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Abstract

Background: Nature astaxanthin is mainly derived from Haematococcus pluvialis. H. pluvialis has four kinds of

cell morphology. Based on sequential heterotrophy-dilution-photoinduction (SHDP) technology, photoinduction

using non-motile cells as seeds could result in a higher astaxanthin production than that of using brown akinetes as

photoinduction seeds. To have a comprehensive understanding of this phenomenon, transcriptome analysis was

conducted in this study.

Results: Though most of photosynthesis genes expression were down-regulated during the SHDP culture process.

Comparing with the group using brown akinetes as photoinduction seeds, the genes expression involved in

astaxanthin biosynthesis, lipid biosynthesis and photosynthesis were up-regulated in the non-motile cells group.

Especially, chyb gene improving the conversion of f-carotene into astaxanthin was up-regulated by 2.6-fold. The

acaca gene enhancing the carboxylation of acetyl-CoA to malonyl-CoA was up-regulated by 1.4-fold.

Conclusions: Astaxanthin synthesis mechanism of non-motile cells with higher astaxanthin accumulation ability

than brown akinetes was attributed to the up-regulation of astaxanthin metabolism, lipid metabolism and

photosynthesis-related genes expression. The results are expected to guide the optimization of astaxanthin

production in H. pluvialis by improving lipid content or photosynthesis.

Keywords Astaxanthin; Haematococcus pluvialis; Lipid; Photosynthesis; Transcriptome
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Introductions

Astaxanthin is a non-vitamin A source of carotenoids. Its antioxidant activity is 10, 65, 100 and 550 folds higher

than that of f-carotene, vitamin C, a-tocopherol, and vitamin E, respectively (Koller et al. 2014). Under certain light

intensity and nitrogen deficiency conditions, Haematococcus pluvialis can accumulate astaxanthin up to 4% ~ 5%

of dry weight (He et al. 2007). Therefore, H. pluvialis is recognized as the best source of natural astaxanthin.

Industrial production of H. pluvialis was successfully achieved with a two stages model. First stage is cell

proliferation phase, in which the algae cells grow rapidly to a high cell density. The second stage is photoinduction

stage, aiming to promote H. pluvialis accumulating astaxanthin under strong light, high salinity or other extreme

environments (He et al. 2007).

H. pluvialis has four kinds of cell morphology, e.g., spores (green, round or elliptical cells, unable to swim, cell

diameter less than 10 pm), motile cells (green, elliptical cells, able to swim, cell diameter about 3~19 um), non-

motile cells (green, round cells, unable to swim, cell diameter about 19~40 pm) and akinetes (brown (low

astaxanthin content) or red (high astaxanthin content), round cells, unable to swim, cell diameter about 30~60 um).

Although the recent study has implied that the appropriate cell morphology for photoinduction was the non-motile

cells obtained from photoautotrophic culture (Li et al. 2019). The molecular mechanism underpinning the intricate

astaxanthin biosynthetic pathway has not been explored.

The sequential heterotrophy-dilution-photoinduction (SHDP) technology of H. pluvialis was established by our

research group with its own intellectual property rights (Wan et al., 2015). Cells were first cultivated

heterotrophically to achieve a high cell density, then were diluted to a suitable concentration and switched to a

favorable environment for cells acclimation. Finally, the culture was transferred to high light environment for
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astaxanthin accumulation (Wan et al., 2015). Based on this technology, the photoinduction difference between non-

motile cells and akinetes of Haematococcus pluvialis was investigated, and then the molecular mechanisms

underlying the astaxanthin biosynthetic pathway and regulation were dissected in H. pluvialis.

Materials and Methods

Algal strains

Haematococcus pluvialis ZY-18 was obtained from State Key Laboratory of Bioreactor Engineering, East China

University of Science and Technology (Shanghai, China).

Culture conditions

The basic seed medium and culture methods were the same with Hata et al. (2001). The H. pluvialis cells were

obtained from broths at 250 h and 550 h. H. pluvialis cells was used for the next step in photoinduction experiments.

