

¹ A land-neutral expansion of Brazilian renewable fuel production - Supplementary Information

³ Luis Ramirez Camargo^{1,2,3,*}, Gabriel Castro^{1,4}, Katharina Gruber¹, Jessica Jewell⁵, Michael
⁴ Klingler^{1,6}, Olga Turkovska¹, Elisabeth Wetterlund^{7,8} & Johannes Schmidt¹

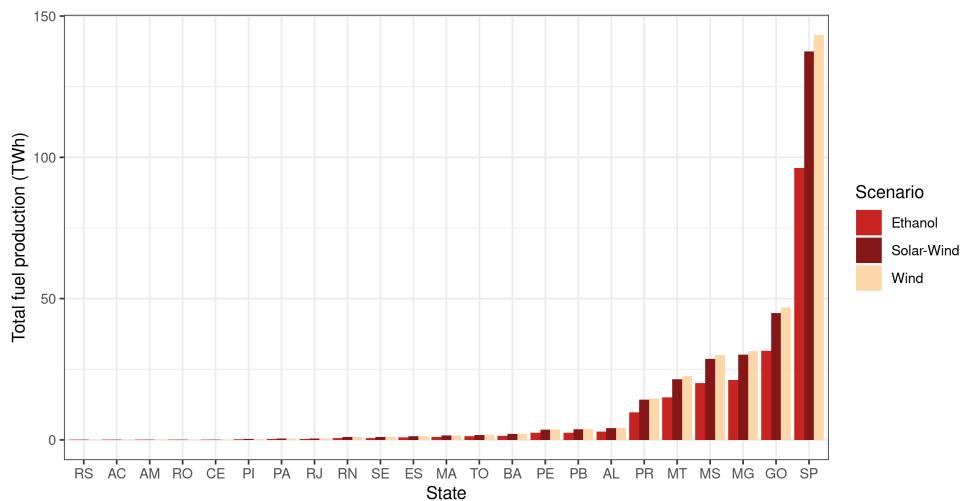
⁵ ¹*Institute for Sustainable Economic Development, University of Natural Resources and Life Science, Vienna, Austria*

⁶ ²*Electric Vehicle and Energy Research Group (EVERGI), Mobility, Logistics and Automotive Technology Research*

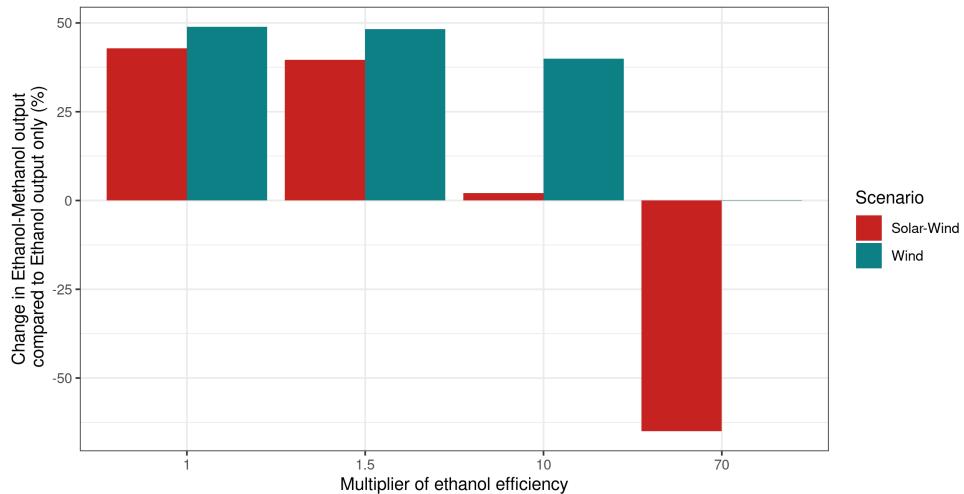
⁷ ³*Centre (MOBI), Department of Electrical Engineering and Energy Technology, Vrije Universiteit Brussel, Brussels,*

⁸ *Belgium*

⁹ ³*Flanders Make, 3001 Heverlee, Belgium*


¹⁰ ⁴*Energy Planning Program, Graduate School of Engineering, Federal University of Rio de Janeiro, Rio de Janeiro,
Brazil.*

¹² ⁵*Department of Space, Earth and Environment, Chalmers University of Technology*


¹³ ⁶*Department of Geography, University of Innsbruck, Innsbruck, Austria*

¹⁴ ⁷*Energy Engineering, Division of Energy Science, Luleå University of Technology, 971 87 Luleå, Sweden*

¹⁵ ⁸*International Institute for Applied Systems Analysis (IIASA), A-2361 Laxenburg, Austria*

Supplementary Fig. 1. Share in total production of different states.

Supplementary Fig. 2. Change in output of the land-neutral methanol pathway in different ethanol land-use efficiency scenarios.

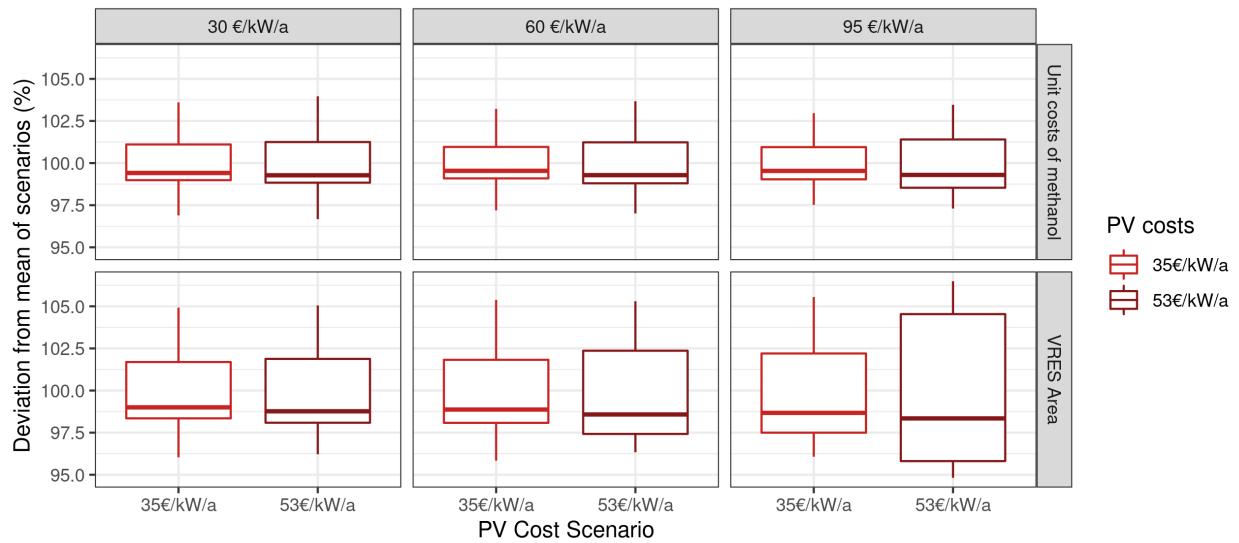
Supplementary Table 1. Technology assumptions.

