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1 Supplementary Methods
1.1 Bidirectional FM-index

In this section, we provide a brief overview of the bidirectional FM-index, which

forms the base of our pan-genome graph representation.

The Burrows-Wheeler transform BWT[0..n[ of a text T of length n is defined

as BWT[i] = T [SA[i] − 1] if SA[i] > 0 and BWT[i] = $ otherwise [1]. Here, SA

denotes the suffix array, an array over integer values that indicate the starting po-

sitions of the suffixes of T in lexicographic order [2]. We build the suffix array using

divsufsort (coded by Yuta Mori). There is an important relationship between the

characters in the sorted permutation of T (called F ) and the BWT of T (called L),

namely the LF property. The LF property states that the ith occurrence of a partic-

ular character c in the BWT and the ith occurrence of c in F correspond to the same

character in T . We thus need support for Occ(c, i) queries on the BWT that return

the number of occurrences of character c in the prefix BWT[0..i[. We realize this

using |Σ| bit vectors with constant-time rank support (rank9 algorithm [3]). The LF

property can then be computed in constant time as follows: LF[i] = C(c)+Occ(c, i),

with c = BWT[i]. Here, C(c) denotes the number of characters in T strictly smaller

than c. These values are pre-computed and stored in a small array of size |Σ|. Collec-
tively, the BWT, SA, bit vectors and C array are referred to as the (unidirectional)

FM-index [4]. Often, only the suffix array entries for every sSAth suffix are stored,

sSA being the suffix array sparseness factor. This sparse representation of the suffix

array requires an auxiliary bit vector with rank support to indicate the presence

or absence of index positions and to compute their offsets within the sparse suffix

array. Every entry of the suffix array can be computed in O(sSA) time using the

LF property. This is one of the various design choices through the which time-space

tradeoff can be controlled.

Exact pattern matching using the FM-index is performed by matching character

by character, from right to left. Let [b, e[ denote the interval over the suffix array

for which the corresponding suffixes have P as a prefix. The suffix array interval

[b′, e′[= extendBackward([b, e[, c) whose suffixes have cP as a prefix can then be

computed by b′ = C(c) + Occ(c, b) and e′ = C(c) + Occ(c, e). Because Occ(c, i)

queries can be performed in constant time, exact matching of a pattern P of size

m takes O(m) time. The size of the obtained interval [b, e[ denotes the number of

occurrences of P in T . The positions of the occurrences in T can be obtained using

the suffix array.

A bidirectional FM-index is obtained by also storing BWTr, the Burrows-Wheeler

transform of T r, the reverse of T . By keeping track of both the range [b, e[ over BWT

as well as the range [br, er[ over BWTr in a synchronized manner, one can extend a

pattern P to either cP (extendBackward) or Pc (extendForward) in O(|Σ|) time [5].
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Table S1 Overview of all components of our bidirectional FM-index, with their respective memory
usage. For each component, we clarify the number of entries it contains, and the number of bits
needed to store each entry. The number of entries and memory usage of each component is
illustrated for the pan-genome of 10 human genomes (sSA = 16).

Component
Memory usage
per entry [bits]

Number of entries Total for 10
human
genomesGeneral 10 human genomes

Compacted text 3 n ∼ 30 billion bp 10.60 GiB

Counts array C 64 256 256 characters 2 KiB

BWT 3 n ∼ 30 billion bp 10.60 GiB

PrefixOcc 6.25 n ∼ 30 billion bp 22.08 GiB

PrefixOccr 6.25 n ∼ 30 billion bp 22.08 GiB

Sparse SA 64 n/sSA ∼ 1.9 billion entries 14.13 GiB

SA bit vector 1.25 n ∼ 30 billion bp 4.42 GiB

Total 83.89 GiB

By replacing the Occ data structure with a PrefixOcc data structure, this bound

is improved to O(1) [6]. Note that both ranges always have the same width, which

monotonically decreases when new characters are added to the occurrence (adding

a character cannot lead to more occurrences in the reference text).