Photoinduction conditions

Cells from proliferation phase were inoculated to the NIES-N medium (Kang et al. 2005) and turned into the

photoinduction stage. The initial cell concentration was approximately 0.3 g/L in all the experiments. 1 L column

bioreactors (height: 45 cm, & diameter: 7 cm) were used for cells photoinduction. And the bioreactor was a

cylindrical glass tube with a conical bottom (height: 6 cm). 5% CO2 mixing was conducted by sparing air

supplemented with a flow rate of 0.2 L/min. A gas sparger was centrally placed at the bottom. Throughout the

experiment, the light intensity was about 540 umol/ (m2-s) and the culture temperature was controlled at 28°C.

Measurement of dry weight
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V ml broth containing algal cells was obtained by centrifuging the culture at 2,683 x g for 10 min, and collected into

an empty tumbler (W1) after being washed twice with distilled water, and then dried at 85°C for 24 h (W2) to weight.

The dry weight was calculated in terms of the equation:

Cx= (W2-W1)/V x 1000 (1)

Where Cx (g/L) is dry weight of broth, Wi is the weight of the empty tumbler, and W2 (g) is the weight after being

dried, and V (ml) is the volume of the initial sample, respectively.

Determination of astaxanthin content

The astaxanthin content was measured by a modified Boussiba method. V ml culture sample was centrifuged for 10

min at 2,683 x g. 4-6 pieces of glass beads and 1 ml of dimethyl sulfoxide were added to each centrifuge tube, and

subsequently were vortex oscillated for 30 s, and then heated with 45°C water bathing for 15 min. Later, 1 ml

acetone was added into the mixture solution and centrifuged for 10 min at 2,683 x g. Then the supernatant was

collected and transferred into a volumetric flask. Above mentioned acetone extraction and supernatant collection

were conducted repeatedly until the supernatant becomes transparent and the precipitate becomes white. The

absorbance values of the extracts were determined at 474 nm using acetone as reference.

The astaxanthin content was calculated in terms of the equation:

Ccar = OD474 x Vi/ V2 x Dilution ration/210 2)

Casta content = Cear / Cx X 85% (3)

where Ccar is the concentration of carotenoid (mg/L), Cx is the dry weight of the algal (g/L) and Casta content is the

content (%) of astaxanthin, Vi is the volume of the volumetric flask (ml), and V2 is the volume of the initial sample

(ml).
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RNA isolation, cDNA library preparation, and sequencing

Totally, the transcription profiling of samples at six time points were evaluated (Fig.1). In the proliferation stage,

three samples in different time points were selected: (1) Sample 1: heterotrophic culture cells at 100 h (H 100h,

green motile cells accounted for the vast majority); (2) Sample 2: heterotrophic culture cells at 250 h (H 250h, green

non-motile cells accounted for the vast majority); (3) Sample 3: heterotrophic culture cells at 550 h (H 550h, brown

akinetes accounted for the vast majority, astaxanthin content was low). In the photoinduction phase, three samples

were also selected as follows: (1) Sample 4: Sample 2 cells were transferred to weak light for 0.5 d under

photoinduction condition (P 0.5d, green non-motile cells were converted to brown akinetes); (2) Sample 5: Sample

3 cells were transferred and exposed to weak light for 6 days under photoinduction condition (P 6d, red akinetes

accounted for the majority, astaxanthin content was high, and astaxanthin content was no longer increased); (3)

Sample 6 was the Sample 2 cells continued photoinduction until the 6 day (P 6d, red akinetes account for the vast

majority. The astaxanthin content was high, was no longer to increase, and was higher than that of sample5).

Therefore, there are two cultivation routes named treatment group (green non-motile cells were used for

photoinduction, in the order: Sample 1, Sample 2, Sample 4 and Sample 6) and control group (brown akinetes were

used for photoinduction, in the order: Sample 1, 2, Sample 3 and Sample 5), with two biological replicates at each

time point.

