

Supplement: Correlated copying in a hidden network model

Max Falkenberg, *et al.*

Centre for Complexity Science, Imperial College London, SW7 2AZ, U.K.

1 Observed network second moment

Here we calculate the second moment for the observed network, $\langle k_O^2 \rangle$. First, we recall that

$$(k_O)_\alpha = \sum_{\beta=1}^{(k_H)_\alpha} (k_H)_{\alpha,\beta}. \quad (1.1)$$

Let us square both sides, and average over all nodes in the network such that

$$\frac{1}{t} \sum_{\alpha=1}^t (k_O)_\alpha^2 = \frac{1}{t} \sum_{\alpha=1}^t \left[\sum_{\beta=1}^{(k_H)_\alpha} (k_H)_{\alpha,\beta} \right]^2. \quad (1.2)$$

We now simplify the left hand side and expand the squared sum on the right hand side to give

$$\langle k_O^2 \rangle = \frac{1}{t} \sum_{\alpha=1}^t \left[\sum_{\beta=1}^{(k_H)_\alpha} (k_H)_{\alpha,\beta}^2 + \sum_{\beta=1}^{(k_H)_\alpha} \sum_{\beta' \neq \beta} (k_H)_{\alpha,\beta} (k_H)_{\alpha,\beta'} \right], \quad (1.3)$$

where the first term in the brackets is the contribution from the product of node α, β with itself, and the second term considers the cross term contribution between node α, β and all other neighbors α, β' . Taking the first term out of the brackets and summing over all nodes in the network gives

$$\langle k_O^2 \rangle = \langle k_H^3 \rangle + \frac{1}{t} \sum_{\alpha=1}^t \sum_{\beta=1}^{(k_H)_\alpha} \sum_{\beta' \neq \beta} (k_H)_{\alpha,\beta} (k_H)_{\alpha,\beta'}, \quad (1.4)$$

where we have used the property that node ℓ appears in the expanded sum $(k_H)_\ell$ times. We proceed with a mean-field approximation and assume that as $t \rightarrow \infty$ the average degree of next-nearest neighbors in the hidden network are uncorrelated. This implies that $(k_H)_{\alpha,\beta}$ and $(k_H)_{\alpha,\beta'}$ are uncorrelated. Hence, we can replace the sum over β' with $(k_H)_\alpha - 1$ times the average degree of node $(k_H)_{\alpha,\beta'}$ giving

$$\langle k_O^2 \rangle \approx \langle k_H^3 \rangle + \frac{1}{t} \sum_{\alpha=1}^t \sum_{\beta=1}^{(k_H)_\alpha} (k_H)_{\alpha,\beta} \langle k_H \rangle_{\alpha,\beta'} \cdot ((k_H)_\alpha - 1). \quad (1.5)$$

We know that due to the friendship paradox $\langle k_H \rangle_{\alpha,\beta'} \neq \langle k_H \rangle$. On average our friends have more friends than we do. For a network with zero assortativity, we can relate the average nearest neighbour degree to the average degree by

$$\langle k_H \rangle_{\alpha,\beta'} = \langle k_H \rangle + \frac{\sigma^2(k_H)}{\langle k_H \rangle}, \quad (1.6)$$

where σ^2 is the degree variance. In our case this gives

$$\langle k_H \rangle_{\alpha,\beta'} = \langle k_H \rangle + \frac{\langle k_H^2 \rangle - \langle k_H \rangle^2}{\langle k_H \rangle} = 3. \quad (1.7)$$

Subbing this into Eq. (1.5) and rearranging slightly we can write

$$\langle k_O^2 \rangle \approx \langle k_H^3 \rangle + \frac{3}{t} \sum_{\alpha=1}^t \sum_{\beta=1}^{(k_H)_\alpha} [(k_H)_{\alpha,\beta} (k_H)_\alpha - (k_H)_{\alpha,\beta}], \quad (1.8)$$

where again we have a cross term between node α, β and node α . Hence, since the inner sum does not act on node α , we also assume that the $(k_H)_\alpha$ term can be replaced by Eq. (1.5) such that

$$\langle k_O^2 \rangle \approx \langle k_H^3 \rangle + \frac{3}{t} \sum_{\alpha=1}^t \sum_{\beta=1}^{(k_H)_\alpha} [3(k_H)_{\alpha,\beta} - (k_H)_{\alpha,\beta}] = \langle k_H^3 \rangle + \frac{6}{t} \sum_{\alpha=1}^t \sum_{\beta=1}^{(k_H)_\alpha} (k_H)_{\alpha,\beta}. \quad (1.9)$$

Finally, noting that each $(k_H)_{\alpha,\beta}$ term appears exactly $(k_H)_{\alpha,\beta}$ times in the expanded sum we find

$$\langle k_O^2 \rangle \approx \langle k_H^3 \rangle + 6\langle k_H^2 \rangle = 62, \quad (1.10)$$

where in the final line we have used $\langle k_H^3 \rangle = 26$ and $\langle k_H^2 \rangle = 6$, both of which follow directly from the hidden degree distribution, $p_H(k_H) = 2^{-k_H}$. This result is consistent with direct measurements taken in simulations.

