	5.9x10 ⁻⁷	9.5x10 ⁻⁷	0.97 (0.90, 1.06)	0.53	0.59	0.89 (0.82, 0.96)	0.005	0.01

281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305

306 **Table S6:** Steroid metabolite associations (stratified by sub-pathways - Pregnenolone Steroids) based on logistic regression models
 307 (adjusted for confounders) between asthma cases and controls; asthma cases with ICS intake and controls; asthma cases with no
 308 ICS and controls; and asthma cases with ICS intake and with no ICS in MGBB-Asthma

Metabolite	Metabolite Subclass	Asthma vs. Control			Asthma ICS vs. Control			Asthma NO ICS vs. Control			Asthma ICS vs. Asthma NO ICS		
		OR (95% CI)	P-Value	FDR	OR (95% CI)	P-Value	FDR	OR (95% CI)	P-Value	FDR	OR (95% CI)	P-Value	FDR
pregnenediol sulfate (C21H34O5S)	Pregnenolone Steroids	0.84 (0.79, 0.89)	2.2x10 ⁻⁸	8.2x10 ⁻⁸	0.82 (0.77, 0.87)	3.9x10 ⁻¹¹	1.5x10 ⁻¹⁰	0.91 (0.85, 0.99)	0.02	0.13	0.89 (0.82, 0.97)	0.007	0.02
pregnenolone sulfate	Pregnenolone Steroids	0.85 (0.81, 0.90)	2.6x10 ⁻⁹	3.0x10 ⁻⁸	0.82 (0.78, 0.86)	1.4x10 ⁻¹³	2.4x10 ⁻¹²	0.93 (0.87, 0.99)	0.02	0.13	0.90 (0.83, 0.97)	0.004	0.01
pregnenediol disulfate (C21H34O8S2)	Pregnenolone Steroids	0.86 (0.81, 0.91)	1.0x10 ⁻⁶	2.1x10 ⁻⁶	0.84 (0.79, 0.89)	3.4x10 ⁻⁹	8.3x10 ⁻⁹	0.95 (0.88, 1.02)	0.13	0.24	0.88 (0.81, 0.96)	0.003	0.01
21-hydroxypregnenolone disulfate	Pregnenolone Steroids	0.87 (0.83, 0.92)	1.1x10 ⁻⁶	2.2x10 ⁻⁶	0.85 (0.81, 0.90)	4.0x10 ⁻⁹	9.0x10 ⁻⁹	0.94 (0.88, 1.01)	0.09	0.21	0.90 (0.84, 0.97)	0.007	0.02
17alpha-hydroxypregnenolone 3-sulfate	Pregnenolone Steroids	0.92 (0.87, 0.97)	1.4x10 ⁻³	2.0x10 ⁻³	0.89 (0.84, 0.94)	2.2x10 ⁻⁵	3.0x10 ⁻⁵	0.98 (0.93, 1.04)	0.48	0.54	0.86 (0.78, 0.94)	0.001	0.01

309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329

330 **Table S7:** Steroid metabolite associations (stratified by sub-pathways - Progestin Steroids) based on logistic regression models
 331 (adjusted for confounders) between asthma cases and controls; asthma cases with ICS intake and controls; asthma cases with no
 332 ICS and controls; and asthma cases with ICS intake and with no ICS in MGBB-Asthma