Total RNA of each sample was extracted and mRNA was purified. Then the cDNA library was constructed and

subjected to paired-end (PE) sequencing based on the Illumina NextSeq500 sequencing platform by Shanghai

Personal Biotechnology Company. All sequencing data reported in this paper have been deposited in the National
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Omics Data Encyclopedia (NODE, https://www.biosino.org/mode/). The accession numbers for RPKM (Reads Per

Kilobase per Million mapped reads) and annotation results are NODE: OEP000493.

Transcriptome mapping, annotation, and differential transcription analysis

The software of cut-adapt was used to remove adapters, poly-N strands, and low quality reads. Then all filtered

reads were examined by FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to confirm data

quality. Transcript assembly were used Trinity with a K-mer 25 bp. Every transcript was compared with the NCBI

non-redundant protein database and eggNOG (evolutionary genealogy of genes: non-supervised Orthologous

Groups) using the Blast algorithm (version 2.2.30+). Transcripts with same gi number were classified as a unigene

and only the longest transcript was kept. After that, filtered reads were mapped to unigenes with Bowtie2 (v2.2.4)

and the reads per kilobase of exon model per million (RPKM) mapped fragments was used to represent gene

expression.

Differential transcription analysis between samples was conducted using the R package, DEGseq (version 1.18.0).

Genes with |fold changes| > 2 and P-value < 0.05 were considered as statistically significant. Functional analysis of

differential transcription genes was performed by Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analysis. GO analysis of each unigene was carried out using Blast2go software and

KEGG enrichment analysis was performed using KASS and KEGG automatic annotation sever, respectively.

Statistical analysis

Statistical analyses were performed using the Spearman correlation analysis (SPSS19.0). For all of the data analysis,

a P-value << 0.05 was considered as statistically significant.
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Results and discussion

The comparison of photoinduction differences between Non-motile cells and Akinetes

Scanning electron microscope (SEM) and transmission electron microscope (TEM) images of H. pluvialis were

carried out during culture process to explore the changes of different cells morphology (Fig. 1). From the TEM

images, more lipid drops were observed with non-motile cells as seeds at the end of photoinduction (1246 SHDP

route). Cheng et al. (2017) reported that massive astaxanthin was esterified in the endoplasmic reticulum, and

deposits in cytoplasmic lipid droplets to avoid the feedback inhibitor of carotenoids biosynthesis. Thus, non-motile

cells may have much more astaxanthin accumulation ability.

To verify the above conclusion, the astaxanthin content and concentration were detected. Comparing with the

brown akinetes group, a better photoinduction result was acquired using non-motile cells as seeds (Fig. 2). The

astaxanthin content and concentration of non-motile cells group were 3.40 + 0.03% and 25.7 + 1.54 mg/L,

respectively (Fig. 2), which were 69.58% and 87.88% higher than those in brown akinetes group, respectively.

Li et al. (2019) also demonstrated that the appropriate cell morphology for photoinduction was the non-motile cells.

Transcriptome and pathway analysis involved in lipid metabolism

To understand comprehensively non-motile cells with better ability of astaxanthin accumulation, transcriptome

analysis was conducted. The direct precursor of fatty acid biosynthesis is acetyl-CoA. Acetyl-CoA carboxylase

(ACACA) can enhance the carboxylation of acetyl-CoA to malonyl-CoA. This step was considered a critical step

in the FA-biosynthetic pathway (Huerlimann and Heimann 2013). Cheng et al. (2017) has reported that the up-

regulation of acaca gene could enhance fatty acid biosynthesis, thus promoting astaxanthin esterification and

deposition. Compared with control, acaca gene was up-regulated by 1.4-fold at the end of photoinduction (Table
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1). Thus, fatty acid synthesis and astaxanthin esterification was further improved. FabD ([acyl-carrier-protein] S-

malonyltransferase) ,improving the formation of malonyl-ACP from malonyl-CoA, was also up-regulated by 1.4-

fold at the end of photoinduction compared with control (Table 1). FabH (3-oxoacyl-[acyl-carrier-protein] synthase

