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Abstract

The deeper the deep learning (DL) models are, the more computa-
tional complexity in need of the vast amount of data training requires
to get better performance with accurate results. Generative adversar-
ial networks (GANs) have obtained tremendous attention from many
researchers with their impressive generation of synthetic instance data
via a few source data by alleviating the problems of data scarcity, insuf-
ficient data diversity, and producing only limited plausible alternative
data using standard data augmentation techniques conforming to the art
of low-data-driven DL training in both scratch models, and pre-trained
model in a variety of image classification tasks. That is why to defeat the
above-referred problems and a lack of publicly available high-quality car-
damaged datasets in car damage analysis, we created a custom data with
a framework including three different evaluation assessments to generate
a synthesized car-damaged dataset as the comparative study of Cycle-
Consistent Adversarial Networks (CycleGAN), and Attention-Guided
Generative Adversarial Network (AttentionGAN) by transforming one
domain to another with our custom car damaged-undamaged dataset.
In addition to this, we evaluated our generated car-damaged images
based on three different evaluation assessments: firstly using three quan-
titative GANs metrics such as Inception Score (IS), Frchet Inception
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Distance (FID), and Kernel Inception Distance (KID); secondly creat-
ing a convolutional neural networks (CNNs) classifier to identify them
into real or fake; and finally building a vision-transformer (ViT) classi-
fier to analyze them into damaged or undamaged. After accomplishing
our comparative analysis, we can prove that AttentionGAN is better
performance than CycleGAN according to all our experimental results.

Keywords: Cycle-Consistent Adversarial Networks (CycleGAN),
Attention-Guided Generative Adversarial Networks (AttentionGAN),
Quantitative GANs Metrics, vision transformer (ViT), Convolutional Neural
Networks (CNNs)

1 Introduction

DL techniques have become more feasible with the emergence of several state-
of-the-art models of their excellent performances not only to address non-linear
control problems but also to develop new scenarios through previous learning
in a variety of image classification tasks [1] for helpful real-world applications of
ML approaches. However, their wide perspectives of data-driven for their large
complex model networks with millions of parameters require a huge amount of
training data, which is directly related to their performances of data analysis
and decision making.

Nowadays, many computer vision and ML researchers have still been chal-
lenged to address the low-data training for their specific DL models with their
small custom datasets. Especially for car damage detection and classification
tasks, the researchers have been facing the lack of data diversity and not having
an openly obtainable large amount of car damage dataset [2–4]. Nonetheless,
training DL models with small datasets is not enough for data-driven to get
better performance with accurate results, since it requires an extremely large
set of relevant datasets to determine the parameters, which can successfully
help to learn and identify the correct weights of the networks by training the
multiple forward and backward iterations of the model networks successfully.
These demands happen together with the rise of DL approaches in almost
every field of application targeting related to computer vision including image
segmentation, semantic segmentation, instance segmentation, or scene under-
standing. Therefore, many researchers have used the common usage of various
translations of standard data augmentation techniques [5] such as rotation,
flipping, cropping, adding noises, etc., to solve these problems of data scarcity
and insufficient data diversity by generating new data, which are nearly similar
to the original one. In addition to the standard data augmentation strategies,
they produce only limited plausible alternative data.

After emerging the above phenomenon, there is incredible progress in the
arena of ML with deep generative models, which are made up of two com-
ponents of G and D with adversarial loss, to learn any data and generate
various kinds of artificial-realistic synthetic instance data from source data.
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They can estimate the underlying statistical structure of highly dimensional
signal/ image/ audio/ video processing and also apply in many generative
tasks of image processing, signal processing, natural language processing, com-
puter graphics, and computer vision such as unsupervised and self-supervised
representation learning [6, 7], text to image synthesis [8], image-to-image
translation [9], image segmentation [10], semantic segmentation [11], image
super-resolution [12], image inpainting [13], saliency prediction [14], domain
adaptation [15], image enhancement [16], style transfer and texture synthesis
[17], 3D pose estimation [18], image/video colorization [19, 20], audio-visual
emotion recognition [21], visual arts, music and text generation [22], etc. That
is why GANs have become more promising and gained much attention to
overthrowing these problems of data unavailability and limited plausible alter-
native data, but training with insufficient data also leads to overfitting the D
that leaks to the G of its generated samples causing the divergence training
process [23].

Among many generative tasks in GANs, we mainly focus on image-to-image
translation tasks, which are the problem of mapping an image from a source
domain to a target domain using paired or unpaired data to learn a para-
metric mapping between inputs and outputs by supervised or unsupervised
methods. Isola, P. (2017) [24] proposed a supervised conditional Pix2PixGAN
to break this problem with paired data to conduct precise one-side image
translation. However, obtaining a large amount of paired training data and
collecting them are usually unfeasible and prohibitively expensive. To over-
come the unobtainable paired training data and laborers to collect them, Zhu,
J.Y. (2017) [25] proposed unsupervised CycleGAN using the cycle-consistency
loss to perform the unpaired image-to-image translation between two image-
domain mappings based on unpaired data. Nonetheless, the effort of unpaired
image-to-image translation has still been challenging in the unwanted trans-
lation parts changing affected by background samples, even using a localized
loss like PatchGAN [26], as the network without explicit attention mecha-
nism [27]. To tickle these problems with the attention mechanism, which has
been widely adopted in image translation algorithms, e.g., applying DA-GAN
as a deep attention encoder to discover the instance-level correspondences in
[28], reducing the cross-modal heterogeneity and generating modality-invariant
representations in [29], separating the instance and background by AGGAN
[30], improving as a multi-instance transformation in InstaGAN [31], using the
internal activation from D to guide the translation in SPA-GAN [32], opti-
mizing over-the-distance comparisons between samples in ContrastGAN [33],
training as an extra semantic information model with CycleGAN in [34, 35].
In consideration of the network capacity to defeat the aforementioned cases,
Tang, H. (2021) [36] proposed unsupervised AttentionGAN with attention-
guided image-to-image translation to identify the foreground of the target
domain minimizing the background changes of the source domain achieving
good results over GANimorph [37] and CycleGAN.
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Now many numerous architectures of GANs are available to perform and
the researchers have been passionate about not only a comparative study of
different GANs models with metric evaluation methods but also their combi-
nations with CNN classification models to classify the specific tasks in different
application areas. As far as we know outperforms CycleGAN over other deep
generative models by a comparative analysis in car domain adaption from day
to night translating [38], medical image synthesis [39–41], and face-aging appli-
cation [42]. Nevertheless, comparing GAN performances with the evaluation
ways of their generated images for many specific tasks in different application
areas has remained on the stage of the unfinished debate.

Regarding the artificial-realistic generated images as a real-world dataset is
applied in many vision analysis tasks with different types of classical DL neural
networks, e.g., a combination of multiple linear layers and nonlinear activations
stacked of multi-layer perceptron (MLP) or the fully connected (FC) network.
The Standard CNNs have been well-known with their impressive performance
of convolutional layers, pooling layers, FC or dense layers with different sizes
of filters, and kernels to keep the most important features in the feature maps
and recognize each pixel of its represented class and feature [43], In spite of
facing the case of a false positive prediction has often happened when large
shape variations with small objects in the feature map grid of the standard
CNNs architectures. The attention mechanism of the attention gate is first
introduced to handle this problem by suppressing the activations of irrele-
vant background areas to avoid the excessive waste of computational resources
[44]. As a potential alternative feature extractor of existing CNNs, a trans-
former with a self-attention mechanism can predict the pixels of the feature
[45] and also achieve accurate results as CNNs accomplishment [46]. Another
supervised vision transformer model is ViT [47], which directly applies a pure
transformer to learn the relationships between elements of a sequence of 16
16 image patches to classify the whole input images achieving state-of-the-
art performance on multiple image recognition benchmarks. Furthermore, a
transformer has been overcoming a variety of other vision problems, including
object detection [48], semantic segmentation [49], image processing [50], and
video understanding [51]. Therefore, a transformer has gained a lot of atten-
tion by proposing transformer-based models for improving the exceptional
performance of a wide range of visual tasks among researchers [52].