Table S1 details the components of the bidirectional FM-index that is used in our

implementation. The compacted reference text uses 3 bits to distinguish 6 charac-

ters. Note that the original reference text T (8 bits per character), is necessary to

build the representation. Once this process is finished, T can be removed from disk

to spare memory. The counts array stores counts for each character in the extended

ASCII alphabet, which is why 256 entries are stored. In practice, only 6 of these

entries can have non-zero values (‘A’, ‘C’, ‘G’, ‘T’, ‘%’ and ‘$’). BWT uses 3 bits per

character, analogous to the compacted reference text. PrefixOcc, resp. PrefixOccr,

stores the locations of characters ‘A’, ‘C’, ‘G’, ‘T’, ‘%’ in BWT, resp. BWTr, in 5 bit

vectors (accounting for 5 bits per character). Additionally, each of these bit vectors

must support constant-time rank operations, which leads to 0.25 bits overhead per

character per bit vector (rank9 algorithm [3]). This totals to 6.25 bits per character

for tables PrefixOcc and PrefixOccr. Note that we only need PrefixOccr, not BWTr

itself. To guarantee O(sSA) suffix array indexing, we store each sSAth suffix in the

sparse SA. To check whether a certain index in the SA corresponds to a sSAth suffix

or not, we need an additional bit vector indicating the stored entries. This bit vector

also needs 0.25 additional bits per entry for constant-time rank support.

Finally, the longest common prefix array or the LCP array is also used for the

construction of our pan-genome graph. The LCP array of string T , denoted by

LCP, is an array of size n+ 1 such that LCP[0] = −1, LCP[n] = −1 and LCP[i] =

lcp(TSA[i−1], TSA[i]) for 0 < i < n, where lcp(u, v) denotes the length of the longest

common prefix between two strings u and v [7].

2 Supplementary Results
2.1 The Effect of the Suffix Array Sparseness Factor on Memory Usage and APM

Performance

Adjusting the suffix array sparseness factor can lead to significantly less memory

usage, as the complete suffix array is by far the largest component of the data
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Figure S1 Black: average runtime over 10 experiments for mapping 100 000 Illumina reads of
length 101 bp as well as their reverse complement to the pan-genome graph of 10 human
genomes, as a function of the suffix array sparseness factor sSA (1 to 256). We perform
approximate pattern matching with a maximum allowed number of errors of K = 4, using the
search scheme proposed by Kucherov et al.. The pan-genome is built for k = 25 and scp = 128.
The 95% confidence interval for the runtime is also indicated. Blue: the memory usage of the
complete representation of the ccdBG for the pan-genome of 10 human genomes (including the
underlying bidirectional FM-index), as a function of the suffix array sparseness factor sSA.

structure. Fig. S1 illustrates the time-space tradeoff that arises when sSA is altered.

It shows the runtime of the APM procedure for matching 100 000 Illumina reads

to the pan-genome graph of 10 human genomes as well as its memory usage, as a

function of sSA.

For sSA = 1, the suffix array is stored at full capacity and the total memory

usage is 307.39 GiB. When sSA is increased, the memory usage of SA decreases

as less of its entries are explicitly stored. For an infinitely large value of sSA, the

data structure comprises 81.33 GiB as the memory usage of SA approaches 0 GiB.

The performance of the APM procedure decreases as sSA increases, since the SA

entries that are not explicitly stored must be recalculated on the fly. We see that

the runtime increases exponentially with sSA. Note however that for very small

values of sSA (1, 2, 4, 8), the APM performance is barely affected. In fact, the APM

performance is better at sSA = 2 than at sSA = 1, presumably due to the high

RAM requirements.

Determining the right value for sSA is different in every scenario: large pan-

genomes require a higher suffix array sparseness factor, whilst smaller datasets

benefit from a more complete suffix array. Still, choosing sSA = 16 or sSA = 32

generally leads to a good balance.

2.2 Cytoscape Visualization

In Fig. 5 in the manuscript, we illustrate the visualization of a subgraph of the

pan-genome of 341 M. tuberculosis strains in a curated form:

• the first k − 1 overlapping characters were omitted from each node;

• node identifiers were replaced by a smaller set of character identifiers;

• irrelevant nodes were purged from the graph;

• the multiplicity of the edges was added to the figure explicitly.
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Figure S2 Cytoscape visualization of a subgraph of the pan-genome ccdBG of 341 M. tuberculosis
strains (k = 19), corresponding to the end of the RRDR region of gene rpoB. Dark nodes
represent the node path corresponding to the sequence for which visualization was requested.
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In this section, we include the original subgraph as it is visualized by Cytoscape in

Figure S2, which was created using the following command:

$ /nexus/build/visualizeRead -e 0 -d 1 -b -o outputFile

↪→ MTuberculosisPanGenome 19

↪→ ACCCACAAGCGCCGACTGTCGGCGCTGGGGCCCGGCGGTCTGTCA

The inputted DNA sequence corresponds to the last three codons from the RRDR

region (“TCGGCGCTG”), padded with 18 nucleotides from the reference strain on

either side, in order to visualize all nodes that contain a part of these three codons.

