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Figure S1
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Figure S1. qPCR assays of DEX-stimulation in neuronal cells. (A-F) The expression of six
glucocorticoid regulatory genes (y-axis) were examined across 11 distinct doses of DEX (x-axis). Four
different cells were evaluated: i) Neural stem cells (NSCs), created using a commercial neural stem
cell induction kit (A1647801, Life Technologies); i) NSCs (as described in (1)) were treated with NGN2
lentivirus for conversion into neuronal populations; iii) hiPSC NGN2-derived glutamatergic neurons; iv)
and a control neuronal cell line derived from the NSCs with a basic neuron conversion media composed
of Neurobasal + B27 + DAPT (NSCs + alternative media).



Figure S2

Figure S2. Immunostaining of hiPSC-derived mixed FB neurons. (A) Expansion of PTSD hIPSCs.
(B) EBs in Stemflex Medium in N2/b27 DS medium. (C) Neural Rostte formation in Porn-Laminin coated
plate. (D) NPC PO after MACs sorting. (E) NPC NESTIN expression (red), indicating a forebrain-type
identity. (F) Nuclei are labeled with DAPI (blue). (G) Six weeks matured Mixed forebrain before
Hydrocortisone treatment. Scale bar = 200 ym.
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Figure S3. Immunostaining of hiPSC-derived NGN2-neurons. Immunostaining of HOECHST
(white), GFP (green), MAP2 (red) and NESTIN (blue) across two wells for all 10 participants.
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Figure S4. Developmental specificity of hiPSC-derived NGN2-and mixed forebrain neuron
transcriptomes. We sought to confirm the developmental origin of our samples by integrating several
RNA-seq data sets from postmortem brain tissue andhiPSC models. A total of 16 independent studies
were collected covering 2716 independent samples and 12,140 genes. (A) We correlated full
transcriptome profiles of our hiPSC-derived NGN2-(blue) and mixed forebrain neurons (red) to each of
these independent samples and plotted the correlation coefficients across each cell type, brain region
and developmental period. (B) Following standardized data pre-processing procedures, principal
component analysis (PCA) stratified all gene expression samples into a distinct developmental axis
starting with early embryonic stem cells (lower right) and subsequently moving into hiPSC-NPCs and
hiPSC-neurons, and into prenatal and postnatal postmortem brain samples. Embryonic stem cells
(ESCs) and hiPSCs clustered separately from hiPSC-NPCs and hiPSC-neurons, which in turn co-
clustered with early prenatal brain samples. Notably, our hiPSC-neurons co-cluster with other hiPSC-
neurons generated from previous reports, confirming their early developmental gene expression
profiles.
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Figure S5. Transcriptome variance explained within each cell type. Violin plots display median
transcriptome variance explained by donor as a repeated measure, RIN, PTSD diagnosis (Dx) and
residuals in (A) NGN2-neurons and (C) mixed FB neurons. Genes that vary most across donors are
enriched for brain cis-eQTLs in (B) NGN2-neurons and (D) mixed FB neurons. Fold enrichment (logy)
for the 2000 top cis-eQTLs discovered in post mortem dorsolateral prefrontal cortex data generated by
the large brain meta-eQTL analysis (Sieberts et al., 2020) shown for six sources of variation, plus
residuals. Each line indicates the fold enrichment for genes with the fraction of variance explained
exceeding the cutoff indicated on the x-axis. Enrichments are shown on the x-axis until less than 100
genes pass the cutoff.
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Figure S6. Preservation of HCort response across all donors. Heatmaps of differentially expressed
genes (rows) that are independent of PTSD diagnosis across (A) 100nM of HCort, (B) 1000nM of HCort
and (C) 2500nM of HCort. Blue indicate OnM HCort and purple indicates HCort treated samples.
Normalized expression is z-scale: red is high and blue is low (relative).
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Figure S7. Weighted gene co-expression network analysis of NGN2-neurons. The B-power
required to (A) satisfy scale free topology (SFT) and (B) corresponding mean connectivity in hiPSC-
NGNZ2-neurons for gene co-expression network construction. As a rule of thumb, B-power’'s > 0.8
achieve scale free network topology, and a final B-power of 7 was used hiPSC-NGN2-neurons. (C)
Hierarchical gene cluster tree and module structure and gene-HCort treatment color bands. The first
color band underneath the tree indicates the 21 detected modules and subsequent bands indicate
gene-HCort treatment correlation, when red indicates a strong relationship and blue indicates a strong
negative relationship.
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Figure S8. Characterization of NGN2-modules. (A) Enrichment of NGN2-co-expression modules for
differentially expressed genes following HCort treatment (relative to OnM) and a series of glucocorticoid
receptor (GR) regulatory genes and ChiP-Seq binding sites. Enrichment was assessed using a Fisher’s
exact test and Bonferroni multiple test adjusted for the total number of modules. (B) Hub gene network
for the turquoise module that is enriched for differentially expressed genes and GR-binding sites in

neurons.
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Figure S9

Figure S9. Gene set preservation analysis of PBMC responsive modules. Gene-set preservation
analyses tested 7 previously identified co-expression modules that are significantly and dynamically
regulated by dexamethasone (DEX) (Breen et al., 2019) for preservation in the current sample of 5
PTSD+ and 5 PTSD- donors. Zsummary (Y-axis) greater than 10 indicates strong preservation of all co-
expression modules in these independent data. Module size is displayed on x-axis.
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Figure S10
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Figure S10. Concordance of glucocorticoid-stimulated gene expression between neurons and
PBMCs. (A) A scatterplot showing the positive direction of effect of changes in expression observed
in PBMCs to 50nM DEX (y-axis) to changes in expression in NGN2-neurons following 2500nM HCort.
Four quadrants of genes were curated and subjected to functional annotation. (B) Genes that were up-
regulated in PBMCs but down-regulated in neurons were implicated in extracellular matrix terms and
processes. Genes that were up-regulated in PBMCs and neurons were implicated in axon guidance,
potassium channel activity, Rho GTPase binding and postsynaptic neurotransmitter activity. Genes that
were down-regulated in PBMCs and neurons were implicated in mitochondrial translation elongation,
termination and initiation, as well as NADH dehydrogenase activity. Genes that were down-regulated
in PBMCs but up-regulated in neurons were implicated ATP binding, chromatin binding and several
inflammatory pathways, including Ras pathway, TRL9 cascade, MAPKinase signaling and mTOR
signaling pathway.
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Figure S11
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Figure S11. Enrichment of neurodevelopmental risk loci. Differentially expressed genes in both
PBMCs and NGN2-neurons as a result of DEX and HCort treatment, respectively. Genes are parsed

into those that are up- and down-reg

ulated and tested for enrichment for 15 lists of neurodevelopmental

risk loci. Enrichment was tested using a Fisher’s exact test and adjusted for multiple comparisons using
Bonferroni correction. Asterisks (*) indicate a significant enrichment (Adj. P<0.05)
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