Metabolite	Metabolite Subclass	Asthma vs. Control			Asthma ICS vs. Control			Asthma NO ICS vs. Control			Asthma ICS vs. Asthma NO ICS		
		OR (95% CI)	P-Value	FDR	OR (95% CI)	P-Value	FDR	OR (95% CI)	P-Value	FDR	OR (95% CI)	P-Value	FDR
pregnanediol-3-glucuronide	Progestin Steroids	0.95 (0.90, 0.99)	0.02	0.03	0.94 (0.90, 0.99)	0.02	0.02	0.97 (0.91, 1.03)	0.27	0.38	0.94 (0.88, 1.00)	0.07	0.08
5alpha-pregnan-3beta,20beta-diol monosulfate (1)	Progestin Steroids	0.95 (0.90, 0.99)	0.02	0.03	0.95 (0.91, 1.00)	0.04	0.05	0.96 (0.90, 1.01)	0.14	0.24	0.97 (0.90, 1.03)	0.29	0.36
5alpha-pregnadiol disulfate	Progestin Steroids	0.96 (0.92, 1.00)	0.06	0.07	0.98 (0.94, 1.02)	0.22	0.25	0.96 (0.92, 1.00)	0.07	0.17	0.99 (0.94, 1.05)	0.79	0.82
5alpha-pregnan-3beta,20alpha-diol disulfate	Progestin Steroids	0.96 (0.92, 1.01)	0.14	0.15	0.97 (0.93, 1.02)	0.21	0.23	0.97 (0.92, 1.03)	0.33	0.40	0.98 (0.92, 1.05)	0.54	0.57
pregnanolone/allo pregnanol one sulfate	Progestin Steroids	0.97 (0.92, 1.01)	0.13	0.15	0.98 (0.94, 1.03)	0.44	0.44	0.95 (0.90, 1.00)	0.06	0.15	1.01 (0.94, 1.07)	0.86	0.86
5alpha-pregnan-3beta,20alpha-diol monosulfate (2)	Progestin Steroids	0.97 (0.93, 1.02)	0.19	0.19	0.97 (0.93, 1.02)	0.25	0.27	0.97 (0.92, 1.03)	0.32	0.40	0.98 (0.92, 1.04)	0.50	0.55
5alpha-pregnan-3beta-ol,20-one sulfate	Progestin Steroids	1.00 (0.95, 1.06)	0.93	0.93	1.03 (0.98, 1.08)	0.33	0.34	0.96 (0.91, 1.02)	0.21	0.32	1.03 (0.96, 1.11)	0.44	0.50

333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350

351
352
353

Table S8: Steroid metabolite associations (stratified by sub-pathways - Androgenic Steroids) based on logistic regression models (adjusted for confounders) between asthma cases and controls; asthma cases with ICS intake and controls; asthma cases with no ICS and controls; and asthma cases with ICS intake and with no ICS in MGBB-Asthma