To the best of our knowledge, there is no comparative analysis between
CycleGAN and AttentionGAN as our car-image-synthesis framework with
three different evaluation assessments to create a realistic car-damaged dataset
and apply it in two different types of image classification models of CNNs
and ViT. Therefore, defeating the above-referred problems and not having an
openly obtainable large enough car dataset for the low-data training based
on DL approaches of scratch models, pre-trained models, and deep genera-
tive models, to study the comparative analysis of unpaired image-to-image
translation GANs for generating new high-quality synthetic car images with
different types of damaged samples, this paper focuses on three challenges: (i)
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creating a custom real car damaged-undamaged dataset for both training of
CycleGAN and AttentionGAN, (ii) leveraging their potential to translate car
undamaged images into damaged ones by generating high-quality synthesis
car images with different types of damaged samples, and (iii) evaluating their
synthesized car-damaged images to become a realist car-damaged dataset for
defeating the issue of a public unavailable car-damaged dataset.

To address and accomplish these challanges, we did four experimental tasks:
(i) to generate realistic car-damaged images using CycleGAN and Attention-
GAN, (ii) to evaluate them utilizing traditional quantitative GANs metrics
such as IS, FID and KID, (iii) to classify them as a binary classification of real
or fake by a CNNs model, and (iv) to identify them as damaged or undamaged
via a ViT model as car image synthesis. For all tasks, we created a custom car
unpaired dataset of car damaged-undamaged dataset based on 3386 car images
and proposed a framework to study the comparison of CycleGAN and Atten-
tionGAN to generate 256256 resolution of car images with different types of
damaged samples while using their specific performances of Gs and Ds tech-
niques with a significantly limited amount of our custom unpaired car training
dataset, which belongs to two classes of damaged and undamaged, to assess
the performance of those models based on the qualities and diversities of their
abilities of producing tenable photo-realistic car-damaged images depended on
three different evaluation assessments: firstly using the existing GANs metrics
such as IS [53], FID[53, 54], and KID [55] since evaluating GANs models based
on their generated synthetic images unlikely other DL models, the training in
both G and D with a loss function together to maintain an equilibrium until
convergence, learning to classify images as real or fake by D without objec-
tively assess both progress of the training and the relative quality of the model
from their losses; secondly creating our proposed CNNs classifier, which was
a sequential CNNs model [43, 56] constructed of the 2D convolutional layers
with ReLU, max-pooling layers with stride, flattened layer, and two dense lay-
ers with ReLU, and Sigmoid, to classify them into real or fake; and finally
building a ViT classifier [47], to analyze them into damaged or undamaged
with their distinct accuracy values.

After finishing a comparative analysis of those two GANs with our three
different evaluation approaches of three quantitative metrics and two classi-
fiers, all approaches of generating photo-realistic car images with damaged
samples effectively address the problem of lack of car damage data leading to
different data distributions of damage type, location, and severity transform-
ing from the original car-damaged images. In addition to this, to be explained
in detail information of generated car-damaged images, all our experimental
results described that those two models could be generated superior quality
of both minor and moderate damage levels of the scratch, car paint, dent,
and even fire-burning damaged samples and effectively applied for car dam-
age classification with our two classifiers in this paper. Finally, we organize
the rest of the paper as follows: Section 2 provides a review of the related lit-
erature works; we describe the materials, methods, and evaluations in Section



Springer Nature 2021 LATEX template

6 A Comparative Study of Generative Adversarial Networks...

3; we explain about the detailed implementations of our experiments of two
GANs, and two classifiers in section 4; the experimental results are reported
and discussed in section 5; we conclude the paper in our last section 6.

2 Related Work

In today’s world, the deeper the DL models, the more complex computation
in need of the larger amount of training data is required to get better per-
formance with more accurate results, the more capable DL models in almost
all stages of image classification tasks [1] with no doubt. Especially in the car
damage detection and classification task in [2–4], the researchers presented pre-
trained CNNs models based on transfer learning (TL) to classify and detect
every damaged part of an input car image by using standard data augmen-
tation techniques [5] to artificially expand and adapt their small custom car
damaged datasets to improve their performance and decrease their tolerance
to the overfitting issue during training. However, even using the advantage of
traditional data augmentation techniques and TL in their models, they still
faced the overfitting problem and reduced the ability of the model generaliza-
tion because of the lack of data scarcity and insufficient data diversity with a
large amount of high-quality training data.

GANs have been promised to tickle these problems and generated various
kinds of artificial-realistic synthetic instance data using existing image data as
another advancement for data augmentation and image enhancement in DL
and effectively applied in many application areas of generative tasks in image
processing, signal processing, natural language processing, computer graphics,
and computer vision. Among them, the image-to-image translation technique
with supervised conditional adversarial nets (Pix2PixGANs) [24] is a general-
purpose solution to break the problem of translating data from one possible
data representation to another with the intrinsic source data content preserved
and the extrinsic target data style transferred, where data can be represented
as a color image, a gradient field, an edge map, a semantic label map, etc,
given sufficient training paired data. The problems of translating data will be
directly related to specific application algorithms (e.g., Day Night, Semantic-
Labels image, Edge-Map Photo, Grayscale Color), but the same setting
focuses on learning and predicting the mapping between two different domains.

On the other hand, obtaining paired training data can be usually difficult
and expensive. What is more, accessing the input-output pairs for graphics
tasks like artistic stylization can be even more challenging to be gained since
the desired output is extremely complicated, needing typical artistic author-
ing. To overcome the unobtainable paired training data, Zhu, J.Y. and Park,
T. (2017)[25] proposed CycleGAN using cyclic losses, which encourage the
translated domain to be faithfully reconstructed when mapped back to the
original domain with the unpaired image-to-image translation, which mainly
relies on shared latent space and the assumption of cycle consistency loss, by
forcing the translated images to fool the Ds using a classical adversarial loss
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and translating those images back to the original input images, helped to build
a reasonable mapping and generated reliable high-quality results since stan-
dard procedures often lead to the mode collapse, where all input images map to
the same output image are difficult to optimize making progress fails, applied
in a wide range of applications: collection style transfer; object transfigura-
tion; season transfer; day to nigh transfer; photo enhancement; and learning
mapping without considering any paired input-output samples.

Typically in the unsupervised case, when images are not paired or aligned,
the network must learn which image parts of the samples are intended to be
translated or not, e.g. some background regions might be taken into trans-
formation by mistake. Furthermore, the effort of unpaired image-to-image
translation has still been challenging in changing the unwanted translation
parts that can also be easily affected by background changes, even using
a localized loss like PatchGAN [26], as the network without explicit atten-
tion mechanism [27], which can solve image-to-image translation problems as
bias guidance to the allocation of available resources into informative com-
ponents by allowing the modeling of global dependencies without regarding
their distances between input and output based on two sub-layers: multi-
head self-attention mechanism; position-wise fully connected feed-forward
network, as a new encoder-decoder translation. Moreover, it can be divided into
two categories like post hoc network analysis, which predominantly employs
access network reasoning for the visual object recognition task, and trainable
attention module with two man sub-categories: stochastic (hard) that needs
reinforcement training; deterministic (hard) that can be end-to-end train-
ing [57], e.g., applying DA-GAN as a deep attention encoder to discover the
instance-level correspondences performance on only object translation in [28]
and adding a dual attention mechanism to reduce the cross-modal hetero-
geneity and generate modality-invariant representations in [29], separating the
instance and background by AGGAN [30], improving as a multi-instance trans-
formation using the attention mask from an auxiliary network in InstaGAN
[31], using the internal activation from D to guide the translation in SPA-GAN
[32]. What is more, ContrastGAN [33] uses the image background and object
segmentation masks to optimize over-the-distance comparisons between sam-
ples as a guide to the generation by cropping the unwanted parts of the image
based on the masks, but collecting the training data with object segmentation
masks is hard to take back and also in [34, 35] training as an extra seman-
tic information of attention mechanism with CycleGAN to detects the object
masks and employs them for the mask-guided generation. In consideration of
the network capacity to defeat the aforementioned cases, Tang, H. [36] propose
unsupervised AttentionGAN with attention guided image-to-image translation
to identify the foreground of the target domain and minimize the background
changes of the source domain with two proposed AGs and ADs by generating
foreground attention masks and a background attention mask and achieving
good results over GANimorph [37] and CycleGAN.