II), which catalyzes the condensation between acetyl-CoA and malonyl-ACP to form acetoacetyl-ACP, was up-

regulated by 1.8-fold (Table 1). Malomyl-ACP was catalyzed to (R)-3-Hydroxy-butanoyl-ACP by FabF (3-oxoacyl-

[acyl-carrier-protein] synthase II) and FabG (3-oxoacyl- [acyl-carrier protein] reductase). fabG gene transcription

was up-regulated in both routes when akinetes formation (Fig. 3a,b). However, fabF gene expression was only up-

regulated in the treatment group when akinetes formation (Fig. 3a,b). Hexadecenoic acid and Octadecanoic acid

synthesis can be catalyzed by FATA. fata gene expression level was significantly increased by 2.2-fold (Fig. 3c).

Compared with the control, all genes related in lipid metabolism were up-regulated (Fig. 3c and Table 1). The

results proved that astaxanthin synthesis was positively correlated with lipid synthesis. Transcriptome analysis

explained the mechanism of non-mobile cells owning stronger ability of astaxanthin accumulation than brown

akinetes.

Free form astaxanthin is unstable and easy to be oxidized. Esterified form astaxanthin can be synthesized, when

the hydroxyl groups of free form astaxanthin are dehydrated and condensed with the carboxyl group of the fatty

acid. Astaxanthin is lipophilic and needs to be dissolved in lipid. In addition, the lipid in the droplet form can protect

BKT from being degraded by protein kinases (Solovchenko 2015). Thus, the strong ability of non-mobile cells to

accumulate astaxanthin can be attributed to the improvement of lipid metabolism.

Transcriptome and pathway analysis involved in photosynthesis

Compared with brown akinetes, non-mobile cells have much more chlorophyll content. Therefore, the
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photosynthesis-related genes expression difference between treatment group and control group was analyzed.

ATP synthesis is catalytic by ATP synthase subunit alpha (atpA). When akinetes formation, atpA gene was up-

regulated in both routes (Fig. 4a,b). Thus, akinetes formation may need ATP. However, except atpA gene, most of

photosynthesis-related genes transcription were down-regulated during the akinetes formation (Fig. 4a,b), e.g.,

photosynthetic energy absorption depends on light-harvesting chlorophyll protein complex (LHCs). The light-

harvesting complexes (LHCs), belonging to the photosynthesis-antenna proteins, were the first proteins and could

capture light energy quickly (Huang et al. 2019). LHC formation is catalytic by chlorophyll a-b binding protein 4

(Lhca$5) and chlorophyll a-b binding protein CP29 (Lhcb4). Whereas, both Lhca5 and Lhcb4 genes expression were

down-regulated during akinetes formation (Fig. 4a,b). The down-regulated of LAc genes expression may result in

the abnormal chloroplast development and the decrease of chlorophyll content (Wang et al. 2016).

Nonetheless, at the end of photoinduction, the photosynthesis genes expression level of treatment group were still

higher than that of the control group (Fig. 4c, d and Table 1). This results could further explain the strong ability of

non-mobile cells to accumulate astaxanthin.

Photosynthesis can convert light and carbon dioxide into glucose. Photosynthesis also provides ATP and NADPH

for cell growth and metabolism (Huang et al. 2019). Most photosynthetic carbon is directed toward carbohydrate

(Melis 2012). Accompanying by morphological and metabolic changes during akinetes formation of H. pluvialis,

photosynthetic carbons are reallocated from carbohydrate to protein, lipid, carotenoids, and nucleic acid (Cheng et

al. 2016). Thus, photosynthesis is important for microalgae growth and secondary metabolite synthesis. The strong

ability of non-mobile cells to accumulate astaxanthin can be attributed to the improvement of photosynthesis.