Technology	CAPEX (€/kW)	OPEX (€/kW/a)	Lifetime (years)	Annualized cost (€/kW)	Efficiency	Source
PV						Cost projection for
Low	290	8.8	20	35	-	2020(high) and 2030(low)
High	430	6.4	20	53		are taken from ¹
Wind						Cost projection for
Low	1,040	12	20	118	-	2020(high) and 2030(low)
High	1,120	14	20	128		are taken from ² .
Electrolyzers						OPEX are taken from ³
Low	250	5.0	20	30	63%	The selected values are
Mid	500	10.0	20	60		a conservative summary
High	780	15.7	20	95	69%	of the references provided
Methanol synthesis	300	12	20	43	83% (from H ₂)	in Supplementary Table 2.
	CAPEX (€/t)		Lifetime (years)	Annualized cost (€/t)		OPEX and efficiency from ³
H ₂ - Storage						
Low	7,020		20	715	100%	⁵
High	376,400		20	38,300		
CO ₂ - Storage						
Low	0.135		20	0.014	100%	⁶
High	20		20	2		⁷
Battery						Low and high opex and
Low	117	2.7	15	16	90%	capex costs represent costs
High	250	3.9	15	33		taken from ¹ for 2020
						and 2030, respectively.

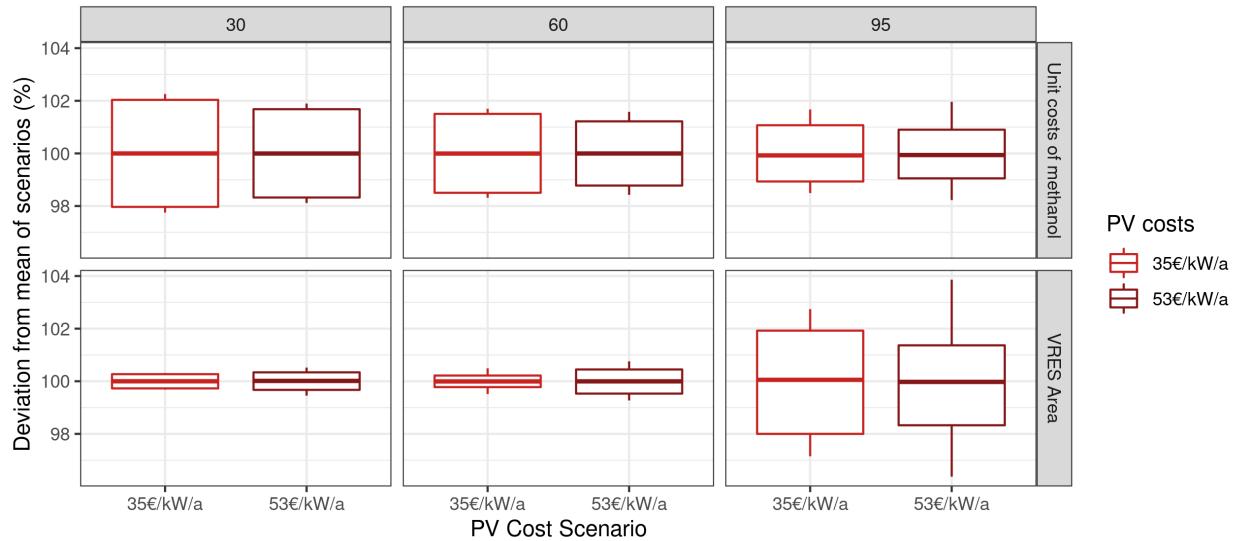
Supplementary Table 2. Electrolyzer costs reported in the literature.

Electrolyzer type [year]	Price (range) [USD/kW]	Reference
Alkaline [2020]	571-1,268	8
PEM [2020]	385-2,068	8
PEM [2020]	800	9
PEM [2030]	300	9
Generic [2020]	500-950	10
Generic [2030]	400-950	10
Generic [2040/current Chinese low cost]	200	11

Supplementary Table 3. CO₂ capture costs from ethanol production reported in the literature.

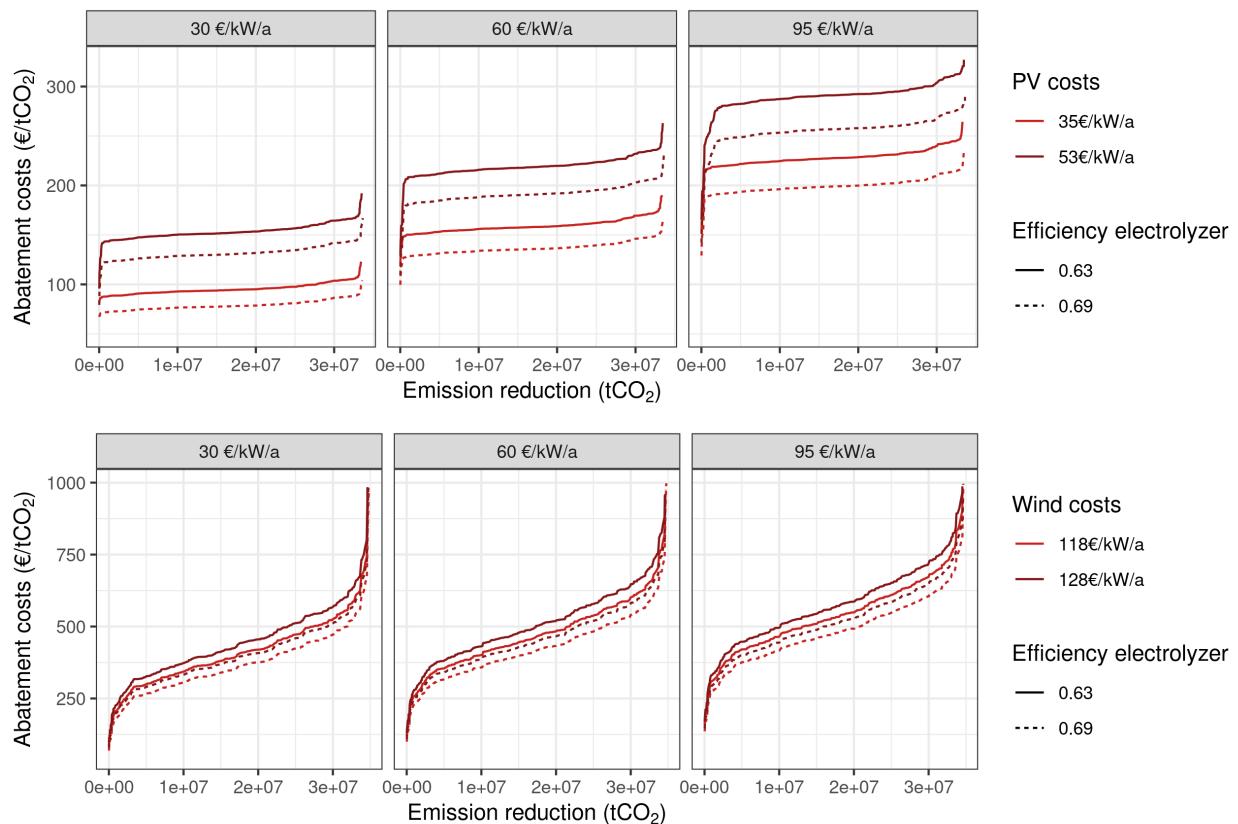

Reference Year	Price (range) [EUR/tCO₂]	Reference
2020	<10	12
2017	Close to 0	13
2017	<8	14