Now the researchers have been interesting in not only a comparative study
of different GANs with metric evaluation methods but also a combination of
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them with CNN classification models to classify the specific tasks, especially in
car generation and classification, Faster RCNN [58] and day to night transfer
based on unsupervised CycleGAN were adopted as a cross domain car detec-
tion and generation in [38], in medical image synthesis: Sarv Ahrabi, S. in
2022 [39] presented the better performance results of CycleGAN by a compar-
ative study among CycleGAN and BiGANs [59], as similarly outperforming
results of CycleGAN as a comparative analysis among CycleGAN and GANs
[60] in [40], and five different GANs such as CGAN [61], DCGAN [62], f-
GAN[63], WGAN[64]; CycleGAN by comparison in [41], using CT images for
COVID-19 detection with their classification accuracies and FID values, and in
face-aging application, Sharma, N. in 2022 [42] observed that the overall perfor-
mance of CycleGAN was better than AttentionGAN for face-recognizing with
age progression by analyzing CycleGAN and AttentionGAN with CelebA-HQ
(CelebFaces Attributes high-quality dataset) and FFHQ (Flickr Faces HQ).
Nevertheless, comparing GAN performances with the evaluation ways of their
generated images for many specific tasks in different application areas has
remained on the stage of the unfinished debate.

To apply the generated images as a real-world dataset in a variety applica-
tions of computer vision, CNNs can be considered the fundamental component
in any image analysis task of their impressive tremendous performance of con-
volutional layers and pooling layers with different sizes of filters, and kernels
to keep the most important features in the feature maps as slightly shifting
variant data process to determine the relevant feature probabilities in several
FC layers, and training the last FC or dense layer to recognize each image
pixel of its represented class and feature [43], but nowadays transformer with
self-attention mechanism can be performed as a potential alternative feature
extractor as CNNs by auto prediction of the pixels of the feature [51] and also
achieve accurate results as CNNs accomplishment [52]. Although vision trans-
formers have been accomplished as existing CNNs, they are still facing a lack
of the ability to extract the local information with their potential of capturing
long-rand dependencies between sequence of elements. To beat this enhance-
ment of the locality, a supervised vision transformer of ViT [47], which directly
applies a pure transformer and its pre-trained model with transfer learning
and fine-tuning to learn the relationships between elements of a sequence of 16
16 image patches to classify the whole input image achieving state-of-the-art
performance on multiple image recognition benchmarks.

3 Materials, Methods, and Evaluations

According to our three challenges: (i) creating a custom real car damaged-
undamaged dataset for both training of CycleGAN and AttentionGAN, (ii)
leveraging their potential to translate car undamaged images into dam-
aged ones by generating high-quality synthesis car images with different
types of damaged samples, and (iii) evaluating their synthesized car-damaged
images to become a realist car-damaged dataset for defeating the issue of a
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Fig. 1 Overall Framework for a Comparative Study of two Different GANs Models with
two Different Datasets. (a) Training with CycleGAN and AttentionGAN for Synthesized Car
Damaged Dataset (b) Synthesized Car Damaged Dataset Evaluation with three Different
Assessments

public unavailable car-damaged dataset, we created a custom car damaged-
undamaged dataset based on 3386 car images and a framework, which is shown
in Figure 1 and operates with the following proposed materials, methods and
evaluations.

3.1 Dataset

In this paper, we created our car unpaired dataset such as car undamaged and
damaged datasets based on two sources: the car undamaged dataset from the
Stanford cars dataset [65], which has 16185 mages with 196 classes, but we just
used its 3386 car undamaged images; the car damaged dataset was congregated
by the copart.com website, please visit this link (https://www.copart.com/),
which is an online auto auction having many car images with their specific
pieces of information, but we only applied its 3386 car-damaged images. What
is more, we prepared our unpaired dataset into 512 512 pixels to be test our
experiments by training and evaluating the proposed system, cropping the
original dimension size of both damaged and undamaged images of 640 480
3 and 900 675 3, respectively.

https://www.copart.com/
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More precisely, we rescaled every single image of our car unpaired datasets
into 256 256 resolutions and randomly splitted them into the train and the
test by 80-20% (2710-676) ratios training in both CycleGAN and Attention-
GAN. Based on two datasets of original car images and generated car damaged
sample of the fixed 256 256 RGB images with three different assessments, ini-
tially, we created three folders: real source, real target, and fake by 676, 2710,
and 676 respectively to evaluate their generated car-damaged samples with
three quantitative GANs metrics (IS, FID, and KID). finally, as a car image
synthesis, we also randomly separated them into the train-test set as 80-20%
of 700 images in the train set, and 176 images in the test set to train both
two classifiers: CNNs classifier that model structure and its detail implementa-
tion will be described in the subsection belonging two classes such as real and
fake; and ViT classifier, which will be briefly presented in the next section, to
make a prediction of the generated images with two classes of damaged and
undamaged.

3.2 Generative Adversarial Networks (GANs)

Fig. 2 Generative Adversarial Networks (GANs)

GANs have accomplished many application areas of generative tasks as one
of the deep generative models. The initial main concept of GANs is a solution
of zero-sum game to find a Nash equilibrium between two players or two neural
networks (G and D), represented as a differentiable function to control a set
of samples by each network with two losses as illustrated in Figure 2. The G
trains to generate plausible fake data, and the D tries to discern them from
real samples, training with the reconstructed loss and the adversarial loss that
consists of generator and discriminator losses. In technical terms, the generator
G receives a random input vector (z) from a prior noise distribution pnoise
to learn G distribution over real data x and generated sample G(z), which is
distinguishable the real sample pdata, thus making a fool to the D, which is a
binary classifier to classify pdata as real, D(x)=1, and G(z) as fake, D(x)=0 as
a pit competition against each other [9]. The objective of two players is well
represented as a min-max optimization task as shown below:

minGmaxDLGAN (G,D) = Ez∼pnoise(z)[log(1−D(G(z))]

+ Ex∼pdata(x)[logD(x)]
(1)
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3.2.1 Image-to-Image Translation

Fig. 3 Paired and Unparied Data

The image-to-image translation is adapting adversarial networks from
an image generation to an image-transforming process from one domain to
another domain by the intrinsic source content preserved and the extrinsic
target style transferred to be applied in many applications of vision tasks as
supervised, semi-supervised, and unsupervised representations with paired or
unpaired data as a conditional GANs [58]. The example of paired and unpaired
data is configured in Figure 3. In the image-to-image translation with paired
data, the generator intends to map a source domain image y ∼ psource into
its corresponding ground truth target domain image x ∼ ptarget via the map-
ping function of G(z | y) = x̂ ∼ pmodel by generally viewed as a regression
task between two domains that transfer the same underlying structures but
differ in their surface appearances. In CGAN, the D classifies the concate-
nation of the source image y and its corresponding ground truth image x as
real, D(x, y) = 1, while identifying y and the transformed image x̂ = G(z) as
fake, D(x̂, y) = 0 with the random noise vector z and adversarial loss function
in equation (2), however, the pixel-wise regression L1 loss is added between
the ground truth and the translated images when the output images shared
unlikely the desired ground truth image of its global structure in equation (3).

minGmaxDLCGAN (G,D) = Ez∼pnoise(z)[log(1−D(G(y, z), y))]

+ Ex∼pdata(x)[logD(x, y)]
(2)

L = minGmaxDLCGAN (G,D) + λLL1
(G) (3)

Moreover, two categories are divided in the supervised with paired training
data as methods with single-modal and multi-modal outputs [9]. In the single-
modal output, the extensive effort of collecting paired data are availabe in
[66–73] using Hertzmann et al.’s image analogies on a non-parametric texture
model [74], applying a conditional framework of CGAN on Pix2PixGAN and
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Pix2PixHD for high-resolution image generation task[24, 75] learn a translation
mapping using CNNs in most other related tasks, unfortunately, few or lack
of paired training data has been still challenging to solve.

3.2.2 Unparied Image-to-Image Translation

The unpaired image-to-image translation is to overcome the challenge of
paired data with an unsupervised scenario where no paired information is
characterized. In the unsupervised-unpairing translation of single modal out-
put, various methods have been presented to solve the supervised-pairing
and non-identifiability problem as additional regulations including weight-
coupling [76, 77], cycle-consistency with four categories: translation using a
cycle-consistency constraint, translation beyond a cycle-consistency constraint,
translation of fine-grained objects, and translation by combining knowledge
in other fields [78, 79], forcing the generator to identity function [80], and a
combination of them [81–83]. The cycle consistency loss is computed as the
reconstruction error. Expect CycleGAN [25], many other GAN models have
been tackling the cross-domain problem, although they can be easily affected
by unwanted content and difficulty to focus on the semantic part of images
while the translation takes place.

