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1 Simulation Study Supplemental Information

1.1 Additional Simulation Details

We simulated data for S = 2 species at n = 100 locations on an equispaced
10× 10 grid over [0, 1]× [0, 1] for T = 5, 10, 20 seasons with J = 1, 3, 5 surveys
per season. Let x and y denote the coordinates of the grid centroids. We
generated a spatio-temporal variable v1 using a n-dimensional random walk
with a spatial exponential covariance function with variance of 0.1 and scale
parameter of 0.8. A temporal variable v2 was generated such that for time
t, it took the value sin(2πt/T ). The occupancy design matrix, X, used to
simulate and fit the data for both species had columns for x, y, v1, and v2.
The occupancy random effect was generated assuming q = 100 Moran’s I basis
functions and MCAR precision matrix Σ−1⊗ (D−0.9A). The true occupancy
probabilities were simulated using true values of the regression coefficients of
α(1) = (−0.75, 0.5, 0.25,−0.8, 0.75) and α(1) = (−0.5, 0.25,−0.25,−0.75, 0.5).

We also generated covariates to be used for detectability. Let w1 be a spatio-
temporal random variable generated using a multivariate random walk with
squared exponential covariance function using variance 0.2 and scale param-
eter of

√
1.4. A temporal variable w2 was generated by taking the log of the

enumerated values for the season. So the detection design matrix had columns
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for the x-coordinate, w1, and w2. Note that in the multi-survey per season
setting, the detection covariates were assumed to be the same fore very sur-
vey within the season. The true values for the detection regression coefficients
were β(1) = (−0.1,−0.5, 0.8,−0.1) and β(2) = (0,−0.25, 0.5, 0.1).

1.2 Simulation Additional Results

Fig. 1: Root mean squared errors of the occupancy regression coefficients for
species 2 under all three models and number of seasons.

Fig. 2: H = 100 posterior means of each species 1 detection regression coeffi-
cient for each model and number of seasons when J = 1. We note that boxplots
for model 3 extend past the limit of the y-axis, but this view makes it easier
to assess models 1 and 2.
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Fig. 3: H = 100 posterior means of each species 2 occupancy regression coef-
ficient for each model and number of seasons when J = 1.

Fig. 4: H = 100 posterior means of each species 2 detection regression coeffi-
cient for each model and number of seasons when J = 1.
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Fig. 5: H = 100 posterior means of each species 2 occupancy regression coef-
ficient for each model and number of seasons when J = 3 surveys are taken
per season.

Fig. 6: H = 100 posterior means of each species 2 occupancy regression coef-
ficient for each model and number of seasons when J = 5 surveys are taken
per season.
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2 Application Supplemental Results

Fig. 7: Estimated values of the multivariate temporal random effect, ω
(s)
it for

five consecutive seasons for each species.

Fig. 8: Occupancy regression coefficient credible intervals for each species
under each of the three models. Note that the coefficient for fire for wildebeest
was less than -5 so it doesn’t appear on the chart with the given x-limits
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Fig. 9: Detection regression coefficient credible intervals for each species under
each of the three models.

Fig. 10: Estimated occupancy probabilities for five consecutive seasons under
model M2 that has a detection temporal random effect that is indepen-
dent across species and has a spatially homogeneous temporal autocorrelation
parameter in detection.

Fig. 11: Estimated occupancy probabilities for five consecutive seasons under
model M3 that only has covariates in detection.
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Fig. 12: Estimated detection probabilities for five consecutive seasons under
model M2.

Fig. 13: Estimated detection probabilities for five consecutive seasons under
model M3.
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3 Full Conditional Distributions

The posterior distribution can be explored with a Gibbs sampling algorithm
since the full conditionals for each unknown quantity are known. These full
conditionals are given below, where the notation [V | ·] is used to denote the
distribution of a random variable V conditional on all other random variables
and on the data. Note that the derivations have been modified accordingly
from Hepler and Erhardt (2021).

� For sites i = 1, ..., n, time t = 1, ..., T , and species s = 1, ..., S, if
∑J

j=1 Y
(s)
itj >

0 then Z
(s)
it = 1 with probability 1. If

∑J
j=1 Y

(s)
itj = 0, then

[Z
(s)
it | α(s),γ

(s)
t ,β(s), ω

(s)
it ] = Bernoulli(Φ̄),

where

Φ̄ =
Φ

(
X

(s)
it α(s) + K

(s)
it γ

(s)
t

)∏J
j=1

(
1 − Φ(Witjβ

(s) + ω
(s)
it )

)
Φ

(
X

(s)
it α(s) + K

(s)
it γ

(s)
t

)∏J
j=1

(
1 − Φ

(
Witjβ(s) + ω

(s)
it )

)
+ 1 − Φ(X

(s)
it α(s) + K

(s)
it γ

(s)
t

)
In the above, K

(s)
it is the ith row of the matrix of basis functions K

(s)
t .