16 **Supplementary Note 1. Results - Sensitivity analysis**


17 Here, we assess the sensitivity of model results to weather years (Supplementary Fig. 3) and
18 storage and wind power costs (Supplementary Fig. 4). We ran the model for three different weather
19 year configurations: first, for our reference year 2016. Average PV electricity generation in this
20 year is closest to the average annual PV electricity generation in the period 1999-2018. Second we
21 simulated the years with the lowest annual wind and PV generation, and the ones with the highest
22 annual wind and PV generation. For these runs, the lowest/highest generation years were defined
23 by the individual minimum or maximum production years in the whole time series of 20 years
24 (1999-2018) per location. Therefore, the optimization model was run for three different years at
25 all locations: for 2016, for the year with the lowest and for the year with the highest generation
26 at that location. This is, of course, a rather extreme assumption, as the best years are not uniform
27 among regions. In this way, however, we were able to cover the most extreme impacts of climate
28 on results.

29 Although we took a rather extreme approach, the impacts on both of our key performance
30 indicators, i.e., land used by renewables and final costs, were minor. Deviations were below +/-
31 5% for costs, and below +/-7% for the land-used by VRES. We, therefore, conclude that the choice
32 of the weather year has a minor impact on the overall outcome.

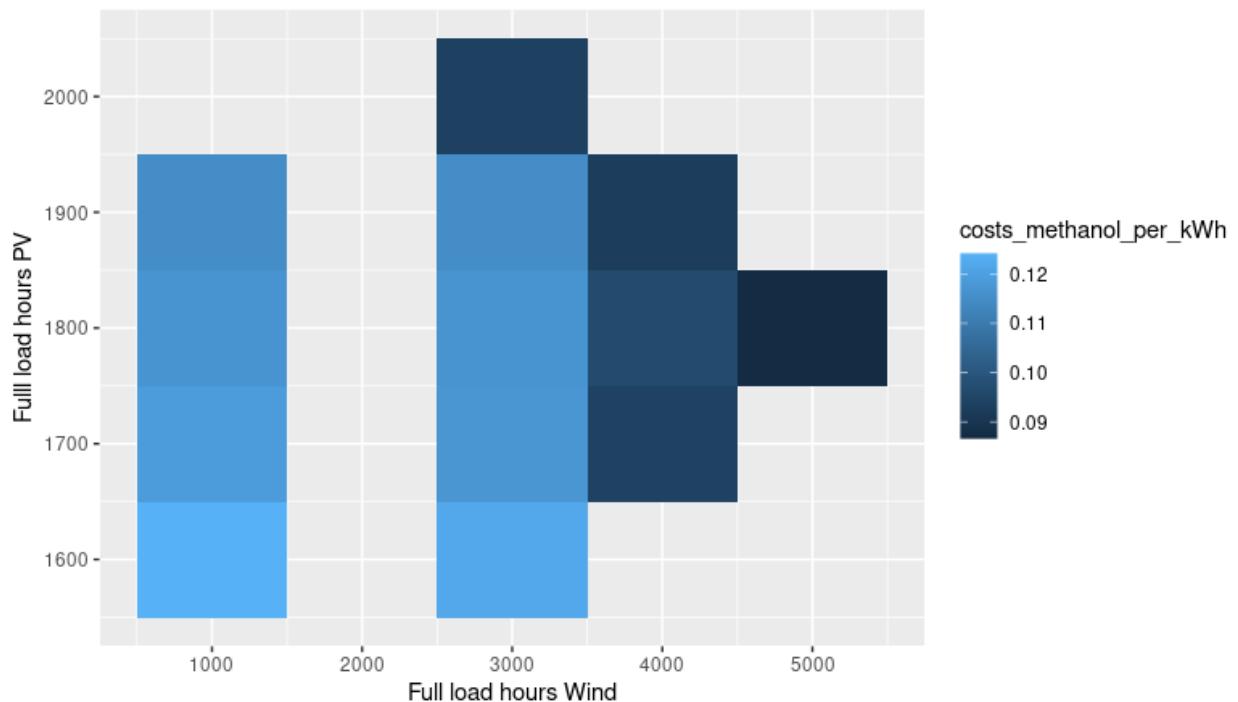
33 The impact of different storage and wind power cost assumptions (see Supplementary Table
34 1) on results are also small (Supplementary Fig. 4). First, battery storage is not used in any of
35 the scenarios, independent of cost assumptions. Second, the share of CO₂ and H₂ storage costs in
36 total costs is insignificant compared to the costs of electrolyzers and VRES. This is implied by the
37 very low costs of CO₂-storage, and the very small levels of H₂ storage deployed. Third, our wind
38 power cost assumptions do not vary significantly between sensitivity runs, as we consider it to be
39 a mature technology. The minor changes in costs do consequently not affect output strongly.


Supplementary Fig. 3. The impact of different weather years on VRES area and costs for different electrolyzer cost assumptions From left to right: 30, 60 and 95 EUR/kW/a annualized electrolyzer cost.

Supplementary Fig. 4. The impact of storage and wind power cost assumptions on land-use and costs for different electrolyzer cost assumptions. From left to right: 30, 60 and 95 EUR/kW/a annualized electrolyzer costs.

40 **Supplementary Note 2. Results - CO₂ emissions and abatement costs**

41 We calculated CO₂ abatement costs by assuming that renewable methanol substitutes methanol
 42 produced from fossil natural gas at an emission factor of 335.8tCO₂/GWh¹⁵. We assumed a cost
 43 of methanol produced from fossil gas at 0.04€/kWh¹⁶, sorted all locations by production costs
 44 from lowest to highest, and calculated the potential abated emissions by the sum of the production
 45 times the emission factor. Abatement costs were calculated as the difference of renewable pro-
 46 duction costs and fossil production costs divided by the emission factor. These are presented in
 Supplementary Fig. 5.


Supplementary Fig. 5. CO₂ abatement cost curves. Upper: solar-wind scenario. Lower: wind scenario. From left to right: annualized electrolyzer cost assumptions.