3.2.3 Attention Guided Image-to-Image Translation

A Transformer with self attention mechanisms have been introduced as depth
estimation in image-to-image translation [84] to fix the mention limitation by
unsupervisely focusing on the relevant input portion for the region of inter-
est into two ways: using an extra supporting data as applying object mask
annotations of ContrastGAN [33], utilizing object segmentation mask of Insta-
GAN [31] in the first way; training extra segmentation or attention model
in [34, 35, 84]. All mention models are facing the problem of increasing the
number of parameters, training time, and storage space, AttentionGAN [36]
can fix these limitations and disentangle the input image into foreground and
background by generating multiple attention masks and content masks with
them.

3.2.4 Cycle-Consistent Adversarial Networks (CycleGAN)

A four-model composing CycleGAN, which is proposed by Zhu, J.Y. (2017)
[25], two Gs (GXY , GY X) and two Ds (DX , DY ), converts input images from
domain X into domain Y, and domain Y into domain X by GXY , and GY X

respectively, without requiring a paired-image dataset to train the Gs. After
finishing the training of two Gs, the remaining two Ds will be established
training to determine the generated images as the process of convincing with
DX , which identifies the difference between real images from domain X given
training samples {xi}

N
i=1 where xi ∈ X and generated fake images from the

GY X , and DY , which is conversely the process of DX by analyzing real images
from domain Y given training samples {yj}

M
j=1 where yj ∈ Y and generating
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fake images from GXY , similarly vice versa. To accomplish the above process
by learning the two mapping functions (G, F), G: X → Y (from domain X to
domain Y) and F: Y → X (from domain Y to domain X), the main two cycle-
consistency losses prevent the learned mappings G and F from contradicting
each other, help to get intuitively back the original real image when a transla-
tion happens from one domain to another with associated two adversarial DX

and DY for matching the distribution of generated images to the data distri-
bution in the target domain by forward cycle-consistency loss: x → G(x) →
F(G(x)) ≈ x, and backward cycle-consistency loss: y → F(y) → G(F(y)) ≈ y.

The adversarial loss and cycle consistency loss are mathematically shown in
equation (4) and equation (5). Their full objective function of the combination
of both adversarial loss and cycle consistency loss is expressed in equations (6)
and (7). For the mapping functions G: X → Y and its DY , the equation of the
adversarial loss is as follows.

LGAN (G,DY , X, Y ) = Ex∼pdata(x)[log(1−DY (G(x))]

+ Ey∼pdata(y)[logDY (y)]
(4)

Where G tries to generate images G(x) that look like samples from
domain Y while D(y) translates between samples G(x) and real samples
y. G tries to decrease this objective versus D goes to increase it, i.e.,
minGmaxDY

LGAN (G,DY , X, Y ), as the similar pattern as the mapping func-
tions F: Y → X and its DX as well: i.e., minGmaxDY

LGAN (G,DY , X, Y ).
After expressing the main objective equation of adversarial loss, the other main
objective cyclic losses of their forward and backward cycle-consistency losses
are defined as:

Lcycle(G,F ) = Ex∼pdata(x)[∥ F (G(x))− x ∥1]

+ Ey∼pdata(y)[∥ G(F (y))− y ∥1]
(5)

The full combination of both two cyclic losses and adversarial losses is pre-
scribed by equations (4) and (5), where λ controls the relative significance of
the two objectives.

LG,F,DX ,DY
= LGAN (G,DY , X, Y )

+ LGAN (F,DX , Y,X)

+ λLcycle(G,F )

(6)

G∗, F ∗ = argminG,FmaxDx,DY
LG,F,DX ,DY

(7)

3.2.5 Attention-Guided Generative Adversarial Networks
(AttentionGAN)

A four-model composing AttentionGAN is designed by Tang, H. (2021) [36]
with two attention-guided generators (AGs) and two attention-guided dis-
criminators (ADs) to learn two mappings between domain X given training
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samples {xi}
N
i=1 where xi ∈ X and domain Y given training samples {yj}

M
j=1

where yj ∈ Y converting them into domain X → Y and domain Y → X with-
out requiring a paired-image dataset, i.e., G: x → [Ay, Cy] → G(x) and F: y
→ [Ax, Cx] →F(y), where Ax and Ay are the attention masks of images x and
y to define each pixel intensity for the content masks Cx and Cy; G(x) and F(y)
are the generated images, for matching the distribution of generated images to
the data distribution in the target domain by using the cycle consistency loss:
for each image x in domain X, i.e., x → G(x) → F (G(x)) ≈ x; for each image
y in domain Y, i.e., y → F (y) → G(F (y)) ≈ y. The attention mask generator
GA targets to generate both n-1 foreground attention masks {Af

y}
n−1
f=1 and one

background attention mask {Ab
y} to simultaneously learn the foreground and

preserve the background of the input images and the feature map m extracted
from the parameter-sharing encoder GE that aims to extract both low-level
and high-level deep feature representations is fed into the content mask gen-
erator GC helping to produce the n-1 content masks {Cf

y }
n−1
f=1 followed by a

Tanh(.) activation function and a channel-wise Softmax function Softmax(.)
in equations (8) and (9) as follow.

Cf
y = Tanh(mW f

C + bfC), forf = 1, ..., n− 1 (8)

Af
y = Softmax(mW f

A + bfA), forf = 1, ..., n (9)

Where m feature map is fed into filter groups of {W f
C , b

f
C}

n
f=1 and

{W f
A, b

f
A}

n
f=1 to generate the corresponding the n-1 content masks and the

n attention masks respectively. Then {Af
y}

n
f=1 splits into the n-1 foreground

attention masks {Af
y}

n−1
f=1 and one background attention mask Ab

y to flexi-
ble learn and translate the foreground content along the channel dimension.
Finally, the attention masks are multiplied by the content masks to get the final
target results as shown in the figure, and written mathematically as equation
(10).

G(x) =

n−1∑

f=1

(Cf
y ∗Af

y) + x ∗Ab
y (10)

Where x ∗Ab
y conserves the background of the input image x and

∑n−1
f=1(C

f
y ∗

Af
y) generates the foreground content for the input image. After combining

them, we get the final target result G(x). In equation (11), the generator F
has a similar structure as the generator G with three subnets: a parameter-
sharing encoder FE ; an attention mask generator FA, which generate the n
attention masks of both foreground and background (i.e., Ab

x and {Af
x}

n−1
f=1 ; a

content mask generator FC , which supports to create n-1 content masks (i.e.,
{Cf

x}
n−1
f=1), to generate both attention mask Ax and content mask Cx by mixing

them with G(x) to reconstruct the original input image x.
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F (G(x)) =

n−1∑

f=1

(Cf
x ∗Af

x) +G(x) ∗Ab
x (11)

Where the resulting image of F(G(x)) should be closer to the original image

x, likewise as G(F(y)) should be near to image y (i.e., G(F (y)) =
∑n−1

f=1(C
f
y ∗

Af
y)+F (y) ∗Ab

y ). The min-max game between the AD DY A and the G works
together expressed in equation (12) as:

LAGAN (G,DY A) = Ex∼pdata(x)[log(1−DY A([Ay, G(x)])]

+ Ey∼pdata(y)[logDY A([Ay, y])]
(12)

Where DY A is an attention-guided discriminator, plans to distinguish
between the generated image pairs [Ay, G(x)] and the real image pairs [Ay, y].
In the same way, the another discriminator DXA analyzes between the fake
image pairs [Ax, F (y)] and the real image pairs [Ax, x] with LAGAN (G,DY A).
The optimization objective of AttentionGAN can be expressed as equation
(13).

L = LGAN + λcycle ∗ Lcycle + λid ∗ Lid (13)

Where LGAN ,Lcycle and Lid are GAN, cycle-consistency, and identity pre-
serving loss, respectively. λcycle and λid are parameters to control each
relation.