The metabolic network of astaxanthin synthesis was proposed

10
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Based on the SHDP cultivation model and above transcriptome analysis results, the metabolic network of

astaxanthin synthesis was proposed (Fig. 5). Astaxanthin synthesis ability was closely related to astaxanthin

metabolism, lipid metabolism and photosynthesis.

The conversion of Geranylgeranyl—pp (GGPP) into astaxanthin synthesis is successively catalyzed by f-carotene

ketolase (BKT), S-carotene-3-hydroxylase (CHYB), lycopene beta cyclase (LCYB), phytoene synthase (PSY) and

¢-Carotene desaturase (ZDS). These enzymes have been reported as essential enzymes in astaxanthin synthesis

(Zhong et al. 2011). Comparing with brown akinetes group, the bkt, chyb, lcyb, psy, zds genes expression level were

up-regulated by 1.9-fold, 2.6-fold, 1.9-fold, 2.4-fold, 2.0-fold, respectively (Tablel). Thus, non-mobile cells have

strong accumulate astaxanthin ability. Light energy, carbon dioxide and H20 can be converted into glucose, ATP

and NADPH through photosynthesis. Then glucose is converted into lipid (Melis 2012). Thus, the up-regulation of

photosynthesis related genes can provide energy and carbon for the synthesis of glucose and lipid. Esterified form

astaxanthin has strong antioxidant capacity, which was formed through the dehydration condensation between lipid

and free astaxanthin (Karsten et al. 2009). Therefore, the increasing of lipid content is beneficial to astaxanthin

synthesis. Above all, astaxanthin synthesis is closely related to astaxanthin metabolism, photosynthesis and lipid

metabolism. The strong accumulate astaxanthin ability of non-mobile cells can be attributed to the improvement of

astaxanthin metabolism, photosynthesis and lipid metabolism.

Conclusion

Based on SHDP technology, the metabolic network of astaxanthin synthesis was proposed. The astaxanthin

synthesis mechanism of non-motile cells having higher astaxanthin accumulation ability than akinetes was attributed

to the up-regulation of astaxanthin biosynthesis, lipid biosynthesis and photosynthesis related genes expression.

11
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271 Table 1. Annotation and transcription changes of significantly different unigenes related to astaxanthin, fatty acid, pyruvate metabolic pathway and photosynthesis.

Sample 5 (brown akinetes photoinduction for 6 d) vs

Gene name Gene definition KEGG Sample 6 ( non-mobile cells photoinduction for 6 d )

Fold change P-value

Astaxanthin biosynthesis pathway

bkt p-Carotene ketolase (EC 1.14.99.63) K09836 1.9 Rk
chyb f-Carotene 3-hydroxylase (EC 1.14.15.24) K15746 2.6 wkE
leyb Lycopene beta cyclase (EC 5.5.1.19) K06443 1.9 Hok
psy 15-cis-Phytoene/all-trans-phytoene synthase (EC 2.5.1.32) K02291 24 oAk
zds {-Carotene desaturase (EC 1.3.5.6) K00514 2.0 ok

Fatty acid metabolic pathway

fata Fatty acyl-ACP thioesterase A (EC 3.1.2.14) K10782 2.2 woAE
acaca Acetyl-CoA carboxylase/biotin carboxylase 1(EC 6.4.1.2) K11262 1.4 o
fabF 3-Oxoacyl-[acyl-carrier-protein] synthase II (EC 2.3.1.179) K09458 1.5 oAk
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fabD

fabH

fabG

Photosynthesis

LHCB4

LHCAS

atpA

psbP

psak

psbO

psaO

psb28

[Acyl-carrier-protein] S-malonyltransferase (EC 2.3.1.39)

3-Oxoacyl-[acyl-carrier-protein] synthase III (EC 2.3.1.180)

3-Oxoacyl-[acyl-carrier protein] reductase (EC 1.1.1.100)

Chlorophyll a-b binding protein CP29

Chlorophyll a-b binding protein 4

ATP synthase subunit alpha (EC 7.1.2.2)

