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1 Observed network second moment

Here we calculate the second moment for the observed network, 〈k2O〉. First, we recall that

(kO)α =

(kH)α∑
β=1

(kH)α,β. (1.1)

Let us square both sides, and average over all nodes in the network such that

1

t

t∑
α=1

(kO)2α =
1

t

t∑
α=1

(kH)α∑
β=1

(kH)α,β

2

. (1.2)

We now simplify the left hand side and expand the squared sum on the right hand side to give

〈k2O〉 =
1

t

t∑
α=1

(kH)α∑
β=1

(kH)2α,β +

(kH)α∑
β=1

(kH)α∑
β′ 6=β

(kH)α,β(kH)α,β′

 , (1.3)

where the first term in the brackets is the contribution from the product of node α, β with
itself, and the second term considers the cross term contribution between node α, β and all
other neighbors α, β′. Taking the first term out of the brackets and summing over all nodes in
the network gives

〈k2O〉 = 〈k3H〉+
1

t

t∑
α=1

(kH)α∑
β=1

(kH)α∑
β′ 6=β

(kH)α,β(kH)α,β′ , (1.4)

where we have used the property that node ` appears in the expanded sum (kH)` times. We
proceed with a mean-field approximation and assume that as t → ∞ the average degree of
next-nearest neighbors in the hidden network are uncorrelated. This implies that (kH)α,β and
(kH)α,β′ are uncorrelated. Hence, we can replace the sum over β′ with (kH)α − 1 times the
average degree of node (kH)α,β′ giving

〈k2O〉 ≈ 〈k3H〉+
1

t

t∑
α=1

(kH)α∑
β=1

(kH)α,β〈kH〉α,β′ · ((kH)α − 1) . (1.5)

We know that due to the friendship paradox 〈kH〉α,β′ 6= 〈kH〉. On average our friends have more
friends than we do. For a network with zero assortativity, we can relate the average nearest
neighbour degree to the average degree by

〈kH〉α,β′ = 〈kH〉+
σ2(kH)

〈kH〉
, (1.6)

where σ2 is the degree variance. In our case this gives

〈kH〉α,β′ = 〈kH〉+
〈k2H〉 − 〈kH〉2

〈kH〉
= 3. (1.7)
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Subbing this into Eq. (1.5) and rearranging slightly we can write

〈k2O〉 ≈ 〈k3H〉+
3

t

t∑
α=1

(kH)α∑
β=1

[(kH)α,β(kH)α − (kH)α,β] , (1.8)

where again we have a cross term between node α, β and node α. Hence, since the inner sum
does not act on node α, we also assume that the (kH)α term can be replaced by Eq. (1.5) such
that

〈k2O〉 ≈ 〈k3H〉+
3

t

t∑
α=1

(kH)α∑
β=1

[3(kH)α,β − (kH)α,β] = 〈k3H〉+
6

t

t∑
α=1

(kH)α∑
β=1

(kH)α,β. (1.9)

Finally, noting that each (kH)α,β term appears exactly (kH)α,β times in the expanded sum we
find

〈k2O〉 ≈ 〈k3H〉+ 6〈k2H〉 = 62, (1.10)

where in the final line we have used 〈k3H〉 = 26 and 〈k2H〉 = 6, both of which follow directly
from the hidden degree distribution, pH(kH) = 2−kH . This result is consistent with direct
measurements taken in simulations.

2 Observed degree distribution

2.1 Master Equation

The hidden network evolves as a random recursive tree which has a limiting degree distribution
given by

pH(kH) = 2−kH , for k > 1. (2.1)

For the observed network we start with the master equation

N(t+ 1) · pO(kO, t+ 1)−N(t) · pO(kO, t) =

N(t) · ΠO(kO − 1, t) · pO(kO − 1, t)−N(t) · ΠO(kO, t) · pO(kO, t) + 21−kO , for k ≥ 2, (2.2)

where N(t) is the number of nodes at time t, ΠO(kO, t) is the probability that a node with
observed degree kO gains a new edge, and pO(kO, t) is the degree distribution. The first line
corresponds to nodes whose observed degree remains unchanged from t to t + 1, the first and
second terms on the second line correspond to the transitions kO − 1 → kO and kO → kO + 1
respectively, and the final term corresponds to the probability that the newly added node has
initial degree kO, given by pH(kO − 1). Letting N(t) = t and assuming the degree distribution
is stationary for large t,

pO(kO) = πO(kO − 1) · pO(kO − 1)− πO(kO) · pO(kO) + 21−kO , for k ≥ 2, (2.3)

where

πO(kO) = t · ΠO(kO) = t · 1 + 〈kH | kO〉
t

= 1 + 〈kH | kO〉, (2.4)

and 〈kH | kO〉 is the average degree of nodes in the hidden network with a fixed observed degree
of kO. Here, the 1/t term corresponds to the probability that edges are gained from direct
attachment, whereas the 〈kH | kO〉/t corresponds to the probability that edges are gained from
copying.
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2.2 Derivation of Eq. (9)

We would like to derive Eq. (9) in the main paper.
Consider the node α added to the network at time tα. The initial conditions for node α are

(kH(tα))α = 1, (2.5a)

〈kO(tα)〉α = 1 + 〈kH(tα − 1)〉β, (2.5b)

where the final term is the average hidden degree of the target node β. In the hidden network,
node α gains edges from direct attachment only. Hence, at t > tα,

〈kH(t > tα)〉α = 1 +
t−1∑
j=tα

1

j
= 1 +Ht−1 −Htα−1, (2.6)

where Hn is the nth harmonic number. In the observed network, either node α is targeted via
direct attachment, or a copied edge is formed from the new node to node α via any of the
(kH(t))α neighbours of node α. Hence,

〈kO(t > tα)〉α = 〈kO(tα)〉α +
t−1∑
j=tα

1 + 〈kH(j)〉α
j

= 〈kO(tα)〉α +
t−1∑
j=tα

2 +Hj −Htα−1 − 1/j

j
, (2.7)

where we have subbed in Eq. (2.6) and Hj−1 = Hj − 1/j. Note that

n∑
j=1

Hj

j
=

1

2

[
(Hn)2 +H(2)

n

]
, (2.8)

where H
(m)
n is the nth generalised Harmonic number of order m defined as

H(m)
n =

n∑
j=tα

1

jm
. (2.9)

Hence, we can rewrite Eq. (2.7) as

〈kO(t > tα)〉α = 〈kO(tα)〉α + (2−Htα−1)
t−1∑
j=tα

1

j
+

t−1∑
j=tα

Hj

j
−

t−1∑
j=tα

1

j2
, (2.10)

which expanded gives

〈kO(t > tα)〉α = 〈kO(tα)〉α + (2−Htα−1)(Ht−1 −Htα−1)

+
1

2

[
(Ht−1)

2 +H
(2)
t−1 − (Htα−1)

2 −H(2)
tα−1

]
− (H

(2)
t−1 −H

(2)
tα−1).

(2.11)

We can simplify Eq. (2.11) slightly

〈kO(t > tα)〉α = 〈kO(tα)〉α + (2−Htα−1)(Ht−1 −Htα−1)

+
1

2

[
(Ht−1 +Htα−1)(Ht−1 −Htα−1)−H

(2)
t−1 +H

(2)
tα−1

]
,

(2.12)

followed by

〈kO(t > tα)〉α = 〈kO(tα)〉α +
1

2

[
(4 +Ht−1 −Htα−1)(Ht−1 −Htα−1)−H

(2)
t−1 +H

(2)
tα−1

]
, (2.13)

as required.
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