3.3 Generative Adversarial Networks (GANs) Metrics

3.3.1 Inception Score (IS)

Inception Score (IS) is an evaluation metric for the quality of GANs using a
pre-trained Inception V3, which is already trained on the ImageNet dataset,
to capture the properties of the desirable generated samples of highly clas-
sifiable and diverse w.r.t class labels by measuring the divergence of average
KullbackLeibler (KL) value between the class conditional label distribution
probability p(y | x) of a generated sample, that supposes to have low entropy
for easily classifiable samples as better sample quality, and the marginal dis-
tribution probability p(y), which expects to have high entropy if all classes are
equally in the set of samples as high diversity, obtained from all the samples,
as mathematically described in the following equation.

exp(Ex[KL(p(y | x) ∥ p(y))]) = exp(H(y)− Ex[H(y | x)]) (14)

where p(y | x) denotes the class conditional label distribution for image x and

H(x) represents entropy of variable x in p(y) ≈ 1/N
∑N

n=1 p(y | xn = G(zn)).
IS measures the lowest score as 1 while the highest score depends on the
number of classes of the dataset as a prediction to the domain label of the
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translated images, the higher IS score is, the better-translated performance by
the GAN model as well as the diverse images [52, 53].

3.3.2 Frchet Inception Distance (FID)

Frchet Inception Distance (FID) is used to assess the quality of synthetic
images by computing the mean and covariance of synthetic and real images as
shown in equation (1). It visualizes an embedded layer that contains a set of
synthetic images in the pre-trained Inception V3 and uses it as the continuous
multivariate Gaussian.

FID(r, g) =∥ µr − µg ∥22 +Tr(
∑

r

+
∑

g

−2(
∑

r

∑

g

)(1/2)) (15)

where r and g shows real and synthetic images while (µr,
∑

r) and (µg,
∑

g) are
the mean and covariance of real and synthetic data distributions. FID score is
a distance measurement between real and synthetic images in GANs and its
quality depends on the features given by the pre-trained Inception V3 model.
A lower FID score means a smaller distance between real and synthetic data
distributions. Unlike IS score, a lower FID score means a better performance
[52–54].

3.3.3 Kernel Inception Distance (KID)

Kernel Inception Distance (KID) is a similar metric evaluation as FID by
applying the features returned from the pre-trained inception V3 model repre-
sentation and relaxing the strict Gaussian assumption helped to improve the
performance of FID. It measures the skewness mean and variance between the
vector representations using a polynomial kernel to correct the distributions as
two values such as KID mean and KID variance values. If its score approaches
0.0, the given two sets of images are identical. The lower the KID scores are,
the better Likely as FID [54].

3.4 Convolutional Neural Networks (CNNs) Classifier

Convolutional Neural Networks (CNNs) take an input image and remove all
unnecessary background information, using a kernel that output is sometimes
referred to as the feature map to find the most important features for clas-
sification. Convolutional and pooling layers are responsible for the feature
extraction. The convolutional layer is composed of a set of convolutional ker-
nels where each neuron acts as a kernel but, the convolution operation becomes
a correlation operation if the kernel is symmetric. The convolutional ker-
nels divide the image into small slices known as receptive felds, helping to
extract the feature motifs. Convolution operation and pooling operation can
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be expressed as following equations (16) and (17):

fk
l (p, q) =

∑

c

∑

x,y

ic(x, y).e
k
l (u, v) (16)

Where ic(x, y) is an element of the input image tensor IC , which is multiplied
by the kth index convolutional kernel kl of the lth as ekl (u, v), where the
output feature map of the kth convolutional operation can be expressed as
F k
l = [fk

l (1, 1), ..., f
k
l (p, q), ..., f

k
l (P,Q)]

Zk
l = gp(F

k
l ) (17)

Where Zk
l denotes the pooled feature map of the lth for kth input feature map

of F k
l , gp(.) defines the type of pooling operation. There are different types of

pooling operations such as Max, Average, L2, Overlapping, Spatial pyramid
pooling, etc. For the Max pooling, it reports the maximum output within a
rectangular neighborhood. The activation function serves as a decision function
helping to learn the intricate patterns for a convolved feature map is described
as an equation (18):

T k
l = ga(F

k
l ) (18)

where F k
l defines a convolutional output assigned to activation function ga(.)

adding non-lineraity and returning as a transformed output for the lth layer
as T k

l . There are different activation functions such as Sigmoid, tanh, maxout,
SWISH, ReLU, etc. Among them, ReLU helps in overcoming the vanishing
gradient problem and Sigmoid takes any real value as input and outputs values
in the range of 0 to 1. Flattening layer is used to convert all the resultant 2-
Dimensional arrays from the pooled feature maps into a single long continuous
linear vector. The fully connected layer is mostly used at the last layer of the
neural netowrk for classification [43, 56].

3.5 Vision Transformer (ViT) Classifier)

The vision transformer (ViT) [46] is proposed to reshape the image of 1D
sequence of token embeddings x ∈ R

H×W×C into the image of 2D sequence of
flattend patches xp ∈ R

N×(P 2C) to handle 2D images, where C is the number of
channels, (H,W) is the resolution of the original image, (P,P) is the resolution of
each image patch, and N = HW/P 2 is the resulting number of patches served
as the effective input sequence length for the transformer. Flatten the patches
and mapping them to D dimensions with a trainable linear equation 12 when
transformer uses constant widths of latent vector size D in all layers, as the
output of patch embeddings. 1D position embeddings is utilized to maintain
the position information in the patch embeddings rather observing to apply
more advanced 2D position embeddings. Likewise as BERT’s [class] token, a
learnable embedding to the sequence of embedded patches (z00 = xclass) assert
at the output encoder z0L set out as the image representation y = LN(z0L),
where L is the last layer, the output y is the 0 index token of z wrapped in a
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LayerNorm layer (LN), and z0L joins a classification head, which is assigned by
a Multilayer Perception (MLP) with one hidden layer at pre-training striving
time and a single linear layer at fine-tuning obligation time. Both multiheaded
self-attention (MSA) and MLP blocks are served as the transformer encoder
described them as the technical terms of equations 20 and 21, where a LN
should be imposed before every block and residual connections after every
block.

zo = [xclass; x
1
pE; x

2
pE; ...; x

N
p E] + Epos (19)

z′l = MSA(LN(zl−1)) + z(l − 1) (20)

zl = MLP(LN(z′l) + z′l (21)

In Equation 19, E ∈ R
(P 2.C)×D and Epos ∈ R

(N+1)×D, where E and Eposare
for the patch and position embeddings of the input image with the output of
the initial patch embedding layer of z0, a particular z layer of its prime value
or an intermediary value of z′l , and a particular layer of zl . In equations 17
and 18, l = 1...L means every layer l passing trough from 1 to L (the total
number of layers), and there is also MSA and MLP wrapping LN .

4 Experiments

4.1 Experimental Setup

In this section, we explain our experimental tasks which are divided into four
sections:(i) to generate realistic car-damaged images using CycleGAN and
AttentionGAN, (ii) to evaluate them utilizing traditional quantitative GANs
metrics such as IS, FID and KID, (iii) to classify them as a binary classifica-
tion of real or fake by a CNNs model, and (iv) to identify them as damaged or
undamaged via a ViT model as car image synthesis. Responding to our three
challenges with four tasks, we carried out our experiments depending on our
proposed framework in two different workstations, the experiment of our all
implementations platforms are in the following ways: the first station of using
our Lab computer with the Graphics Processing Unit (GPU) on Ubuntu to
assemble our CycleGAN, AttentionGAN, and evaluation GANs metrics; the
second station of utilizing Google Colab Pro platform, supporting NVIDIA
System Management Interface driver version of 460.32.03, and Cuda version
of 11.2 to train our CNNs Classifer and ViT Classifier on Tesla T4 GPU with
25GB RAM. To sum up, all detail model implementations and training process
with parameter setting are described in following.

4.2 GANs Implementation Details

We implemented CycleGAN [25], and AttentionGAN [36] for car-damaged
images generation based on the train datasets (trainX & trainY), and test
datasets (testX & testY) building them in Pytorch on NVIDIA Geforce GTX
1070Ti with one GPU taking approximately three days for each model train-
ing per time. For training our car-damaged generation with CycleGAN and
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AttentionGAN, we just only focus on a domain adaption of X Y (two-domain
adaptions: X Y; Y X) to generate car-damaged images from car-undamaged
data (X) into car-damaged data (Y). For a fair comparison, we utilized the
same parameter setting in both models: a fixed learning rate of 0.0002 for
100 epochs; a batch size of 1; Gaussian distribution of weights from 0 to
0.02; image buffer of 50, Adam optimizer with the momentum β1 = 0.5 and
β2 = 0.999, λcycle = 10, λgan = 0.5, λpixel = 1, λtv = 1e − 6, λid = 0.5 by
training with our train-test datasets, which have 2710 training images and 676
testing images, respectively, splitting 80%-20% ratio from 3386 images of car
damaged-undamaged dataset.