PsbP-like protein 1

Photosystem I reaction center subunit IV

Oxygen-evolving enhancer protein

Photosystem I subunit

Photosystem II reaction center PSB28 protein

K00645

K00648

K00059

KO08915

KO08911

KO02111

K02717

K02693

K02716

K14332

K08903

1.4

1.8

2.1

1.6
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*** indicates statistical significance at P-value << 0.001; * indicates statistical significance at P-value < 0.05.
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Figure Legends

Fig. 1 Images of H. pluvialis cells at different time points. H. pluvialis images of control group (a) and treatment

group (b) were conducted using scanning electron microscope (SEM, scale bar = 10 pm) and transmission electron

microscope (TEM, scale bar = 5 pm), respectively. In both SHDP routes, sample 1 and sample 2 were the same

heterotrophic sample at 100 h and 250 h, respectively. H 100 h, H 250 h and H 550 h represent heterotrophic culture

for 100 h, 250 h and 550 h, respectively. P 0.5 d and P 6 d represent photoinduction for 0.5 d and 6 d, respectively.

Blue arrow and red arrow represent heterotrophic culture and photoinduction, respectively

Fig. 2 Photoinduction effect of H. pluvialis using different cell morphology as seeds. (a) Astaxanthin content during

photoinduction process, (b) Astaxanthin concentration during photoinduction process, (c) Dry weight during

photoinduction process. Hollow circle represents green non-motile cells as photoinduction seeds, and solid square

represents brown akinetes as photoinduction seeds. Data shown as mean + SD, and number of replications is two (n

=2)

Fig. 3 RPKM and unigene transcript expression changes involved in lipid metabolism pathways of H. pluvialis

when using non-mobile cells and brown akinetes as seeds. A/ B represents the RPKM changes involved in lipid

metabolism pathways of H. pluvialis in control group (a) and the treatment group (b), respectively. In both SHDP

routes, sample 1 and sample 2 were the same heterotrophic sample at 100 h and 250 h, respectively. H 100 h, H 250

h and H 550 h represent heterotrophic culture for 100 h, 250 h and 550 h, respectively. P 0.5 d and P 6 d represent

photoinduction for 0.5 d and 6 d, respectively. Compared with control group, the gene expression change of the
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treatment group were presented in KEGG pathway (c). Red represents gene expression was up-regulated. Data

shown as mean = SD, and number of replications is two (n = 2)

Fig. 4 RPKM and unigene transcript transcription changes involved in photosynthesis pathways of H. pluvialis

when using non-mobile cells and brown akinetes as seeds. A/B represents the RPKM changes associated with

photosynthesis in the control group (a) and the treatment group (b), respectively. In both SHDP routes, sample 1

and sample 2 were the same heterotrophic sample at 100 h and 250 h, respectively. H 100 h, H 250 h and H 550 h

represent heterotrophic culture for 100 h, 250 h and 550 h, respectively. P 0.5 d and P 6 d represent photoinduction

for 0.5 d and 6 d, respectively. Comparing with control group, the photosynthesis (c¢) and antenna protein (d) gene

expression changes of the experimental group were presented in KEGG pathway. Red represents gene expression

was up-regulated. Data shown as mean + SD, and number of replications is two (n = 2)

Fig. 5 The metabolic network and transcription regulation of astaxanthin metabolism. Deep red, light blue and dark

yellow background represent astaxanthin metabolism pathway, photosynthesis and lipid metabolism pathway,

respectively. Solid arrows indicate that the reaction proceeds continuously, dotted arrows indicate that intermediate

metabolites are omitted, and the number of 1, 2, 3, 4, 5, 6 represent Samplel (Heterotrophic culture for 100 h,

Mobile cells), Sample 2 (Heterotrophic culture for 250 h, Non-mobile cells), Sample 3 (Heterotrophic culture for