Metabolite	Metabolite Subclass	Asthma vs. Control			Asthma ICS vs. Control			Asthma NO ICS vs. Control			Asthma ICS vs. Asthma NO ICS		
		OR (95% CI)	P-Value	FDR	OR (95% CI)	P-Value	FDR	OR (95% CI)	P-Value	FDR	OR (95% CI)	P-Value	FDR
androstenediol (3beta,17beta) monosulfate (1)	Androgenic Steroids	0.84 (0.79, 0.88)	5.5x10 ⁻¹¹	1.9x10 ⁻⁹	0.81 (0.77, 0.86)	1.8x10 ⁻¹⁴	6.0x10 ⁻¹³	0.92 (0.86, 0.98)	0.006	0.07	0.90 (0.83, 0.97)	0.005	0.01
androstenediol (3beta,17beta) disulfate (2)	Androgenic Steroids	0.84 (0.79, 0.89)	4.6x10 ⁻⁹	3.2x10 ⁻⁸	0.81 (0.77, 0.86)	3.2x10 ⁻¹²	2.0x10 ⁻¹¹	0.92 (0.85, 0.99)	0.03	0.13	0.90 (0.83, 0.97)	0.007	0.02
androstenediol (3beta,17beta) disulfate (1)	Androgenic Steroids	0.84 (0.80, 0.89)	8.0x10 ⁻⁹	4.5x10 ⁻⁸	0.81 (0.77, 0.86)	6.4x10 ⁻¹³	7.3x10 ⁻¹²	0.93 (0.87, 1.00)	0.06	0.15	0.89 (0.82, 0.96)	0.005	0.01
androstenediol (3alpha, 17alpha) monosulfate (3)	Androgenic Steroids	0.84 (0.80, 0.90)	1.8x10 ⁻⁸	7.6x10 ⁻⁸	0.82 (0.78, 0.87)	3.0x10 ⁻¹¹	1.3x10 ⁻¹⁰	0.93 (0.86, 0.99)	0.03	0.13	0.90 (0.83, 0.98)	0.02	0.03
androstenediol (3beta,17beta) monosulfate (2)	Androgenic Steroids	0.85 (0.80, 0.89)	4.5x10 ⁻¹⁰	7.6x10 ⁻⁹	0.84 (0.80, 0.88)	2.0x10 ⁻¹¹	9.7x10 ⁻¹¹	0.91 (0.86, 0.97)	0.003	0.07	0.91 (0.85, 0.98)	0.02	0.03
5alpha-androstan-3beta,17beta-diol disulfate	Androgenic Steroids	0.85 (0.80, 0.90)	1.3x10 ⁻⁸	6.3x10 ⁻⁸	0.83 (0.79, 0.88)	1.0x10 ⁻¹⁰	3.5x10 ⁻¹⁰	0.92 (0.86, 0.98)	0.02	0.13	0.91 (0.85, 0.99)	0.03	0.04
epiandrosterone sulfate	Androgenic Steroids	0.85 (0.81, 0.90)	4.7x10 ⁻⁹	3.2x10 ⁻⁸	0.83 (0.79, 0.87)	3.0x10 ⁻¹²	2.0x10 ⁻¹¹	0.93 (0.87, 1.00)	0.04	0.13	0.91 (0.85, 0.98)	0.01	0.03
dehydroisoandrosterone sulfate (DHEA-S)	Androgenic Steroids	0.86 (0.81, 0.90)	3.6x10 ⁻⁸	1.2x10 ⁻⁷	0.83 (0.79, 0.87)	3.6x10 ⁻¹²	2.0x10 ⁻¹¹	0.95 (0.89, 1.02)	0.16	0.24	0.89 (0.82, 0.96)	0.003	0.01
androsterone sulfate	Androgenic Steroids	0.86 (0.81, 0.91)	1.0x10 ⁻⁷	3.2x10 ⁻⁷	0.84 (0.80, 0.89)	3.9x10 ⁻¹⁰	1.1x10 ⁻⁹	0.93 (0.87, 1.00)	0.04	0.14	0.93 (0.86, 1.00)	0.06	0.07
androstenediol (3alpha, 17alpha) monosulfate (2)	Androgenic Steroids	0.87 (0.83, 0.92)	4.2x10 ⁻⁷	1.1x10 ⁻⁶	0.84 (0.80, 0.89)	1.3x10 ⁻¹⁰	3.9x10 ⁻¹⁰	0.95 (0.89, 1.02)	0.13	0.24	0.90 (0.84, 0.96)	0.004	0.01
5alpha-androstan-3beta,17beta-diol monosulfate (2)	Androgenic Steroids	0.88 (0.84, 0.93)	6.0x10 ⁻⁷	1.5x10 ⁻⁶	0.87 (0.83, 0.91)	3.8x10 ⁻⁸	7.1x10 ⁻⁸	0.94 (0.89, 0.99)	0.03	0.13	0.92 (0.85, 0.99)	0.03	0.05
androsterone glucuronide	Androgenic Steroids	0.88 (0.84, 0.93)	4.0x10 ⁻⁶	7.2x10 ⁻⁶	0.86 (0.82, 0.91)	2.3x10 ⁻⁸	4.9x10 ⁻⁸	0.95 (0.90, 1.02)	0.15	0.24	0.90 (0.84, 0.97)	0.005	0.01
etiocholanolone glucuronide	Androgenic Steroids	0.88 (0.84, 0.93)	3.5x10 ⁻⁷	9.8x10 ⁻⁷	0.86 (0.82, 0.90)	4.3x10 ⁻¹⁰	1.1x10 ⁻⁹	0.95 (0.90, 1.01)	0.10	0.22	0.90 (0.84, 0.96)	0.002	0.01
5alpha-androstan-3alpha,17beta-diol monosulfate (1)	Androgenic Steroids	0.89 (0.85, 0.93)	9.0x10 ⁻⁷	2.1x10 ⁻⁶	0.89 (0.85, 0.93)	4.5x10 ⁻⁷	7.7x10 ⁻⁷	0.93 (0.88, 0.98)	0.006	0.07	0.97 (0.90, 1.04)	0.35	0.41
5alpha-androstan-3beta,17alpha-diol disulfate	Androgenic Steroids	0.90 (0.86, 0.94)	1.8x10 ⁻⁶	3.4x10 ⁻⁶	0.89 (0.85, 0.92)	3.5x10 ⁻⁸	7.0x10 ⁻⁸	0.96 (0.92, 1.01)	0.12	0.23	0.91 (0.85, 0.98)	0.009	0.02
5alpha-androstan-3alpha,17alpha-diol monosulfate	Androgenic Steroids	0.90 (0.86, 0.95)	1.3x10 ⁻⁴	1.9x10 ⁻⁴	0.88 (0.84, 0.93)	1.8x10 ⁻⁶	2.7x10 ⁻⁶	0.98 (0.92, 1.03)	0.39	0.46	0.90 (0.82, 0.97)	0.01	0.02
5alpha-androstan-3alpha,17beta-diol disulfate	Androgenic Steroids	0.91 (0.87, 0.95)	1.2x10 ⁻⁴	1.9x10 ⁻⁴	0.89 (0.85, 0.93)	1.2x10 ⁻⁶	1.8x10 ⁻⁶	0.97 (0.92, 1.02)	0.30	0.39	0.90 (0.84, 0.97)	0.008	0.02
16a-hydroxy DHEA 3-sulfate	Androgenic Steroids	0.92 (0.87, 0.97)	0.003	0.005	0.89 (0.84, 0.94)	8.8x10 ⁻⁶	1.3x10 ⁻⁵	1.01 (0.95, 1.07)	0.76	0.78	0.89 (0.82, 0.96)	0.002	0.01
5alpha-androstan-3alpha,17beta-diol monosulfate (2)	Androgenic Steroids	0.93 (0.88, 1.00)	0.04	0.05	0.91 (0.86, 0.97)	0.007	0.008	0.98 (0.92, 1.05)	0.64	0.68	0.87 (0.77, 0.98)	0.03	0.04