4.2.1 CycleGAN for Car Damaged Images Generation

Fig. 4 CycleGAN for Car Damage Generation

The detailed architecture of generated car-damaged images of
CycleGAN[25] that both Gs and Ds are the following descriptions. we adopted
them from Zhu, J.Y. (2017) as one of our car-damaged image generators. In
the generator models, the input of an image size of 256 256 RGB (resizing
an original 512 512 3 image) as a down sample and up sample back to
create generated car-damaged images by passing through a stack of 7 7
Convolution-InstanceNorm-ReLU layer with k filters and stride 1 denoted as
c7s1-k (C7S1-64 & C7S1-3), a stack of 3 3 Convolution-InstanceNorm-ReLU
layer with k filters and stride 2 symbolized as C3S2-k (C3S2-128 & C3S2-256),
a 9-residual-block stack of 3 3 Convolution-InstanceNorm-ReLU layer with
fixed k filters indicated as RB-k (RB-256), and a stack of 3 3 fraction-stride-
Convolution-InstanceNorm-ReLU layer with k filters and stride 1

2 represented
as C3S 1

2 − k (C3S 1
2 − 64 & C3S 1

2 − 128)by their networks as C7S1-64, C3S2-
128, C3S2-256, RB-256, RB-256, RB-256, RB-256, RB-256, RB-256, RB-256,
RB-256, RB-256, C3S 1

2 − 128, C3S 1
2 − 64, C7S1-3. The discriminator models,

which aim to classify whether 70 70 overlapping area of input image patches
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are real or fake requiring fewer parameters than a full-image discriminator able
to work on arbitrarily sized images in a fully convolutional layer, allow input
images size of 256x256 RGB into output image-tensor size of 30x30 to pass
through a stack of 4 4 Convolution-InstanceNorm-LeakyReLU layer using a
slope of 0.2 with k filters and stride 2 shown as C4S2-k (C4S2-64, C4S2-128,
C4S2-256 & C4S2-512) structured by C7S2-64, C7S2-128, C7S2-256, C7S2-
512. As an exception, there is no InstanceNorm in C4S2-64. After the last
layer, a convolution layer is applied to get a 1-dimensional output. Finally,
a cycle-consistency loss function forces the Gs to reduce the space between
their possible mapping functions and minimizes the discrepancy between the
original image and the reconstruction obtained from the translated samples of
Gs as shown in Figure 4. We trained a scratch CycleGAN [25] with our train-
test (2710-676) car damaged-undamaged dataset and the above-presented
parameter setting. In cycleGAN, the total number of parameters of GX and
GY are 11.378 Million respectively; DX and DY are 2.765 Million separately.

4.2.2 AttentionGAN for Car Damaged Images Generation

Fig. 5 AttentionGAN Framework [36] For Car Damage Generation

The detailed network architectures of car-damaged generation of Atten-
tionGAN [36], defining the input (cropping an original 512 512 3 image into
a three-channel 256 256 RGB image) and the outputs (n attention masks and
n-1 content masks), the input images flow through the models of Gs, which is
similar to the Gs of CycleGAN structured by C3S 1

2−128, C3S 1
2−64, C7S1-10,
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where C3S 1
2 −k (C3S 1

2 −64 & C3S 1
2 −128) is a stack of 3 3 fractional-strided-

Convolution-InstanceNorm-ReLU layer with k filters and stride 1
2 ; a stack of

7 7 Convolution-InstanceNorm-ReLU layer with k filters and stride 1 repre-
sents c7s1-k (C7S1-10), and the models of Ds, which is same as the vanilla
Ds of CycleGAN taken an image as their input. In addition to the outputs
of n attention masks and n-1 content masks, the first mask is used as the
background attention mask and the remaining masks are utilized as the fore-
ground attention masks, setting the n value as 10 in our experiments. Figure 5
shows the overall architecture of generated car-damaged iareass of Attention-
GAN. We trained a scratch AttentionGAN [36] with our train-test (2710-676)
car damaged-undamaged dataset and the above-presented parameter setting.
In AttentionGAN, the total number of parameters of GX and GY are 11.823
Million respectively; DX and DY are 2.765 Million each in order.

4.3 CNNs Classifier Implementation Details

Fig. 6 Convolutional Neural Networks (CNNs) Classifier

In Figure 6, we defined the architecture of our simple sequential CNNs
Classifier that it was composed of the three-2D-convolution layers with an
activation function of a rectified linear unit (ReLU), using filters with very
small 3 3 receptive fields, performing 1 1 stride over three Max pooling
layers, a flattened layer, and two dense layers in the company of the activation
functions of RelU and Sigmoid respectively, applying as a checker to classify
our generated images of CycleGAN and AttentionGAN in TensorFlow and
Keras. In our CNNs Classifier, we used a loss function of the binary cross-
entropy, and adaptive moment estimation (Adam) as an optimizer. What is
more, we allowed our input images to pass through the 2D convolution layers
and the Max pooling layers by three times alternatively. After that, they were
entered the flattened layer, and the last two dense layers to finish the process of
classification by the training of 100 epochs with a batch size of 32. In addition
to this, we expained the detail implementations of our CNNs Classifier as
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follows. As a summarizing of our CNNs Checker, its layers and parameters are
shown in Table 1.

• Firstly, our fixed image dimension of 256 256 3 passed through the stack of
three 2D-convolution layers with ReLU, where we used the 16-32-16 feature
kernel filters with very small 3 3 receptive fields. We used 1 1 stride, which
is performed over three Max pooling layers of 127 127 16, 62 62 32, and
30 30 16. Dimensions of the feature maps after performing through two
and three 2D-convolution layers, we reduce the input image size from 256
256 3 to 125 125 32 with the feature map of 125 125 and the depth or
filter of 32, and then 60 60 16 in our last 2D convolutional layer.

• The flattened layer is added at our last convolutional layer to flatten our
input images, using 14400 nodes.

• The last two dense layers are fully connected hidden layers. the first dense
layer has 256 nodes with the RelU activation and the node of the last one
is 1 with sigmoid activation.

Table 1 Detail Variants of CNNs Classifier

Layer (Type) Output Shape Parameters

Conv2D(ReLU) (None, 254, 254, 16) 448
MaxPooling2D (None, 127, 127, 16) 0
Conv2D(ReLU) (None, 125, 125, 32) 4640
MaxPooling2D (None, 62, 62, 32) 0
Conv2D(ReLU) (None, 60, 60, 16) 4624
MaxPooling2D (None, 30, 30, 16) 0
Flatten (None, 14400) 0
Dense(ReLU) (None, 256) 3686656
Dense(Sigmoid) (None, 1) 257

Total Parameters: 3696625

4.4 ViT Classifier Implementation Details

Table 2 Detail Model Variants between Scratch and Pre-trained ViT Models

Model Total Para Train Para Non-Train Para For/Back Size Total Size

Scratch ViT 85,800,963 85,800,963 0 3292.20 MB 3540.67 MB
Pre-trained ViT 85,800,963 1538 85,798,656 3330.74 MB 3579.20 MB

Note: Both models’ parameters size, input size, and total mult-adds are 229.20MB, 19.27
MB, and 5.52 GB, respectively.

We implemented both the scratch ViT model and the pre-trained ViT
model [47] as shown in Figure 7, which is already trained on the ImageNet
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Fig. 7 Visual Transformer (ViT) Classifier

dataset and applying transfer learning with fine-tuning techniques) for iden-
tifying as a binary classification with our custom real dataset and generated
fake damaged datasets from CycleGAN and AttentionGAN. We randomly sep-
arated our datasets into a train-test set with an 80-20% ratio of 700 images for
training and 176 images for testing based on three datasets with two classes,
which belong to damaged and undamaged. After that we resized input images
into 224 224 3, and set up the parameter as Adam optimizer with the momen-
tum β1 = 0.9 and β2 = 0.999, a batch size of 32 instead of the referred batch
sizes of 4096 since we made an apparatus it on Google Colab pro+ that could
not handle larger batch sizes, a patch size of 16, 197 of patches, embedding
dimension of 769, a high weight decay of 0.1 by training with 100 epochs.
Tables 3 and 4 summarized the details of scratch and pre-trained ViT models
variants as a type of layer, input shape, output shape, parameters, and train-
ing set. A comparison of both models’ divergences is described in Table 2. Our
custom pre-trained ViT model of training parameters is 2,307 with model size
of 327 MB compared to the 85,800,963 of trained parameters of the vanilla
ViT model.