2 Observed degree distribution

2.1 Master Equation

The hidden network evolves as a random recursive tree which has a limiting degree distribution given by

$$p_H(k_H) = 2^{-k_H}, \text{ for } k > 1. \quad (2.1)$$

For the observed network we start with the master equation

$$\begin{aligned} N(t+1) \cdot p_O(k_O, t+1) - N(t) \cdot p_O(k_O, t) = \\ N(t) \cdot \Pi_O(k_O - 1, t) \cdot p_O(k_O - 1, t) - N(t) \cdot \Pi_O(k_O, t) \cdot p_O(k_O, t) + 2^{1-k_O}, \text{ for } k \geq 2, \end{aligned} \quad (2.2)$$

where $N(t)$ is the number of nodes at time t , $\Pi_O(k_O, t)$ is the probability that a node with observed degree k_O gains a new edge, and $p_O(k_O, t)$ is the degree distribution. The first line corresponds to nodes whose observed degree remains unchanged from t to $t+1$, the first and second terms on the second line correspond to the transitions $k_O - 1 \rightarrow k_O$ and $k_O \rightarrow k_O + 1$ respectively, and the final term corresponds to the probability that the newly added node has initial degree k_O , given by $p_H(k_O - 1)$. Letting $N(t) = t$ and assuming the degree distribution is stationary for large t ,

$$p_O(k_O) = \pi_O(k_O - 1) \cdot p_O(k_O - 1) - \pi_O(k_O) \cdot p_O(k_O) + 2^{1-k_O}, \text{ for } k \geq 2, \quad (2.3)$$

where

$$\pi_O(k_O) = t \cdot \Pi_O(k_O) = t \cdot \frac{1 + \langle k_H \mid k_O \rangle}{t} = 1 + \langle k_H \mid k_O \rangle, \quad (2.4)$$

and $\langle k_H \mid k_O \rangle$ is the average degree of nodes in the hidden network with a fixed observed degree of k_O . Here, the $1/t$ term corresponds to the probability that edges are gained from direct attachment, whereas the $\langle k_H \mid k_O \rangle/t$ corresponds to the probability that edges are gained from copying.

2.2 Derivation of Eq. (9)

We would like to derive Eq. (9) in the main paper.

Consider the node α added to the network at time t_α . The initial conditions for node α are

$$(k_H(t_\alpha))_\alpha = 1, \quad (2.5a)$$

$$\langle k_O(t_\alpha) \rangle_\alpha = 1 + \langle k_H(t_\alpha - 1) \rangle_\beta, \quad (2.5b)$$

where the final term is the average hidden degree of the target node β . In the hidden network, node α gains edges from direct attachment only. Hence, at $t > t_\alpha$,

$$\langle k_H(t > t_\alpha) \rangle_\alpha = 1 + \sum_{j=t_\alpha}^{t-1} \frac{1}{j} = 1 + H_{t-1} - H_{t_\alpha-1}, \quad (2.6)$$

where H_n is the n^{th} harmonic number. In the observed network, either node α is targeted via direct attachment, or a copied edge is formed from the new node to node α via any of the $(k_H(t))_\alpha$ neighbours of node α . Hence,

$$\langle k_O(t > t_\alpha) \rangle_\alpha = \langle k_O(t_\alpha) \rangle_\alpha + \sum_{j=t_\alpha}^{t-1} \frac{1 + \langle k_H(j) \rangle_\alpha}{j} = \langle k_O(t_\alpha) \rangle_\alpha + \sum_{j=t_\alpha}^{t-1} \frac{2 + H_j - H_{t_\alpha-1} - 1/j}{j}, \quad (2.7)$$

where we have subbed in Eq. (2.6) and $H_{j-1} = H_j - 1/j$. Note that

$$\sum_{j=1}^n \frac{H_j}{j} = \frac{1}{2} \left[(H_n)^2 + H_n^{(2)} \right], \quad (2.8)$$

where $H_n^{(m)}$ is the n^{th} generalised Harmonic number of order m defined as

$$H_n^{(m)} = \sum_{j=t_\alpha}^n \frac{1}{j^m}. \quad (2.9)$$

Hence, we can rewrite Eq. (2.7) as

$$\langle k_O(t > t_\alpha) \rangle_\alpha = \langle k_O(t_\alpha) \rangle_\alpha + (2 - H_{t_\alpha-1}) \sum_{j=t_\alpha}^{t-1} \frac{1}{j} + \sum_{j=t_\alpha}^{t-1} \frac{H_j}{j} - \sum_{j=t_\alpha}^{t-1} \frac{1}{j^2}, \quad (2.10)$$

which expanded gives

$$\begin{aligned} \langle k_O(t > t_\alpha) \rangle_\alpha &= \langle k_O(t_\alpha) \rangle_\alpha + (2 - H_{t_\alpha-1})(H_{t-1} - H_{t_\alpha-1}) \\ &\quad + \frac{1}{2} \left[(H_{t-1})^2 + H_{t-1}^{(2)} - (H_{t_\alpha-1})^2 - H_{t_\alpha-1}^{(2)} \right] - (H_{t-1}^{(2)} - H_{t_\alpha-1}^{(2)}). \end{aligned} \quad (2.11)$$

We can simplify Eq. (2.11) slightly

$$\begin{aligned} \langle k_O(t > t_\alpha) \rangle_\alpha &= \langle k_O(t_\alpha) \rangle_\alpha + (2 - H_{t_\alpha-1})(H_{t-1} - H_{t_\alpha-1}) \\ &\quad + \frac{1}{2} \left[(H_{t-1} + H_{t_\alpha-1})(H_{t-1} - H_{t_\alpha-1}) - H_{t-1}^{(2)} + H_{t_\alpha-1}^{(2)} \right], \end{aligned} \quad (2.12)$$

followed by

$$\langle k_O(t > t_\alpha) \rangle_\alpha = \langle k_O(t_\alpha) \rangle_\alpha + \frac{1}{2} \left[(4 + H_{t-1} - H_{t_\alpha-1})(H_{t-1} - H_{t_\alpha-1}) - H_{t-1}^{(2)} + H_{t_\alpha-1}^{(2)} \right], \quad (2.13)$$

as required.