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[. ISEEC1: Summary

ISEECI consists of two coupled models: the Natural Systems Model (NSM) and the
Social Systems Model (SSM). Carbon emissions simulated by the SSM serves as input to
simulate CO2 concentration and surface temperature trends by the NSM. In turn, the
simulated surface temperature trends from the NSM influences the simulated energy
generation and carbon emissions in the SSM via societal response to climate risks.

The single major external input to ISEECI is the global GDP (Gross Domestic
Product). Using this input, ISEEC1 estimates the total energy generation to sustain the
economy and its growth, CO, emissions due to energy generation, warming due to CO»
emissions, and societal actions in response to the warming to reduce CO>. Our primary focus
is to illustrate socio-economic-energy-climate interactions resulting from fossil fuel
consumption. Towards this focused objective, we prescribe from published sources, climate
forcing terms that are extraneous to our study, such as radiative forcing for non-CO»
greenhouse gas species, radiative forcing due to aerosols that are also major sources of air
pollution, and CO; emission from land use and land changes (e.g., deforestation and biomass
burning). However, we coupled portions of non-CO; forcings with fossil fuel use.

The model simulations begin from the year 1850 and extend to 2100. The SSM
calculates the total energy generated to sustain the economy. For the historical period (up to
2015), the SSM adopts published values of total energy generation and simulates the relative
fraction of fossil fuels and renewable sources. For the period beyond the present (starting
from 2016), it uses global GDP as input to estimate total energy generation, assuming future
improvement of energy intensity. Most importantly, it simulates the relative fraction of fossil
fuels and renewable fuels that contribute to the total energy generation. This relative fraction
depends on societal, policy, and technological responses to the global warming level, an

output from by NSM component of ISEEC1. The NSM uses CO> emissions calculated by the
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SSM to simulate CO> atmospheric concentration as well as the radiative forcing due to CO»,
the global warming level.

The primary external input to ISEEC1 is historical and projected global GDP. To
power the growing economy during the historical period, energy consumption increases
proportionately with GDP, mainly in fossil fuels. The emission of greenhouse gases (GHGs)
and aerosols by fossil fuels has the net effect of warming the climate. In response to observed
climate damages and projected future risks, society responds by switching to zero-emission
renewables. But the speed of transition, in ISEEC1 formulation, is constrained by inertia in
four components of the human-nature system: the inertia of society to translate climate risks
into public concerns and policy actions; inertia in developing new renewable technologies
followed by the inertia in scaling up the technologies to global scale; inertia in the natural
carbon cycle to respond to emission drawdown, and lastly the inertia in the coupled ocean-
cryosphere-atmosphere climate system. A system of 11 time-dependent differential equations
was developed and fully coupled to account for the two-way interactions. The formulation of
equations and parameter choices were validated by comparing simulated quantities with
observed evolution of technologies, fossil fuel use, CO; emission, CO; concentration, and
global temperatures from 1900 to 2015.

The novel aspects of ISEECI is its two-way coupling between the social and natural
systems. The total energy generation and the shift from fossil fuels to renewables for energy
generation are formulated to be dependent on the responses of social/economic systems to
observed warming. These responses include:

J Societal Response for climate actions based on scientific findings and
observed data since climate change is happening now and is emerging beyond the
climate/weather noise.

J Policy Response in anticipation of or after Societal Response.
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o Scaling up of existing technologies to meet policy mandates.

o Development of new carbon-free energy technologies.
o Scaling-up of these technologies worldwide also called Technology Diffusion.
J Start-up investment to boost the growth of new technologies.

II. ISEEC2: Background on Inequality and Climate Justice

The mitigation/adaptation feedbacks alter global energy demand and structure and the
associated emission of GHGs and aerosols, which are fed into the core module (ISEEC1) as
input. The output from ISEECI is temperature change, which would then be fed into the
adaptation module accounting for global inequality introduced here. Together, ISEEC1 with
the new adaptation module, forms ISEEC2 (Figure 1), which was designed to demonstrate
the synergy and conflict between mitigation and adaptation.

As explained in the text, ISEEC2 divides the global population into three groups, or
say, three-worlds based on their income, wealth, and energy consumption. The Three-World
Demographics and Inequalities are shown in Figure SII.1 e.

The first face concerns the disproportionate contribution to emissions of COx.
Roughly 50% of the climate emissions are due to the wealthiest 1 billion, while the poorest 3
billion contribute just 5% to 10% (Dasgupta and Ramanathan, 2015; Our World in Data). The
population can also be classified under the World Bank's income category: High Income (1.2
billion people); Upper-Middle Income (2.6 billion people); Lower-Middle Income (3 billion

people) and Lower Income (0.7 billion people).
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Figure SII.1: Inequality Demographics of the Three Worlds (2016).
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Table SII.1. Three-World Demographics and Inequalities (data as presented in Figure SII.1).

group Population | CO2 Per Capita | Total Wealth
(billion) Emission | Energy Energy
(GJ/year)
B 1 50% 300 50% 75.60%
MB 3.5 43% 75 45% 22.40%
BB 3 7% 10 5% 2%

The high and upper-middle income constituting 51% of the total population (3.8
billion) emit 86% of the global CO, while the lower income group (49% of the population,
i.e., 3.5 billion) emit only 14%. The lower income group of 0.7 billion emitted just 0.5%,
while the high-income group of 1.2 billion people emitted 38% (all statistics for 2016 from
Our World in Data).