5 Experimental Results and Discussion

5.1 Experimental Results of CycleGAN and
AttentionGAN

Within both training of CycleGAN and AttentionGAN with car-unpaired
datasets (train X, train Y, test X, and test Y) for generating synthetic car
damaged samples by focusing only on a domain adaption of X Y, where X
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Table 3 Detail Variants of the Scratch ViT Model

Layer (Type) Input Shape Output Shape Parameters Trainable

ViT [32, 2, 224, 224] [32, 2] 152064 True
PatchEnbedding [32, 2, 224, 224] [32, 196, 768] – True
Conv2D(Patcher) [32, 2, 224, 224] [32, 768, 14, 14] 590592 True
Flatten [32, 768, 14, 14] [32, 768, 196] – –
EmbeddingDropout [32, 197, 768] [32, 197, 768] – –
Sequential(Layers) [32, 197, 768] [32, 197, 768] – True
EncoderLayer(0) [32, 197, 768] [32, 197, 768] – True
MSABlock [32, 197, 768] [32, 197, 768] 2363904 True
MLPBlock [32, 197, 768] [32, 197, 768] 4723968 True
EncoderLayer(1) [32, 197, 768] [32, 197, 768] – True
MSABlock [32, 197, 768] [32, 197, 768] 2363904 True
MLPBlock [32, 197, 768] [32, 197, 768] 4723968 True
EncoderLayer(2) [32, 197, 768] [32, 197, 768] – True
MSABlock [32, 197, 768] [32, 197, 768] 2363904 True
MLPBlock [32, 197, 768] [32, 197, 768] 4723968 True
EncoderLayer(3) [32, 197, 768] [32, 197, 768] – True
MSABlock [32, 197, 768] [32, 197, 768] 2363904 True
MLPBlock [32, 197, 768] [32, 197, 768] 4723968 True
EncoderLayer(4) [32, 197, 768] [32, 197, 768] – True
MSABlock [32, 197, 768] [32, 197, 768] 2363904 True
MLPBlock [32, 197, 768] [32, 197, 768] 4723968 True
EncoderLayer(5) [32, 197, 768] [32, 197, 768] – True
MSABlock [32, 197, 768] [32, 197, 768] 2363904 True
MLPBlock [32, 197, 768] [32, 197, 768] 4723968 True
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Layer (Type) Input Shape Output Shape Parameters Trainable

EncoderLayer(6) & [32, 197, 768] & [32, 197, 768] & – & True
MSABlock & [32, 197, 768] & [32, 197, 768] 2363904 True
MLPBlock & [32, 197, 768] & [32, 197, 768] & 4723968 & True
EncoderLayer(7) & [32, 197, 768] & [32, 197, 768] & – & True
MSABlock & [32, 197, 768] & [32, 197, 768] & 2363904 & True
MLPBlock & [32, 197, 768] & [32, 197, 768] & 4723968 & True
EncoderLayer(8) & [32, 197, 768] & [32, 197, 768] & – & True
MSABlock & [32, 197, 768] & [32, 197, 768] & 2363904 & True
MLPBlock & [32, 197, 768] & [32, 197, 768] & 4723968 & True
EncoderLayer(9) & [32, 197, 768] & [32, 197, 768] & – & True
MSABlock & [32, 197, 768] & [32, 197, 768] & 2363904 & True
MLPBlock & [32, 197, 768] & [32, 197, 768]& 4723968 True
EncoderLayer(10) & [32, 197, 768] & [32, 197, 768] & – & True
MSABlock & [32, 197, 768] & [32, 197, 768] & 2363904 & True
MLPBlock & [32, 197, 768] & [32, 197, 768] & 4723968 & True
EncoderLayer(11) [32, 197, 768] [32, 197, 768] & – & True
MSABlock & [32, 197, 768] & [32, 197, 768] 2363904 & True
MLPBlock & [32, 197, 768] & [32, 197, 768] & 4723968 & True
Sequential(Classifier) & [32, 768] & [32,2] & – & True
LayerNorm(ln) & [32, 768] & [32,768] & 1536 & True
Linear(Heads) & [32, 768] & [32,2] & 1538 & True

Note: This table is the final part of Table 2.
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Table 4 Details Variants of the Pre-Trained ViT Classifier

Layer (Type) Input Shape Output Shape Parameters Trainable

VisionTransformer [32, 2, 224, 224] [32, 2] 768 Partial
Conv2D(Patcher) [32, 2, 224, 224] [32, 768, 14, 14] 590592 False
Encoder [32, 197, 768] [32, 197, 768] 151296 False
Dropout [32, 197, 768] [32, 197, 768] – –
Sequential(Layers) [32, 197, 768] [32, 197, 768] – False
EncoderLayer(0) [32, 197, 768] [32, 197, 768] 7087872 False
EncoderLayer(1) [32, 197, 768] [32, 197, 768] 7087872 False
EncoderLayer(2) [32, 197, 768] [32, 197, 768] 7087872 False
EncoderLayer(3) [32, 197, 768] [32, 197, 768] 7087872 False
EncoderLayer(4) [32, 197, 768] [32, 197, 768] 7087872 False
EncoderLayer(5) [32, 197, 768] [32, 197, 768] 7087872 False
EncoderLayer(6) [32, 197, 768] [32, 197, 768] 7087872 False
EncoderLayer(7) [32, 197, 768] [32, 197, 768] 7087872 False
EncoderLayer(8) [32, 197, 768] [32, 197, 768] 7087872 False
EncoderLayer(9) [32, 197, 768] [32, 197, 768] 7087872 False
EncoderLayer(10) [32, 197, 768] [32, 197, 768] 7087872 False
EncoderLayer(11) [32, 197, 768] [32, 197, 768] 7087872 False
LayerNorm(ln) [32, 197, 768] [32, 197, 768] 1536 False
Linear(Heads) [32, 768] [32, 2] 1538 True
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and Y represent car undamaged and damaged data, the training losses of all
Gs and Ds have happened over the number of epochs as shown in Figure 8.
According to monitoring the behavior of training losses of both Gs and Ds,
the model can generate a high-realist synthesis car damaged samples when
both losses of Gs and Ds have been remaining consistent throughout the train-
ing process happening. In addition to the initial state of training with smaller
epochs, the losses of Gs should be larger than the loss of Ds, and this signifi-
cantly decreases the generation performance of the blurry translated images.
Therefore, we observe that the larger the epochs are, the lower the training
losses and the more realistic-damaged features of car images outcome.

Fig. 8 Training Losses over Epochs for Synthesized Car Damaged Generation in (a) Cycle-
GAN and (b) AttentionGAN

In our first experimental task of car damage generation with CycleGAN
and AttentionGAN, both models can create synthesized realistic car images
with different types of synthetic damaged samples with location and sever-
ity transforming from the original car undamaged images into damaged ones.
Tables 5 and 7 depict the qualitative of some undamaged to damaged trans-
lation of the variety of damaged samples on the front, rear, and side of a car,
as well as represent their damaged levels of generating minor and moderate
severity in Tables 6 and 8 from CycleGAN and AttentionGAN, respectively.
As we can see that there are some artifacts present in both models of the
generated images, but the overall appearance of their samples looks realis-
tic. Corresponding to the generated types of damaged samples, these models
can generate not only car images with damaged samples of scratch, dent, car
paint, and even fire-burning, but also samples with damaged levels of minor
and moderate as high-quality car damaged samples. Nonetheless, the gener-
ated damaged samples with the dent and severe level seem to be artificial and
blurry not looking like a photo-realistic of damaged samples of scratch, car
paint, and fire-burning in both models of minor and moderate conditions.

As a comparative analysis between CycleGAN and Attention, the resolu-
tions of individual outputs of the synthesized damaged features of Attention-
GAN are higher than the CycleGAN outcomes shown in Table 9. Therefore,
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Fig. 9 Step by Step Generating Synthesized Car Damaged images with both attention
masks and content masks in AttentionGAN from the leftmost of original car-undamaged
images into the rightmost of the original car-damaged images. From the left to the right
arrangement of images, we get all results of AttentiionGAN as real X, fake Y,.., idt Y, and
real Y by adaption X → Y, where X is an original car-undamaged image and Y is an original
car-damaged image.