The dark gray nodes in Fig. S2 correspond to the reference path in the manuscript’s

Fig. 5 (i.e., node path ADEFGHIK). Furthermore, nodes 111664, 93978 and 73107

in Fig. S2 correspond to respectively nodes B, C and J in Fig. 5 (manuscript),

representing RRDR mutations S450L, S450W and L452P.

3 Reproducing Results
Following software versions were used for benchmarking:

• Nexus v1.1.0:

https://github.com/biointec/nexus/releases/tag/v1.1.0

• Beller and Ohlebusch’s A4 [7]:

https://www.uni-ulm.de/in/theo/research/seqana.html

• deBGA [8] commit c2dbf6d6bb9bb27a0230b2d4022ec3e05efa46c9:

https://github.com/HongzheGuo/deBGA/tree/c2dbf6d

• Pufferfish [9] (and PuffAligner [10]) v1.8.0:

https://github.com/COMBINE-lab/pufferfish/releases/tag/salmon-v1.8.0

3.1 Obtaining the Reads

We sampled 100 000 reads from an Illumina experiment dataset (ftp://ftp.sra.

ebi.ac.uk/vol1/fastq/ERR194/ERR194147/ERR194147_1.fastq.gz), which only

contain ‘A‘, ‘C‘, ‘G‘ and ‘T‘ characters. The sampled dataset we used for the results

in the paper is available on our GitHub page: https://github.com/biointec/

nexus/releases/download/v1.0.0/sampled_illumina_reads.fastq. From now

on, we refer to them as reads.fastq.

3.2 Commands for Building the Indexes (cf. Table 9)

deBGA construction:

$ ./deBGA index -k 25 10HumanGenomes.fa deBGA/10HumanGenomes

Pufferfish construction:

$ ./pufferfish index -r 10HumanGenomes.fa -o pufferfish/ --tmpdir

↪→ pufferfishtemp/ -k 25 --noClip --filt-size 40 --threads 1

A4 construction:

https://github.com/biointec/nexus/releases/tag/v1.1.0
https://www.uni-ulm.de/in/theo/research/seqana.html
https://github.com/HongzheGuo/deBGA/tree/c2dbf6d
https://github.com/COMBINE-lab/pufferfish/releases/tag/salmon-v1.8.0
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR194/ERR194147/ERR194147_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR194/ERR194147/ERR194147_1.fastq.gz
https://github.com/biointec/nexus/releases/download/v1.0.0/sampled_illumina_reads.fastq
https://github.com/biointec/nexus/releases/download/v1.0.0/sampled_illumina_reads.fastq
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$ ./a4.x construct --inputfile=10HumanGenomes.fa --outputfile=a4

↪→ /10HumanGenomes --kfile=kfile.txt

Where kfile.txt contains the value 25.

Nexus construction:

$ ./nexusBuild -s 16 -c 128 -p 10HumanGenomes 25

Where input file 10HumanGenomes.txt contains a preprocessed version of corre-

sponding 10HumanGenomes.fa. From each strain we removed all N’s and substi-

tuted them with a random nucleotide. Then we removed the first line, concatenated

the chromosomes, removed newline characters, and added a separation character

to the end of file for each strain. Next, the strains can be concatenated into one

pan-genome. An example of preprocessing a pan-genome of 3 strains is as follows:

$ tail -n +2 genome1.fasta.non | sed "s/>.*//g" | cat - percent |

↪→ tr -d ’\n’ > genome1.txt

$ tail -n +2 genome2.fasta.non | sed "s/>.*//g" | cat - percent |

↪→ tr -d ’\n’ > genome2.txt

$ tail -n +2 genome3.fasta.non | sed "s/>.*//g" | cat - dollar |

↪→ tr -d ’\n’ > genome3.txt

$ cat genome1.txt genome2.txt genome3.txt > pangenome.txt

Where genome1.fasta.non, genome2.fasta.non and genome3.fasta.non are

the result of the substitution of the N’s for the input strains and pangenome.txt is

the reference pan-genome used to build the index. genome1.txt, genome2.txt and

genome3.txt are intermediate files which can be removed once the pan-genome is

obtained. dollar and percent are text files containing a single character ‘$’ and
‘%’, respectively. These files should be present in your directory before executing

the above commands.

Future work contains implementing this preprocessing into Nexus, such that the

end user can simply input the .fasta/.fa file.