The bottom three billion is 40% of the total population but own just 2% of the wealth,
while the top one billion own 75.6% of the wealth and the middle 3.5 billion own 22.4% (Our
World In Data; Piketty, 2022). The first face of equality, with respect to climate change, is
the historical contribution by the three population groups to climate change. For the 1990 to
2015 period, the wealthiest 10% (~630 million people) contributed 52% of cumulative carbon
emissions, a more relevant metric for climate change, while the poorest 50% (~3.1 billion
people) earned less than $5.50/day contributed only 4% and the percent growth in their
emissions during this period was near zero. The top billion (TB) focus rightfully on
mitigation (Otto et al., 2019) to reduce the longer-term consequences such as sea level rise.

The second face of inequality concerns vulnerability to the resulting climate change.
The impacts of climate change, such as droughts, floods, and heat waves, will be felt
disproportionately by the poorest 50% (about 3.8 billion), mainly living in rural areas with
limited to marginal access to energy, education, and finances (IPCC-AR6-WGII, 2021).

Independently a few other factors link global warming directly to increasing economic
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inequality between the Top Billion and the Bottom Billions. First is that agriculture yield
drops predictably with an increase in soil and air temperatures. In addition, air pollution from
fossil fuels (ozone and soot) also decreases yield. For example, in India, wheat yields from
1980 to 2010 decreased by 36% due to climate change and air pollution (Burney &
Ramanathan, 2014). Globally it has been estimated that growth in agriculture productivity
has decreased by as much as 21% since the 1960s due to global warming, with much more
significant decreases in warmer countries in Africa, Asia, and Latin America (Ortiz-Boba et
al., 2021). Lastly, global warming in climatologically warmer countries, such as South Asia,
Africa, and Latin and Central America, has been shown to damage national GDP by as much
as 17% to 31% (Diffenbaugh & Burke, 2019; Burke et al., 2015). This exacerbates climate-
related intra-generational inequity since most of the poorer three billion live in tropical
warmer countries.

The third inequality face concerns the lack of access to clean energy for climate
adaptation. The lack of access arises from three sources: Lack of modern sources of energy
such as electricity or gas; Lack of continuous (all hours of the day) supply of electricity or
gas; Affordability of reliable sources of energy is also an issue. In the short term, adaptation
would be the highest priority for the BB since they are not contributing much to the present
emission and are the most vulnerable to ongoing climate change. The rural population
vulnerable to climate change is close to 3.4 billion (IPCC, AR6 WGII, SPM.C.2.9).
Substantial increase in energy access is a crucial issue for this population since it is urgently
needed to cope with and adapt to warming-induced climate risks: Heat stress (energy for a
fan or refrigerator; access to freshwater wells); climate-smart agriculture to cope with
droughts (e.g., pumping water from aquifers and tractors to replace all the hard farm labor);

protecting homes against flooding and fires; to name a few.
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206  Supplement Table

207

208  Table S1. Key statistics of the nine cases considered in this study. The full time series of CO2

209  emission, CO; concentration and simulated temperature are presented in the figures.

Case name Basel | Basel | Baseline | CO, | CO, | CO; Full | Full | Full
ine inet+ | +Adapta | miti | mitig | mitigation | miti | mitig | mitigation
Adap | tion+W/ | gatio | ation | +Adaptati | gatio | ation | +Adaptati
tation | O _CJ n +Ada | ontW/O_ | n +Ada | ontW/O
ptatio | CJ ptatio | CJ
n n
max emission | 57 133 170 44 66 77 44 57 60
(Gt)
year reaching | 2050 | 2050 | 2064 2024 | 2036 | 2037 2024 | 2033 | 2035
max emission
year 2100 43 94 146 26 | -27 31 -17 | -21 15
emission (Gt)
year 2100 6453 | 1093 | 13561 3443 | 4111 | 6577 3628 | 4240 | 5484
cumulative 3
emission (Gt)
cumulative 4237 | 8717 | 11345 536 | 1041 | 4361 1143 | 1726 | 3268
emission from
2015 to 2100
(Gt)
max 577 | 806 | 952 443 | 476 | 572 447 | 473 517
concentration
(ppm)
year reaching | 2100 | 2100 | 2100 2043 | 2048 | 2100 2046 | 2050 | 2100
max
concentration
year 2100 577 | 806 | 952 374 1392 | 572 407 | 430 | 517
concentration
(ppm)
max 4.1 6.1 7.0 24 129 3.6 1.9 |21 2.6
temperature
U®)
year reaching | 2100 | 2100 | 2100 2072 | 2065 | 2100 2088 | 2087 | 2100
max
temperature
year 2100 4.1 6.1 7.0 22 |25 3.6 1.9 |21 2.6
temperature
U©)

210
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