48 **Supplementary Note 3. Results - Explaining costs of renewables**

49 Supplementary Fig. 6 shows how the full load hours of wind and PV impact the methanol produc-
50 tion costs for the solar-wind scenario. We also developed a simple regression model, which tests
51 the influence of input parameters on the methanol production costs:

$$costs_{methanol} = \beta_0 + \beta_1 PV_{avg} + \beta_2 Wind_{high-cap} + \beta_3 length_{season}$$

52 In particular, we included the full load hours of PV generation PV_{avg} on cost, and a dummy variable
53 $Wind_{high-cap}$ which is set to 1 if the capacity factor of wind power is above 0.3 at the respective
54 location. We did not use wind capacity factors directly, as the relation between wind power full
55 capacity factors and methanol cost is highly non-linear. However, for estimating a non-linear
56 function such as a high order polynomial the number of data points is too low. We therefore opted
57 to include the dummy variable instead. We also ran alternative specifications of the model in
58 terms of representing wind resources, which changed results quantitatively, but not qualitatively.
59 Additionally, we included the variable $length_{season}$ that indicates if CO₂ supply is stretched out
60 during the whole year or if it is concentrated in a few months. The variable measures the length of
61 the period between the maximum and the minimum of the time series $cumsum(CO2 - stream -$
62 $mean(CO2 - stream))$. To determine parameters of the regression model, we used the solar-wind
63 scenario with average input cost assumptions. Using other scenarios in the regression changes the
64 results quantitatively, i.e. coefficients are changed, but not qualitatively. The results are shown in
65 Supplementary Table 4.

Supplementary Fig. 6. Full load hours of wind and PV and methanol production costs in the most expensive solar-wind scenario.

Supplementary Table 4. Regression model of model input parameters on costs of methanol production (€/kWh). We used the solar-wind scenario with the highest input cost assumptions.

Costs methanol per kWh				
Predictors	Estimates	Std-Error	t-value	p
(Intercept)	0.14	0.0024	60.36	<0.001
PV_{avg}	-0.2104	0.0111	-18.86	<0.001
$wind_{high-cap}$	-0.0042	0.0005	-8.94	<0.001
$length_{season}$	-0.0004	0.0000	-15.23	<0.001
Observations	339			
R^2 / R^2 adjusted	0.65 / 0.64			

66 **Supplementary Note 4. Methods - Optimization model equations**

67 The objective function for the cost minimization (eq. 1) sums up capacities times cost per unit of
 68 VRES generation, i.e. PV and Wind power, ($x_vresBuild$, $resCost$), the cost per unit of storage
 69 systems ($x_storageSize$, $storageCost$), the cost per unit of electrolyzers ($x_electrolyzerSize$,
 70 $electrolyzerCost$) and the cost per unit of methanol synthesis unit ($x_methanolSynthesisSize$,
 71 $methanolSynthesisCost$). The subindex $tech$ denotes technology which can be either photo-
 72 voltaic or wind power, $subtech$ denotes the sub-technology classification that can be IEC I or IEC
 73 II for wind turbines (see Supplementary Note 6 for details) and c denotes the type of storage that
 74 can be either electricity, H_2 or CO_2 (An overview of the sets, parameters and variables used is
 75 provided in supplementary tables 5, 6 and 7 respectively).

$$\begin{aligned}
 x_cost = & \sum_{tech} \sum_{subtech} x_vresBuild_{(tech,subtech)} \times vresCost_{(tech,subtech)} \\
 & + \sum_c x_storageSize_c \times storageCost_c \\
 & + x_electrolyzerSize \times electrolyzerCost \\
 & + x_methanolSynthesisSize \times methanolSynthesisCost
 \end{aligned} \tag{1}$$

76 The VRES generation per time step $x_vresGeneration_t$ is balanced with the installed capacity
 77 ($x_vresBuild_{(tech,subtech)}$) times the production profile ($vresOutput_{(t,tech,subtech)}$) as shown in eq.
 78 2. VRES generation is also balanced with instantaneously used power ($x_vresPowerToUse_t$),
 79 inflows to battery storage ($x_storageInput_{(t,"electricity")}$) and curtailment ($x_vresCurtail_t$) as pre-
 80 sented in eq. 3.

$$\begin{aligned}
 x_vresGeneration_t = & \sum_t \sum_{tech} \sum_{subtech} x_vresBuild_{(tech,subtech)} \\
 & \times vresOutput_{(t,tech,subtech)} \quad \forall t
 \end{aligned} \tag{2}$$

$$\begin{aligned}
 x_vresGeneration_t = & x_vresPowerToUse_t + x_storageInput_{(t,"electricity")} \\
 & + x_vresCurtail_t \quad \forall t
 \end{aligned} \tag{3}$$

82 The speed of charging ($x_storageInput_{(t,c)}$) or discharging ($x_storageOutput_{(t,c)}$) storage sys-
 83 tems is limited by the installed capacity ($x_storageSize_c$) times a charging speed limit

84 $(storageCapacityLimitPercentage_c)$ (eq. 4 and 5).

$$x_storageInput_{(t,c)} \leq x_storageSize_c \times storageCapacityLimitPercentage_c \quad \forall t, c \quad (4)$$

85

$$x_storageOutput_{(t,c)} \leq x_storageSize_c \times storageCapacityLimitPercentage_c \quad \forall t, c \quad (5)$$

86 Equation 6 shows how the state of charge ($x_soc_{(t,c)}$) is balanced with the state of charge one time
 87 step before, accounting for temporal storage losses, with charging energy ($x_storageInput_{(t,c)}$),
 88 considering charging losses $storageEffcharge_c$, and discharging energy $x_storageOutput_{(t,c)}$.

$$x_soc_{(t,c)} = (x_soc_{(t-1,c)} \times (1 - storageLoss_c)) + (storageEffcharge_c \times x_storageInput_{(t,c)}) - x_storageOutput_{(t,c)} \quad \forall t, c \quad (6)$$

89 The sum of the electricity used to produce H_2 in this time step ($electricityGenerationH2_t$) is
 90 balanced with the sum of instantaneously used VRES electricity and the output of the electrical
 91 storage (eq. 7).

$$electricityGenerationH2_t = x_vresPowerToUse_t + x_storageOutput_{(t,electricity)} \quad \forall t \quad (7)$$

92 Moreover, the amount of CO_2 that is used for the production of methanol in any particular time step
 93 (eq. 8) is equal to the sum of the CO_2 stream from the ethanol production ($co2Stream_t$) and the
 94 output of the CO_2 storage ($x_storageOutput_{(t,"CO_2")}$) minus the CO_2 stored ($x_storageInput_{(t,"CO_2")}$).

95

$$x_co2ToMethanol_t = co2Stream_t + x_storageOutput_{(t,"CO_2")} - x_storageInput_{(t,"CO_2")} \quad \forall t \quad (8)$$

96 The amount of H_2 (x_h2_t) is determined in two different equations (eq. 9 and eq. 10). It is equal
 97 to the electricity use of the electrolyzer ($electricityGenerationH2_t$) multiplied by the efficiency
 98 of the electrolyzer ($h2Eff$). Its level is limited by the electrolyzer size ($x_electrolyzerSize$)
 99 multiplied by its efficiency.

$$x_h2_t = electricityGenerationH2_t \times h2Eff \quad \forall t \quad (9)$$

$$x_h2_t \leq x_electrolyzerSize \times h2Eff \quad \forall t \quad (10)$$

101 Similarly the amount of methanol in a particular time step ($x_methanol_t$) is limited on the one side
 102 (eq. 11) by the size of the methanol synthesis installation ($x_methanolSynthesisSize$) and on the
 103 other side (eq. 12) by the methanol synthesis efficiency ($methanolSynthesisEff$) multiplied by
 104 the amount of H₂ that can be transformed into methanol in that time step ($x_h2ToMethanol_t$). The
 105 latter is also equal to the sum of H₂ produced in that time step (x_h2_t) and the difference between
 106 charge ($x_storageInput_{(t, "h2")}$) and discharge ($x_storageOutput_{(t, "h2")}$) of the H₂ storage (eq.
 107 13).