� For sites i = 1, ..., n, time t = 1, ..., T , and species s = 1, ..., S, the latent
occupancy process has full conditional distributions

[Z̃
(s)
it | · ] =

TN(−∞,0)

(
X

(s)
it α(s) +K

(s)
it γ

(s)
t , 1

)
if Z

(s)
it = 0

TN(0,∞)

(
X

(s)
it α(s) +K

(s)
it γ

(s)
t , 1

)
if Z

(s)
it = 1,

where TN(a,b) denotes the truncated normal distribution, truncated to (a, b).
� Provided T > 2, for each t = 1, ..., T , we update the Sq-dimensional vector
γt jointly.

– For t = 1, the full conditional is [γ1 | · ] = N(µ̄, Σ̄), where

Σ̄−1 = ISq +K∗′

1 QK∗
1 +M′K∗′

2 QK∗
2M

µ̄ = Σ̄×
{
K∗′

1 (Z̃1 −X∗
1α) +M′

(
K∗′

2 QK∗
2

)
γ2

}
– For t = 2, ..., T − 1, the full conditional is [γt | · ] = N(µ̄, Σ̄), where

Σ̄−1 = ISq +K∗′

t QK∗
t +M′K∗

t+1QK∗
t+1M

µ̄ = Σ̄×
{
K∗′

t (Z̃t −X∗
tα) +M′

(
K∗′

t+1QK∗
t+1

)
γt+1 +

(
K∗′

t QK∗
t

)
Mγt−1

}
– For t = T , the full conditional is [γT | · ] = N(µ̄, Σ̄), where

Σ̄−1 = ISq +K∗′

T QK∗
T

µ̄ = Σ̄×
{
K∗′

T (Z̃T −X∗
Tα) +

(
K∗′

T QK∗
T

)
MγT−1

}
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Note that since the prior on γt is intrinsic MCAR, a centering constraint

1/q
∑q

i=1 γ
(s)
it = 0 must be enforced for all s, t to ensure the posterior is

proper and to be able to identify an intercept parameter.
� For each s = 1, ..., S, we update the vector of occupancy fixed effects for
species s jointly. Observe that

Z̃(s) = X(s)α(s) +K(s)γ(s) + ϵ(s),

where X(s) denotes the full design matrix for species s, that is, X(s) =

(X
(s)′

1 , ...,X
(s)′

T )′ so that the design matrices for each time period are row-

concatenated, K(s) = diag(K
(s)
t ) is the block diagonal matrix of basis

functions for each time period, and γ(s) = (γ
(s)′

1 , ...,γ
(s)′

T )′ is the vec-
tor of spatial random effects for each time period. The full conditional is
[α(s) | · ] = N(µ̄, Σ̄), where depending on the choice of prior distribution,

Σ̄−1 =


(
X(s)′X(s)

)
if π(α(s)) = 1(

X(s)′X(s) + τaI
)

if α(s) ∼ N(0, τa),

for precision τa. Then,

µ̄ = Σ̄×
{
X(s)′

(
Z̃(s) −K(s)γ(s)

)}
.

� Our model assumes the occupancy propagator matrix is of the form M =
diag(ρ1, ..., ρS) ⊗ Iq. Let ρ ≡ (ρ1, ..., ρS)

′. We update the vector ρ with
a single Gibbs update. Let D(γt−1) be the qS × S block diagonal matrix

with q× 1-dimensional blocks γ
(s)
t−1 for s = 1, ..., S. Under this specification,

the full conditional distribution of ρ is multivariate normal (or truncated
multivariate normal if the prior on ρ is chosen to have support smaller than
the whole real line). That is, [ρ | · ] = N

(
µ̄, Σ̄

)
, where

Σ̄−1 =

T∑
t=2

D(γt−1)
′K∗′

t QK∗
tD(γt−1)

µ̄ = Σ̄×

(
T∑

t=2

D(γt−1)
′K∗′

t QK∗
tγt

)
� A Gibbs update can be performed for Σ assuming X

(s)
t = Xt for all s =

1, ..., S, which implies K
(s)
t = Kt for all s = 1, ..., S and t = 1, ..., T , and

thus X∗
t = IS ⊗ Xt and K∗′

t QK∗
t = Σ−1 ⊗ K′

t(D − A)Kt. Assuming an
inverse Wishart prior distribution for Σ with parameters ν and Ψ, the full
conditional distribution of Σ is inverse Wishart with parameters ν+ qT and
Ψ +

∑T
t=1 Bt, where Bt is the S × S matrix with (i, j)th entry (Bt)i,j =
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trace
(
C

(t)
i,jK

′
t(D−A)Kt

)
, where for t = 1, C(1) is the block matrix with

(i, j)th block

C
(1)
i,j = (γ

(i)
1 )(γ

(j)
1 )′

for i, j = 1, ..., S, and for t = 2, ..., T we have the block matrix with (i, j)th
block

C
(t)
i,j = (γ

(i)
t − ρiγ

(i)
t−1)(γ

(j)
t − ρjγ

(j)
t−1)

′.