550 h, Brown akinetes), Sample 4 (Sample 2 photoinduction for 0.5 d, Brown akinetes), Sample 5 (Sample 3

photoinduction for 6 d, Red akinetes), Sample 6 (Sample 2 photoinduction for 6 d, Red akinetes), respectively. The

number of replications is two (n = 2)
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Figure 1

Images of H. pluvialis cells at different time points. H. pluvialis images of control group (a) and treatment
group (b) were conducted using scanning electron microscope (SEM, scale bar = 10 pm) and
transmission electron microscope (TEM, scale bar = 5 um), respectively. In both SHDP routes, sample 1
and sample 2 were the same heterotrophic sample at 100 h and 250 h, respectively. H 100 h, H 250 h and
H 550 h represent heterotrophic culture for 100 h, 250 h and 550 h, respectively. P0.5dand P 6 d
represent photoinduction for 0.5 d and 6 d, respectively. Blue arrow and red arrow represent heterotrophic
culture and photoinduction, respectively
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Figure 2

Photoinduction effect of H. pluvialis using different cell morphology as seeds. (a) Astaxanthin content
during photoinduction process, (b) Astaxanthin concentration during photoinduction process, (c) Dry
weight during photoinduction process. Hollow circle represents green non-motile cells as photoinduction
seeds, and solid square represents brown akinetes as photoinduction seeds. Data shown as mean + SD,
and number of replications is two (n = 2)
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Figure 3

RPKM and unigene transcript expression changes involved in lipid metabolism pathways of H. pluvialis
when using non-mobile cells and brown akinetes as seeds. A/ B represents the RPKM changes involved in
lipid metabolism pathways of H. pluvialis in control group (a) and the treatment group (b), respectively. In
both SHDP routes, sample 1 and sample 2 were the same heterotrophic sample at 100 h and 250 h,
respectively. H 100 h, H 250 h and H 550 h represent heterotrophic culture for 100 h, 250 h and 550 h,



respectively. P 0.5 d and P 6 d represent photoinduction for 0.5 d and 6 d, respectively. Compared with
control group, the gene expression change of the treatment group were presented in KEGG pathway (c).
Red represents gene expression was up-regulated. Data shown as mean + SD, and number of replications

istwo (n=2)
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RPKM and unigene transcript transcription changes involved in photosynthesis pathways of H. pluvialis
when using non-mobile cells and brown akinetes as seeds. A/B represents the RPKM changes associated
with photosynthesis in the control group (a) and the treatment group (b), respectively. In both SHDP
routes, sample 1 and sample 2 were the same heterotrophic sample at 100 h and 250 h, respectively. H
100 h, H 250 h and H 550 h represent heterotrophic culture for 100 h, 250 h and 550 h, respectively. P 0.5
d and P 6 d represent photoinduction for 0.5 d and 6 d, respectively. Comparing with control group, the
photosynthesis (c) and antenna protein (d) gene expression changes of the experimental group were
presented in KEGG pathway. Red represents gene expression was up-regulated. Data shown as mean +

SD, and number of replications is two (n = 2)
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Figure 5

The metabolic network and transcription regulation of astaxanthin metabolism. Deep red, light blue and
dark yellow background represent astaxanthin metabolism pathway, photosynthesis and lipid
metabolism pathway, respectively. Solid arrows indicate that the reaction proceeds continuously, dotted



arrows indicate that intermediate metabolites are omitted, and the number of 1, 2, 3, 4, 5, 6 represent
Sample1 (Heterotrophic culture for 100 h, Mobile cells), Sample 2 (Heterotrophic culture for 250 h, Non-
mobile cells), Sample 3 (Heterotrophic culture for 550 h, Brown akinetes), Sample 4 (Sample 2
photoinduction for 0.5 d, Brown akinetes), Sample 5 (Sample 3 photoinduction for 6 d, Red akinetes),
Sample 6 (Sample 2 photoinduction for 6 d, Red akinetes), respectively. The number of replications is two
(n=2)
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