$$x_methanol_t \leq x_methanolSynthesisSize \quad \forall t \quad (11)$$

$$x_h2ToMethanol_t \times methanolSynthesisEff = x_methanol_t \quad \forall t \quad (12)$$

$$x_h2ToMethanol_t = x_h2_t + x_storageOutput_{(t, "h2")} - x_storageInput_{(t, "h2")} \quad \forall t \quad (13)$$

110 Finally, eq. 14 presents the restriction for the transformation of CO₂ into methanol ($x_co2ToMethanol_t$).
 111 It depends on the amount of H₂ that can be transformed into methanol at a particular time step and
 112 the proportion between CO₂ and H₂ for each Methanol unit ($balanceCO2H2$).

$$x_h2ToMethanol_t \times balanceCO2H2 = x_co2ToMethanol_t \quad \forall t \quad (14)$$

Supplementary Table 5. Optimization model sets.

Name	Symbol	Unit	Elements
Time steps	t	h	t_1, t_2, \dots, t_n
commodity	c	-	Electricity, CO_2 , H_2
technology	$tech$	-	$pv, wind$
Sub-technology	$subtech$	-	<i>IECI, IECII (for wind turbines)</i>

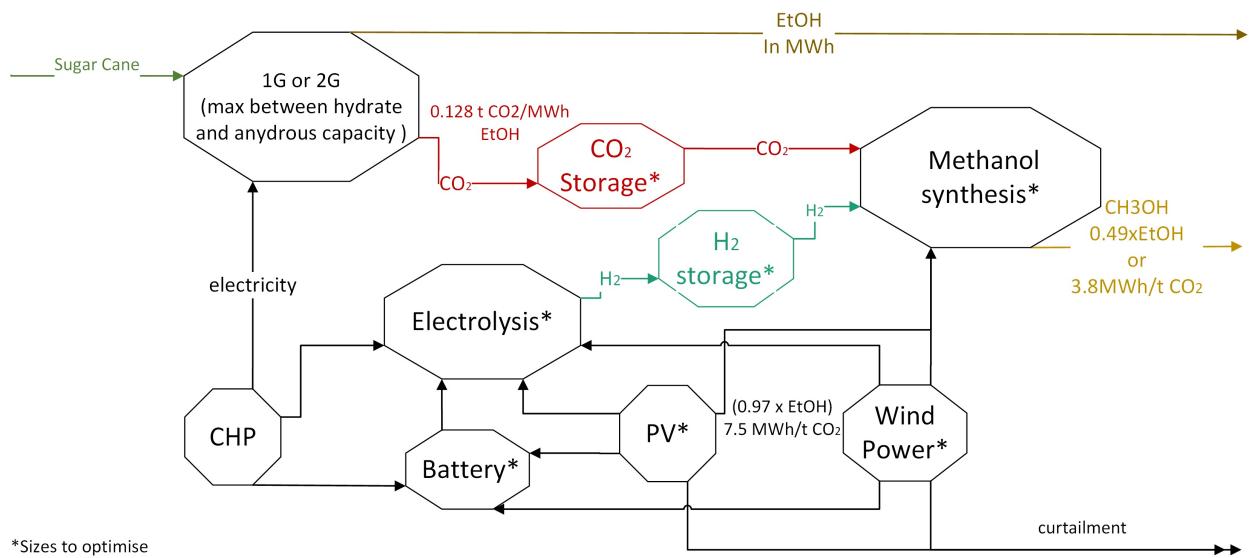


Fig. 7. Schematic presentation of the model for each sugarcane to ethanol and methanol installation.

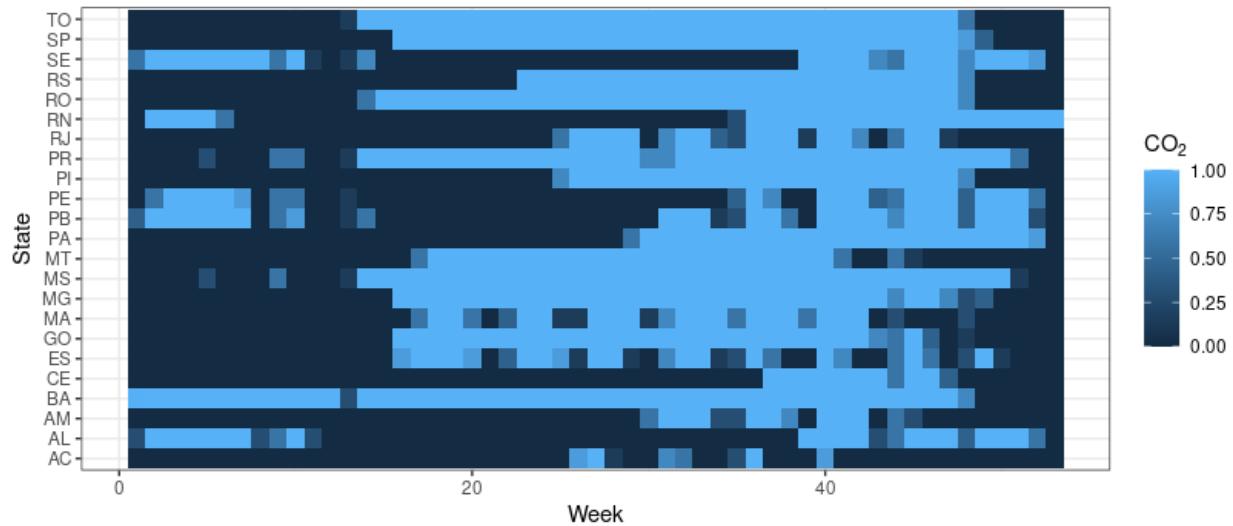
Supplementary Table 6. Optimization model parameters.

	Name	Symbol	Unit	Value
Time Series	Electric energy generation of VRES	vresOutput(t, tech, subtech)	GWh	Variate per time step and location (see methods section)
	CO ₂ generated in the ethanol production	co2Streamt	t	
Costs	Cost of VRES technologies	vresCost(tech, subtech)	EUR/GW	See Supplementary Table 1.
	Cost of the electrolyzer	electrolyzerCost	EUR/GW	See Supplementary Table 1.
	Cost of the methanol synthesis system	methanolSynthesisCost	EUR/GWh	See Supplementary Table 1.
	Cost of storage	storageCostc	EUR/GWh and EUR/t	See Supplementary Table 1.
Efficiencies and commodities transformation balances	Efficiency of storage	storageEffcharge	%	See Supplementary Table 1.
	Losses of the storage system from one period to the next	storageLosst	%	electricity=0.1 CO ₂ =0 H ₂ =0
	Charge and discharge capacity of storage systems	storageCapacityLimitPercentagec	%	electricity=40 CO ₂ =20 H ₂ =20
	Balance between CO ₂ and H ₂ for each Methanol unit	balanceCO2H2	-	7.268519 ⁴
	Electrolyzer efficiency	h2Eff	kt/GWh (LHV)	See Supplementary Table 1.
	Methanol synthesis efficiency	methanolSynthesisEff	GWh/kt (LHV)	28.21 ⁴

Supplementary Table 7. Optimization model variables.