� For each site, time, species, and survey j = 1, ..., J , the full conditional
distributions for the latent continuous detection process are

[Ỹ
(s)
itj | · ] =


TN(−∞,0)

(
Witβ

(s) + ω
(s)
it , 1

)
if Y

(s)
itk = 0 and Z

(s)
it = 1

TN(0,∞)

(
Witβ

(s) + ω
(s)
it , 1

)
if Y

(s)
itk = 1

δ0 if Z
(s)
it = 0,

where δ0 is the dirac delta function that indicates a point mass at zero.
� For each s = 1, ..., S, we update the vector of detection regression coeffi-
cients β(s) jointly. Let W(s) denote the row-concatenated detection design
matrix for species s at all locations, times, and surveys, that is, W(s) =

(W
(s)′

1 , ...,W
(s)′

T )′ where W
(s)
t = (W

(s)′

t1 , ...,W
(s)′

tJ )′ is the concatenation of

design matrices at all J surveys during time t. Define ω(s) = (ω̃
(s)′

1 , ..., ω̃
(s)′

T )′

where ω̃
(s)
t = ω

(s)
t ⊗1J repeats the values of the random effect for each sur-

vey within the given season. For a given vector or matrix Ω, let Ω∗ denote
the sub-vector/matrix created by subsetting only the rows of Ω for which

the corresponding Z
(s)
it = 1. Then, the full conditional distribution of β(s)

is [β(s) | · ] = N(µ̄, Σ̄), where depending on the choice of prior distribution,

Σ̄−1 =


(
W(s)∗′

W(s)∗
)

if π(β(s)) = 1(
W(s)∗′

W(s)∗ + τbI
)

if β(s) ∼ N(0, τb)

µ̄ = Σ̄×
{
W(s)∗′

(Ỹ(s)∗ − ω(s)∗)
}
.

� Note that we define ω
(s)
it at all combinations of i, t even if that site-season

combination is not observed. Also note that the full conditional of ω
(s)
it only

depends on observations which were observed and had Z
(s)
it = 1 since if

the species was not actually there, then detection is undefined. Define Iitj
to be an indicator that a survey was conducted at site i during season t.
Observe that the latent detection process for all site season combinations

(observed and unobserved) is then a mixture distribution such that [Ỹ
(s)
itj |

Z
(s)
it , ω

(s)
it ,β(s)] = Z

(s)
it Iitjϕ

(
Ỹ

(s)
itj −W

(s)′

itj β(s) − ω
(s)
it

)
+ (1 − Z

(s)
it Iitj)δ0,

where ϕ(·) is the standard normal probability density function. We will

update the n-dimensional vector ω
(s)
t for each t, s.
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- For t = 1, observe

[
ω

(s)
1 | ·

]
∝

{
Z

(s)
it Iitj

Jit∏
j=1

[Ỹ
(s)
itj | ·] + (1− Z

(s)
it Iitj)δ0

}
× [ω

(s)
1 | ω(−s)

1 ][ω
(s)
2 | ω(s)

1 ,ω
(−s)
1 ,ω

(−s)
2 ]

∝ exp

(
−1

2

∑
j

Z1I1j(Ỹ
(s)
1j −W1jβ

(s) − ω
(s)
1 )′(Ỹ

(s)
1j −W1jβ

(s) − ω
(s)
1 )

)
× [ω

(s)
1 | ω(−s)

1 ][ω
(s)
2 | ω(s)

1 ,ω
(−s)
1 ,ω

(−s)
2 ]

Note that from the conditional property of the multivariate normal dis-

tribution, [ω
(s)
1 | ω

(−s)
1 ] is the pdf of a N(ω

(−s)
1 Σ−1

−s,−sΣ−s,s, (Σs,s −
Σs,−sΣ

−1
−s,−sΣ−s,s)In), and [ω

(s)
2 | ω

(s)
1 ,ω

(−s)
1 ,ω

(−s)
2 ] is also a normal

pdf with mean ρ̃(s)ω
(s)
1 + (ω

(−s)
2 − (1n ⊗ ρ̃(−s))ω

(−s)
1 )Σ−1

−s,−sΣ−s,s and

covariance (Σs,s−Σs,−sΣ
−1
−s,−sΣ−s,s)In. In the above, we use −s as a sub-

script or superscript to indicate the rows/columns that exclude s. Also,
Σ refers to Σω, but the subscript is dropped here for convenience. Let
Σs|−s = Σs,s −Σs,−sΣ