3.3 Command for Building All Nexus Indexes Used for Benchmarking

$ ./nexusBuild -s 1 -s 2 -s 4 -s 8 -s 16 -s 32 -s 64 -s 128 -s 256

↪→ -c 8 -c 16 -c 32 -c 64 -c 128 -c 256 -c 512 -c 1024 -c 2048

↪→ -c none -p 10HumanGenomes 25,50,75

3.4 Commands for Reproducing Table 10

For A4:

$ ./a4.x find_pattern --graphfile=10HumanGenomes.k25.bin --

↪→ patternfile=reads.txt



Depuydt et al. Page 7 of 9

Where reads.txt is a preprocessed text file containing only the DNA sequences con-

tained in reads.fastq, no other information. Additionally, reads.txt also contains

the reverse complement of all reads, as A4 does not match the reverse complements

automatically.

For Nexus:

$ ./nexus -e <ED> -s 16 -c 128 -ss custom ../search_schemes/kuch_k

↪→ +1_adapted/ 10HumanGenomes 25 reads.fastq

With ED ∈ {0,1,2,3,4}.

3.5 Commands for Reproducing Table 11

For PuffAligner:

$ ./pufferfish align -i pufferfish/ --read reads.fastq -t 1 -o

↪→ output.sam --verbose --genomicReads

Where the pufferfish/ directory contains the index.

For A4 and Nexus: see commands above.

3.6 Commands for Reproducing Figure 4

$ ./nexus -e 4 -s 16 -c <scp> -ss custom ../search_schemes/kuch_k

↪→ +1_adapted/ 10HumanGenomes <k> reads.fastq

With scp ∈ {8, 16, 32, 64, 128, 256, 512, 1024, 2048, none} and k ∈
{25,50,75}.

3.7 Commands for Reproducing Figure S1

$ ./nexus -e 4 -s <sSA> -c 128 -ss custom ../search_schemes/kuch_k

↪→ +1_adapted/ 10HumanGenomes 25 reads.fastq

With sSA ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256}.

3.8 Case Study

3.8.1 Building the index

The preprocessed text file MTuberculosisPanGenome.txt containing the 341 con-

catenatedM. tuberculosis strains can be found on our GitHub page: https://github.

com/biointec/nexus/releases/download/v1.1.0/MTuberculosisPanGenome.txt.

Additionally, an annotation file is provide that contains the identifiers of these

strains in the order in which they appear in the concatenated reference file: https:

//github.com/biointec/nexus/releases/download/v1.1.0/MTuberculosisPanGenome.

annotation.txt.

Using the reference text file, the index can be built as follows:

$ ./nexusBuild -s 16 -c 128 -p MTuberculosisPanGenome 19

https://github.com/biointec/nexus/releases/download/v1.1.0/MTuberculosisPanGenome.txt
https://github.com/biointec/nexus/releases/download/v1.1.0/MTuberculosisPanGenome.txt
https://github.com/biointec/nexus/releases/download/v1.1.0/MTuberculosisPanGenome.annotation.txt
https://github.com/biointec/nexus/releases/download/v1.1.0/MTuberculosisPanGenome.annotation.txt
https://github.com/biointec/nexus/releases/download/v1.1.0/MTuberculosisPanGenome.annotation.txt
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3.8.2 Reproducing the Case Study

To reproduce the case study, switch to the corresponding branch on GitHub: https:

//github.com/biointec/nexus/tree/CaseStudy/casestudy. Compile the code.

Run the following command inside the folder containing the index.

$ ./casestudy

This executable searches for compensatory mutations as is described in the

manuscript. Comments are provided in the casestudy.cpp script to outline the pro-

cess. The case study results in a file MTuberculosisPanGenome Compensatory.tsv,

which contains the 14 candidate putative compensatory mutations that were also

discussed in Table 13 in the manuscript. This file contains 5 fields:

• The RRDR mutation to which the candidate putative compensatory mutation

corresponds;

• The identifier of the node in which the candidate putative compensatory mu-

tation is found;

• The number of strains that carry the candidate putative compensatory mu-

tation;

• The position of the candidate putative compensatory mutation with respect

to the reference strain;

• The length of the node containing the candidate putative compensatory mu-

tation.

Note again that the pipeline implemented here is more of an ad hoc solution to the

problem of finding candidate compensatory mutations corresponding to mutations

in the RRDR region of rpoB, rather than a general pipeline to be readily applied

to other problems. For this reason, we provide the functionality in a .cpp file. If

there were any interest to extend these ideas into a more general pipeline, possibly

written in a more accessible script, do not hesitate to contact the authors of the

manuscript.
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