Name	Symbol	Unit
Total annualized system costs	x_cost	EUR
Total VRES generation	$x_vresGeneration_t$	GWh
VRES installed capacity	$x_vresBuild_{(tech,subtech)}$	GW
VRES electricity with immediate use	$x_vresPowerToUse_t$	GWh
VRES electricity to store	$x_vresToStorage_t$	GWh
VRES electricity to curtail	$x_vresCurtail_t$	GWh
Storage system input	$x_storageInput_{(t,c)}$	GWh or kt
State of charge of storage	$x_soc_{(t,c)}$	GWh or kt
Storage system output	$x_storageOutput_{(t,c)}$	GWh or kt
Storage system size	$x_storageSize_c$	GWh or kt
Electrolyzer size	$x_electrolyzerSize$	GW
Hydrogen produced	x_h2_t	GWh
Methanol Synthesis	$x_methanolSynthesisSize$	GW
Methanol produced	$x_methanol_t$	GWh
Electricity to produce H ₂	$x_electricityGenerationH2_t$	GWh
CO ₂ to methanol	$x_co2ToMethanol$	kt
H ₂ to methanol	$x_h2ToMethanol$	kt

113 **Supplementary Note 5. Methods - Sugarcane facility data set**

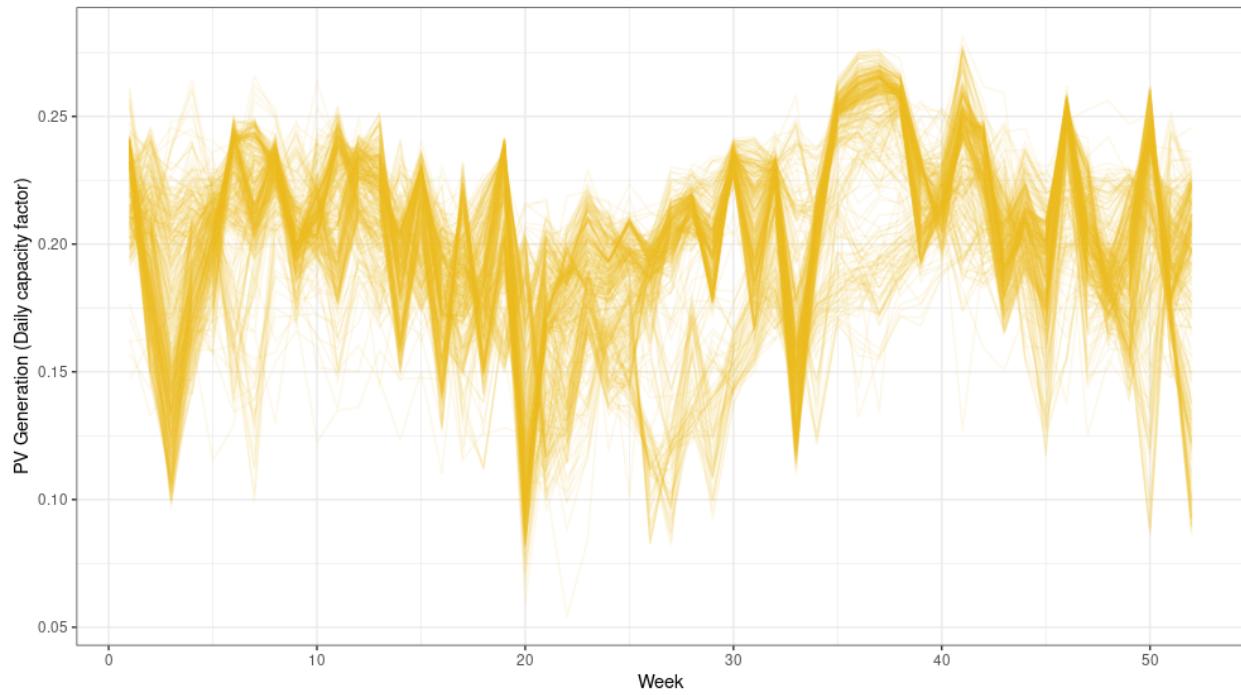

114 The Brazilian sugarcane ethanol industry is highly dynamic and dependent on local regulation,
115 national and international markets. While there are companies that have been in the market for
116 decades, ethanol-producing installations are commissioned, re-commissioned and closed regularly.
117 Furthermore, the production in each installation is not only conditioned by the seasonality of the
118 sugar cane and weather, but also by the changes in prices of fuels and sugar at the national and
119 international level. The consequence is that there is no single or consolidated data set on ethanol
120 generation plants in Brazil. Previous studies modeling Brazilian ethanol production avoided the
121 problem by either denying it or working only with data of one single exemplary installation. How-
122 ever, the spatial location and the time series of CO₂ emissions for each ethanol plant are necessary
123 to properly account for the integration of variable renewables in methanol production.

124 The three official sources for data of the Brazilian ethanol industry are the Energy research
125 company (EPE- Empresa de Pesquisa Energética), the National Agency of Petroleum, Natural
126 Gas and Biofuels (ANP-Agência Nacional Do Petróleo, Gás Natural e Biocombustíveis) and the
127 Ministry of Agriculture (MAPA-Ministério da Agricultura, Pecuária e Abastecimento). These
128 provide lists of installations but differ not only in the number of reported installations but also in
129 the provided attributes or the values of attributes. We, therefore, constructed a synthetic data set
130 that consolidates the data of the available sources. The EPE data set (381 installations) was used as
131 a basis since it is the only one providing geographic coordinates for the installations. We confirmed
132 the existence and installed capacity of the installations using the ANP data set (360 installations
133 including not only sugar cane but also corn, rice and soy), which was matched in a semi-automatic
134 fashion supported by similarity ratings on the names of the installations as well as by proximity
135 assessments. The ANP data set provides addresses, which were georeferenced for that purpose.
136 The existence of the installations was corroborated again using the MAPA data set and in case of
137 doubt about the match of the installation between the three previous data sets, a manual online
138 search was conducted for those cases. Details can be found in the github repository.