−1
−s,−sΣ−s,s Simplifying yields that when t = 1, the

full conditional distribution of ω
(s)
1 is [ω

(s)
1 | ·] = N(µ̄, Σ̄), where

Σ̄−1 = diag(Z1

∑
j

I1j) + (1 + ρ̃(s)2)Σ−1
s|−sIn

and

µ̄ = Σ̄

{
Z1

∑
j

I1j

(
Ỹ

(s)
1j −W1jβ

(s)
)
+Σ−1

s|−s(Σ
′
−s,sΣ

−1
−s,−s ⊗ In)ω

(−s)
1

+ ρ̃(s)Σ−1
s|−s

[
ω

(s)
2 − (Σ′

−s,sΣ
−1
−s,−s ⊗ In)

(
ω

(−s)
2 − ρ̃(−s)ω

(−s)
1

)]}
- Similarly, for t = 2, ..., T − 1 we get that the full conditional distribution

of ω
(s)
t is [ω

(s)
t | ·] = N(µ̄, Σ̄), where

Σ̄−1 = diag(Zt

∑
j

Itj) + (1 + ρ̃(s)2)Σ−1
s|−sIn

and

µ̄ = Σ̄

{
Zt

∑
j

Itj

(
Ỹ

(s)
tj −Wtjβ

(s)
)

+Σ−1
s|−s

(
ρ̃(s)ω

(s)
t−1 + (Σ′

−s,sΣ
−1
−s,−s ⊗ In)

(
ω

(−s)
t − ρ̃(−s)ω

(−s)
t−1 )

))
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+ ρ̃(s)Σ−1
s|−s

[
ω

(s)
t+1 − (Σ′

−s,sΣ
−1
−s,−s ⊗ In)

(
ω

(−s)
2 − ρ̃(−s)ω

(−s)
t

)]}
- For t = T the full conditional distribution of ω

(s)
T is [ω

(s)
T | ·] = N(µ̄, Σ̄),

where
Σ̄−1 = diag(ZT

∑
j

ITj) + Σ−1
s|−sIn

and

µ̄ = Σ̄

{
Zt

∑
j

Itj

(
Ỹ

(s)
tj −Wtjβ

(s)
)

+ Σ−1
s|−s

(
ρ̃(s)ω

(s)
T−1 + (Σ′

−s,sΣ
−1
−s,−s ⊗ In)

(
ω

(−s)
T − ρ̃(−s)ω

(−s)
T−1)

))}
� Our model assumes the detection propagator matrix is of the form ρ̃i =

diag(ρ̃
(1)
i , ..., ρ̃

(S)
i ). We update this S-dimensional vector jointly for each i.

Let D(ωi,t−1) = diag(ω
(1)
i,t−1, ..., ω

(S)
i,t−1). be the S × S diagonal matrix. The

full conditional distribution of the vectorized diagonal elements in ρ̃i is
truncated multivariate normal [ρ̃ | · ] = N

(
µ̄, Σ̄

)
, where

Σ̄−1 =

T∑
t=2

D(ωi,t−1)
′Σ−1

ω D(ωi,t−1)

µ̄ = Σ̄×

(
T∑

t=2

D(ωi,t−1)
′Σ−1

ω ωi,t

)
� Assume the prior for Σω is inverse Wishart with parameters ν and Ψ. The
full conditional distribution of Σω is inverse Wishart with parameters ν+nT
and Ψ+

∑T
t=1 Bt, where Bt is the S×S matrix with (i, j)th entry (Bt)i,j =

trace
(
C

(t)
i,j

)
, where for t = 1, C(1) is the block matrix with (i, j)th block

C
(1)
i,j = (ω

(i)
1 )(ω

(j)
1 )′

for i, j = 1, ..., S, and for t = 2, ..., T we have the block matrix with (i, j)th
block

C
(t)
i,j = (ω

(i)
t − ρ̃(i)ω

(i)
t−1)(ω

(j)
t − ρ̃(j)ω

(j)
t−1)

′,

where ω
(i)
t = (ω

(i)
1t , ..., ω

(i)
nt ) and ρ̃(i) = (ρ̃

(i)
1 , ..., ρ̃

(i)
n ).
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