AttentionGAN outperforms CycleGAN not only in the visual appeal of produc-
ing a sharper instance of synthetic car-damaged samples but also generating
both attention and content masks, which are presented in Figure 9 by its
main contribution of learning the foreground and preserving the background of
input images all at once. What is more, depending on the amount of training
dataset and time, the performance of both models can improve their capabil-
ities further. On the other hand, we can utilize both models of synthesized
car-damaged images not only in our second task of applying three evaluation
metrics but also in our third and four tasks of the car image synthesis to defeat
the problem of publicly unavailable car-damaged datasets.
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Table 5 CycleGAN for Synthesized Car Damage Generation with Damaged Location

Location Input Generated Input Generated Input Generated

Front

Rear

Side
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Table 6 CycleGAN for Synthesized Car Damaged Generation with Damaged Severity

Damage Level Input Generated Input Generated

Minor

Moderate
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Table 7 AttentionGAN for Synthesized Car Damaged Generation with Damaged Location

Location Input Generated Input Generated Input Generated

Front

Rear

Side
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Table 8 Attention for Synthesized Car Damaged Generation with Damaged Severity

Damage Level Input Generated Input Generated

Minor

Moderate
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Table 9 Comparative Generated Synthesized Car Damaged Images of CyleGAN and AttentionGAN

Input CycleGAN Input AttentionGAN
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5.2 Experimental Results of the Evaluation GANs
Metrics

When we evaluate both the visual quality and the diversity of generated images
using the Inception score (IS), Frecht inception distance (FID), and Kernel
Inception Distance (KID) recorded every ten tick intervals, which refers to
the number of iterations after the training snapshot has been taken in both
CycleGAN and AttentionGAN as our second experimental task, we achieve
the scores of IS, FID, and KID such as 2.431073 ± 0.426682, 47.2298, and
1.625106 ± 0.103924 respectively in AttentionGAN. In CycleGAN, we accept
the scores of 2.395367 ± 0.44129908, 49.3723, and 1.636226 ± 0.122677 for
IS, FID, and KID, correspondingly summarized in Table 10 and displayed
graphically in Figure 10. By a comparative analysis over our results, we observe
that AttentionGAN gives the scores of the highest IS, the lowest FID, and
KID, and then also generates better-quality synthetic car damaged samples
than CycleGAN.

Table 10 Evaluation GANs Metrics Values
of CycleGAN and AttentionGAN

Metrics CycleGAN AttentionGAN
IS 2.395367± 0.44129908 2.431073 ± 0.426682

FID 49.3723 47.2298

KID 1.636226 ± 0.122677 1.625106 ± 0.103924

Fig. 10 Graphical Representation of Quantitative Metrics’ Results with Image Quality
Assessment Score over CycleGAN and AttentionGAN

5.3 Experimental Results of the CNNs Classifier

When we classify the quality of generated images from CycleGAN and Atten-
tionGAN with a CNNs model as our third experimental task by training with
two datasets with two classes including the original real car images and their
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Fig. 11 The Plots of CNNs Classifier (a) Train-Test Loss over Epochs (b) Train-Test Accu-
racy over Epochs

generated fake car-damaged images, we receive the CNNs Classifier of its values
of precision, recall and accuracy such as 93.9%, 95.7%, and 91.9%, respec-
tively. Figure 11 shows the loss and accuracy plots for both train-test results
of the CNNs Classifier. According to Table 11, we observe that the prediction
accuracy of both real and fake from two GANs are slightly better than one
another, however, we can make the CNNs Classifier fool with some instances
of fake images of CycleGAN, unlike the wrong prediction of fake images of
AttentionGAN into real often. To sum up, the more we can make fools of the
CNNs model, the better synthetic images with good generative models are.
Regarding the performance of making fools of a CNNs model, AttentionGAN
is better than CycleGAN. In addition to their prediction accuracy, the quality
of generated fake images is as similar to the original real images. This depicts
that they can be applied as a real-world car-damaged dataset in car image
synthesis tasks as our aim.

Table 11 A CNNs Classifier Predication for Real Images and Synthesized Images of both
CycleGAN and AttentionGAN

Real Image CycleGAN AttentionGAN

5.4 Experimental Results of the ViT Classifier

When we built and trained a scratch ViT model, we faced the severly underfit-
ting problem and its train and test accuracy were 49.7% and 50%. Nonetheless,
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Table 12 A ViT Classifier Prediction for Real Dataset and Fake Datasets of both CycleGAN and AttentionGAN

Dataset Train-Test Loss Plot Train-Test Accuracy Plot Prediction

Real

CycleGAN

AttentionGAN



Springer Nature 2021 LATEX template

A Comparative Study of Generative Adversarial Networks... 37

when we built and trained a pre-trained ViT model with transfer learning and
fine-tuning, we achieved a training accuracy of 100% and a testing accuracy
of 97.4%. Therefore, we utilized a pre-trained ViT as a binary classifier in
our final task. Table 12 describes the ViT classifier of the loss-accuracy plots
of both train and test with the prediction of three datasets with two classes
such as damaged and undamaged as our final experimental task to assess the
quality of generated images of CycleGAN and AttentionGAN comparing with
original real images. Similar to the performance of the CNNs classifier, all
predictions of the accuracy are not quite different. To evaluate between Atten-
tionGAN and CycleGAN, the accuracy of AttentionGAN is slightly larger than
the CycleGAN as a good performance.

6 Conclusion

In this work, we studied mainly focusing on how to defeat the problems of data
scarcity, insufficient data diversity, and producing limited plausible alternative
data by using the standard data augmentation techniques for low data-driven
training of DL models. To overcome these problems and also the lack of a pub-
licly available car damage dataset in car damage detection and classification
tasks, we took the advantage of unpaired image-to-image translation GANs of
CycleGAN and AttentionGAN to generate synthetic car damage images and
the superfluity of different evaluation assessments: GAN metrics; a standard
DL classification model of CNNs; and a fewer computational resources than
the CNNs of ViT model to evaluate the translated unnatural realist car dam-
aged images by approaching both quantitative, and qualitative assessments in
our experiments.

First and foremost, we created a car unpaired dataset based on 3386
car damaged-undamaged images randomly splitting them for the training set
(80%) and the test set (20%) for unpaired image-to-image translation GANs
and started to present a useful framework for the comparative study of Cycle-
GAN and AttentionGAN to generated car damaged images and consider both
their quantitative and qualitative results with three different evaluation assess-
ments in our experiments. After analyzing them with our framework, they can
generate superior quality of synthesized car-damaged images including their
features of damage type, location, and damage level via translating from orig-
inal undamaged to damaged car images by CycleGAN and AttentionGAN.
Moreover, they can also be produced the features of scratch, car paint, dent,
and fire-burning damaged samples with the severity of minor and moderate
by high-quality synthetic car images, but generating damaged samples with
a severe condition does not seem to be realistic and looks blurry. In addi-
tion to the generation of the damaged samples, they can pretty much effort
to generate scratch and car paint-damaged samples into three levels of severi-
ties, although they are difficult to generate dent samples of car images in the
conditions of both damaged level of moderate and severe. However, we can
effectively apply their synthesized car damaged data with our original real
data in our evaluation assessments.
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In our three quantitative assessments of GANs metrics, AttentionGAN
gives higher values of IS, lower values of FID and KID when compared with
all results of CycleGAN. According to the results of GANs metrics, we observe
that AttentionGAN is better-performance than CycleGAN. In our evaluation
assessments of two classifiers: CNNs to predict real or fake; and ViT to analyze
damaged or undamaged via the original car damaged-undamaged images, and
their generated fake damaged datasets, both models can generate realistic and
significant car images with different types of damaged samples, but also their
predictions of accuracy are just slightly better than one another. Anyhow, we
can make fool often to our CNNs classifier into a wrong prediction as a reality
when we test with generated fake damaged samples of AttentionGAN than
CycleGAN. Conforming with overall experimental results, and performances,
we can prove that AttentionGAN is better than CycleGAN. Finally we can
confirm their high-quality synthesized car-damaged images as a reliable real-
world car-damaged dataset in our experiments by overcoming our three facing
challengens with four experimental tasks.

Therefore, this work will motivate other computer vision and ML
researchers and can be further upgraded as a continuous research process to
leverage the potential of CycleGAN, AttentionGAN and other deep generative
models with different datasets and another evaluation methods or approaches
for various applications of many applied domains of image classification by
creating new synthetic data of any image generation to defeat the publicly
unavailable high-quality data for data-driven DL models.
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