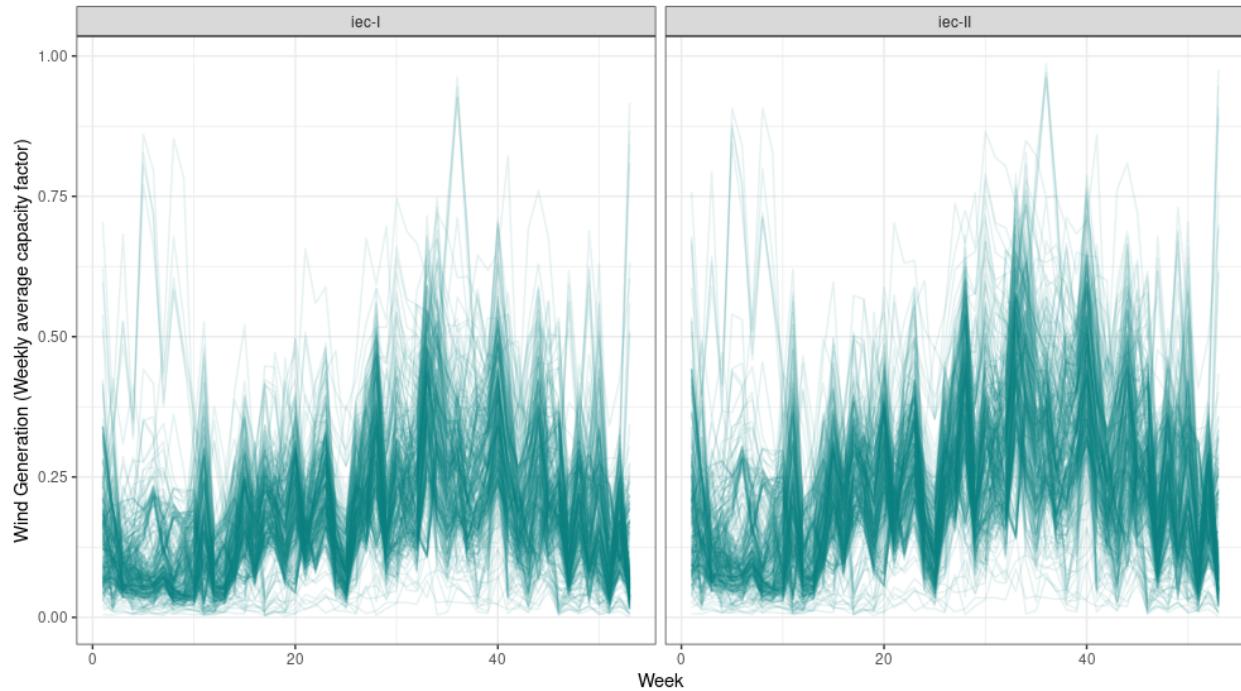
139 The synthetic data set includes 339 installations that run mainly on sugarcane. Based on

140 ANP, the installations have average daily generation capacities of 365 m³ and 676 m³ for anhydrous
141 ethanol and hydrated ethanol, respectively. There are however large differences between installa-
142 tions and the largest ones reach processing capacities of 1,710 m³/day of anhydrous ethanol and
143 2,800 m³/day of hydrated ethanol. Hydrated ethanol is composed of approximately 96% ethanol
144 and 4% water while Anhydrous ethanol contains at least 99.7% ethanol. The distillation process
145 is common to both types of ethanol but the production of anhydrous ethanol requires an additional
146 dehydration step to reduce the water content¹⁷. Considering this, we rated the processing capacity
147 of each installation as the maximum value of the capacities for hydrous and anhydrous ethanol.

148 Apart from the location, the daily processing capacities, the state, the municipality and the
149 type of biomass processed by each plant, there is not much public official information available on
150 the installations. Based on Empresa de Pesquisa Energética¹⁸, we could confirm that only two of
151 the installations have second-generation ethanol production and identify these installations in the
152 data set. To approximate the sugar cane harvesting area of each installation, we relied on statistics
153 of the Companhia Nacional de Abastecimento (CONAB) for each state. We calculated the average
154 of harvested area for the last five years and distributed it by installation based on the share of
155 ethanol processing capacity of each installation when compared to the sum of processing capacity
156 of all installations in a particular state. The majority of sugarcane to ethanol production in Brazil
157 is concentrated in the state of São Paulo, which has a number of installations and installed ethanol
158 processing capacities larger than the next six states combined (Supplementary Fig. 1). From
159 339 installations in the consolidated data set, 145 are located in this state, with a total processing
160 capacity of 107,348 m³ ethanol per day. This is followed by the state of Goiás, which hosts 36
161 installations, but is also home of several of the largest installations in the country with processing
162 capacities of up to 2,800 m³ ethanol per day. These states are followed in number of installations
163 by the neighbouring states of Minas Gerais, Paraná and Mato Grosso do Sul, which have installed
164 capacities for ethanol production of 34,210, 21,882, 13,460 and 22,385 m³/day, respectively.



Supplementary Fig. 8. Heatmap of CO₂ streams from sugarcane fermentation for all states, normalized by maximum production per state.


165 **Supplementary Note 6. Methods - VRES installation capacity factors and footprints**

166 Supplementary Fig. 9 and 10 present the average weekly capacity factors for solar PV and wind
 167 power installation at all locations.

168 The tables in this note include the results of the assessment of Brazilian photovoltaic instal-
 169 lation footprints (Supplementary Table 8), the corresponding descriptive statistics (Supplementary
 170 Table 9), and the footprints of installations reported in the scientific literature (Supplementary Ta-
 171 ble 10). In Brazil, we measured seven locations. For Apodi, however, different information on
 172 total installed capacity was found¹⁹ and therefore this installation is included twice in the table.
 173 The footprints are in a similar range to installations reported in the scientific literature. For the
 174 panels only, values of 7.1 to 14 m²/kWp were found in the literature, while for the impact of total
 175 systems, depending on the type of system, land-use values between 15.4 and 36.4 m²/kWp, except
 176 for one extreme case of 50 m²/kWp, were found.

Supplementary Fig. 9. Average weekly capacity factor of solar PV installations at all locations.

Supplementary Fig. 10. Wind power generation time series at all locations. Left: time series for turbine type 1, right: time series for turbine type 2.

Supplementary Table 8. Footprints of photovoltaic installations at seven locations in Brazil.

Plant	State	Capacity (MW)	Year of installation	lon	lat	Area (m ²) with spacing	Area (m ²) without spacing	m ² /kWp with spacing	m ² /kWp without spacing
Nova Aurora	SC	3.07	2013	-48.97	-28.45	44490	40625	14.5	13.2
Tanquinho	SP	1.08	2012	-47.04	-22.88	18964	13642	17.5	12.6
Apodi I - IV	CE	132	2018	-37.79	-5.04	4050000	1178998	30.7	8.9
Apodi I - IV	CE	162	2018	-37.79	-5.04	4050000	1178998	25.0	7.3
Floresta I - III	RN	86	2017	-36.91	-4.96	2900000	750037.5	33.7	8.7
Guimaraia 1 + 2	MG	62	2018	-46.67	-18.82	1807653	819383.5	29.2	13.2
Assú V	RN	30	2017	-37.03	-5.55	873546	306397	29.1	10.2
Guaimbé 1 - 5	SP	150	2018	-49.87	-21.89	2250000	1801319	15.0	12.0

Supplementary Table 9. Descriptive statistics of footprints of photovoltaic installations in Brazil.

Quantile	m ² /kWp with spacing	m ² /kWp without spacing
0	14.50	7.28
25%	21.26	8.83
50%	29.14	9.57
75%	29.15	11.56
100%	33.72	13.22
mean	24.3	10.8

Supplementary Table 10. Footprints of photovoltaic installations reported in the literature.