andro steroid monosulfate C19H28O6S (1)	Androgenic Steroids	0.94 (0.89, 0.98)	0.006	0.008	0.91 (0.87, 0.95)	7.1×10^{-5}	9.2×10^{-5}	1.00 (0.95, 1.06)	0.88	0.88	0.89 (0.82, 0.95)	8.0×10^{-4}	0.01
--	------------------------	-------------------	-------	-------	-------------------	----------------------	----------------------	-------------------	------	------	-------------------	----------------------	------

354

355

356 References:

357 1 Day N, Oakes S, Luben R, *et al.* EPIC-Norfolk: study design and characteristics of the
358 cohort. European Prospective Investigation of Cancer. *Br J Cancer* 1999; **80 Suppl 1**: 95–
359 103.

360 2 Yu S, Liao KP, Shaw SY, *et al.* Toward high-throughput phenotyping: unbiased
361 automated feature extraction and selection from knowledge sources. *J Am Med Inform
362 Assoc* 2015; **22**: 993–1000.

363 3 Kelly RS, Virkud Y, Giorgio R, Celedon JC, Weiss ST, Lasky-Su J. Metabolomic
364 profiling of lung function in Costa-Rican children with asthma. *Biochim Biophys acta Mol
365 basis Dis* 2017; **1863**: 1590–5.

366 4 The Childhood Asthma Management Program (CAMP): design, rationale, and methods.
367 Childhood Asthma Management Program Research Group. *Control Clin Trials* 1999; **20**:
368 91–120.

369 5 Strunk RC, Sternberg AL, Szeffler SJ, Zeiger RS, Bender B, Tonascia J. Long-term
370 budesonide or nedocromil treatment, once discontinued, does not alter the course of mild
371 to moderate asthma in children and adolescents. *J Pediatr* 2009; **154**: 682–7.

372 6 Kelly RS, Chawes BL, Blighe K, *et al.* An Integrative Transcriptomic and Metabolomic
373 Study of Lung Function in Children With Asthma. *Chest* 2018; **154**: 335–48.

374 7 Kelly RS, Sordillo JE, Lutz SM, *et al.* Pharmacometabolomics of Bronchodilator
375 Response in Asthma and the Role of Age-Metabolite Interactions. *Metabolites* 2019; **9**.
376 DOI:10.3390/metabo9090179.

377