Given unit	Land requirement [m ² /kWp]	System type	Source
with spacing			
35 W/m ²	28.6	land use	²⁰
65 W/m ²	15.4	25° tilt south panel, USA	²¹
48 W/m ²	20.8	1-axis tracking panel, USA	²¹
20 W/m ²	50	2-axis tracking panel, USA	²¹
7.5 acres/MWac	30.4	total LU large PV, fixed	²²
8.3 acres/MWac	33.6	total LU large PV, 1-axis	²²
8.1 acres/MWac	32.8	total LU large PV, 2-axis CPV	²²
5.8 acres/MWac	23.5	direct LU large PV, fixed	²²
9.0 acres/MWac	36.4	direct LU large PV, 1-axis	²²
6.1 acres/MWac	24.7	direct LU large PV, 2-axis CPV	²²
Without spacing			
1.4 ha/MWp	14	area	²³
7.1 m ² /kWp	7.1	panel	²⁴
135 W/m ²	7.3	flat panel (rooftop), USA	²¹
118 W/m ²	8.5	10° tilt south panel (rooftop), USA	²¹

177 **References**

- 179 1. Vartiainen, E., Masson, G., Breyer, C., Moser, D. & Medina, E. R. Impact of weighted average
180 cost of capital, capital expenditure, and other parameters on future utility-scale pv levelised
181 cost of electricity. *Progress in Photovoltaics: Research and Applications* **28**, 439–453 (2020).
- 182 2. Danish-Energy-Agency & Energinet. Technology data -energy plants for electricity and dis-
183 trict heating generation. Tech. Rep., Danish Energy Agency (2016). URL https://ens.dk/sites/ens.dk/files/Analyser/technology_data_catalogue_for_el_and_dh.pdf. [Online; accessed 2020-
184 12-17].
- 186 3. Armijo, J. & Philibert, C. Flexible production of green hydrogen and ammonia from variable
187 solar and wind energy: Case study of chile and argentina. *International Journal of Hydrogen
188 Energy* **45**, 1541–1558 (2020).
- 189 4. Hannula, I. Co-production of synthetic fuels and district heat from biomass residues, carbon
190 dioxide and electricity: Performance and cost analysis. *Biomass and Bioenergy* **74**, 26–46
191 (2015).
- 192 5. Kruck, O., Crotogino, F., Prelicz, R. & Rudolph, T. Overview on all known underground
193 storage technologies for hydrogen. Tech. Rep., HyUnder Project (2013).
- 194 6. ZEP. The costs of co₂ storage. Tech. Rep., European Technology Platform for Zero Emission
195 Fossil Fuel Power Plants (2011). URL <https://zeroemissionsplatform.eu/wp-content/uploads/CO2-Storage-Report.pdf>. [Online; accessed 2020-11-15].
- 197 7. Rubin, E. S., Davison, J. E. & Herzog, H. J. The cost of co₂ capture and storage. *International
198 Journal of Greenhouse Gas Control* **40**, 378–400 (2015).
- 199 8. Christensen, A. Assessment of hydrogen production costs from electrolysis: United states and
200 europe. *Internation Council on Clean Transportation* **73** (2020).
- 201 9. Mallapragada, D. S., Gençer, E., Insinger, P., Keith, D. W. & O’Sullivan, F. M. Can industrial-
202 scale solar hydrogen supplied from commodity technologies be cost competitive by 2030?
203 *Cell Reports Physical Science* **1**, 100174 (2020).

204 10. Brändle, G., Schulte, S. & Schönfisch, M. Estimating long-term global supply costs for low-
205 carbon hydrogen. *Institute of Energy Economics at the University of Cologne Working Paper*
206 (2020).

207 11. IRENA. *Hydrogen: A renewable energy perspective* (International Renewable Energy Agency,
208 2019).

209 12. Powerfuels, G. A. Carbon sources for powerfuels production. Tech. Rep., Deutsche
210 Energie-Agentur GmbH (2020). URL https://www.powerfuels.org/fileadmin/powerfuels.org/Dokumente/GAP_Discussion_Paper_Carbon_Sources_for_Powerfuels_Production.pdf. [On-
211 line; accessed 2020-12-07].

212 213 13. Pilorgé, H. *et al.* Cost analysis of carbon capture and sequestration of process emissions from
214 the u.s. industrial sector. *Environmental Science & Technology* **54**, 7524–7532 (2020).

215 14. CO₂-EOR. Capturing and utilizing co₂ from ethanol: Adding economic value and jobs
216 to rural economies and communities while reducing emissions. Tech. Rep., State CO₂-
217 EOR Deployment Work Group (2017). URL http://www.kgs.ku.edu/PRS/ICKan/2018/March/WhitePaper_EthanolCO2Capture_Dec2017_Final2.pdf. [Online; accessed 2020-12-07].

218 219 15. Prussi, M., De Prada, L., Edwards, R., Padella, M. & Yugo, M. *JEC well-to-tank report*
220 *V5: JEC well to wheels analysis : well to wheels analysis of future automotive fuels and*
221 *powertrains in the European context.* (Joint Research Centre (European Commission), LU,
222 2020). URL <https://data.europa.eu/doi/10.2760/100379>. [Online; accessed 2020-12-13].

223 16. Methanex-Corporation. Methanol pricing (2020). URL <https://www.methanex.com/our-business/pricing>. [Online; accessed 2020-12-11].

224 225 17. Holler Branco, J. E., Holler Branco, D., Aguiar, d. E. M., Caixeta Filho, J. V. & Rodrigues, L.
226 Study of optimal locations for new sugarcane mills in brazil: Application of a minlp network
227 equilibrium model. *Biomass and Bioenergy* **127**, 105249 (2019).

228 18. EPE. Cenários de oferta de etanol e demanda de ciclo otto 2020-2030. Tech. Rep., Empresa
229 de Pesquisa Energética (2019).

230 19. Equinor. Apodi solar plant in commercial operation (2018). URL <https://www.equinor.com/en/news/apodi-solar-plant-in-commercial-operation.html>. [Online; accessed 2020-10-22].

231

232 20. Hernandez, R. R., Hoffacker, M. K. & Field, C. B. Land-use efficiency of big solar. *Environmental Science & Technology* **48**, 1315–1323 (2014). Publisher: American Chemical

233

234 Society.

235 21. Denholm, P. & Margolis, R. M. Land-use requirements and the per-capita solar footprint for

236 photovoltaic generation in the united states. *Energy Policy* **36**, 3531–3543 (2008).

237 22. Ong, S., Campbell, C., Denholm, P., Margolis, R. & Heath, G. Land-use requirements for

238 solar power plants in the united states. Tech. Rep., NREL (2013). URL <http://www.osti.gov/servlets/purl/1086349/>. DOI: 10.2172/1086349.

239

240 23. Wirth, H. Recent facts about photovoltaics in germany. Tech. Rep., Fraunhofer ISE (2020).

241 URL <https://www.pv-fakten.de>.

242 24. Atikol, U., Abbasoglu, S. & Nowzari, R. A feasibility integrated approach in the promotion

243 of solar house design. *International Journal of Energy Research* **37**, 378–388 (2013).