

Occupancy Models with Autocorrelated Detection Heterogeneity – Supplementary Material

Staci Hepler^{1*} and Biqing Yang²

¹Department of Statistical Sciences, Wake Forest University, Winston-Salem, North Carolina, USA.

²Department of Statistics, The Ohio State University, Columbus, Ohio, USA.

*Corresponding author(s). E-mail(s): heplersa@wfu.edu;

1 Simulation Study Supplemental Information

1.1 Additional Simulation Details

We simulated data for $S = 2$ species at $n = 100$ locations on an equispaced 10×10 grid over $[0, 1] \times [0, 1]$ for $T = 5, 10, 20$ seasons with $J = 1, 3, 5$ surveys per season. Let x and y denote the coordinates of the grid centroids. We generated a spatio-temporal variable v_1 using a n -dimensional random walk with a spatial exponential covariance function with variance of 0.1 and scale parameter of 0.8. A temporal variable v_2 was generated such that for time t , it took the value $\sin(2\pi t/T)$. The occupancy design matrix, \mathbf{X} , used to simulate and fit the data for both species had columns for x , y , v_1 , and v_2 . The occupancy random effect was generated assuming $q = 100$ Moran's I basis functions and MCAR precision matrix $\Sigma^{-1} \otimes (\mathbf{D} - 0.9\mathbf{A})$. The true occupancy probabilities were simulated using true values of the regression coefficients of $\boldsymbol{\alpha}^{(1)} = (-0.75, 0.5, 0.25, -0.8, 0.75)$ and $\boldsymbol{\alpha}^{(2)} = (-0.5, 0.25, -0.25, -0.75, 0.5)$.

We also generated covariates to be used for detectability. Let w_1 be a spatio-temporal random variable generated using a multivariate random walk with squared exponential covariance function using variance 0.2 and scale parameter of $\sqrt{1.4}$. A temporal variable w_2 was generated by taking the log of the enumerated values for the season. So the detection design matrix had columns

2 *Supplementary Material*

for the x -coordinate, w_1 , and w_2 . Note that in the multi-survey per season setting, the detection covariates were assumed to be the same for every survey within the season. The true values for the detection regression coefficients were $\beta^{(1)} = (-0.1, -0.5, 0.8, -0.1)$ and $\beta^{(2)} = (0, -0.25, 0.5, 0.1)$.

1.2 Simulation Additional Results

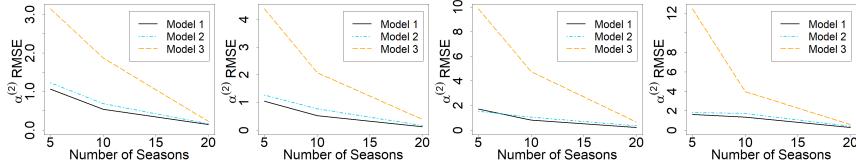


Fig. 1: Root mean squared errors of the occupancy regression coefficients for species 2 under all three models and number of seasons.

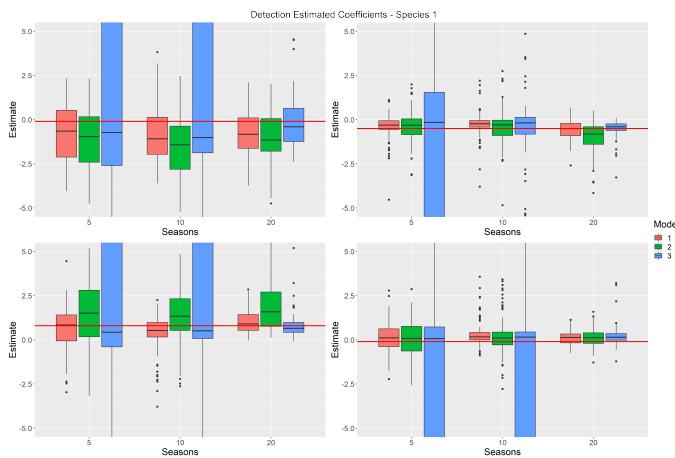


Fig. 2: $H = 100$ posterior means of each species 1 detection regression coefficient for each model and number of seasons when $J = 1$. We note that boxplots for model 3 extend past the limit of the y-axis, but this view makes it easier to assess models 1 and 2.

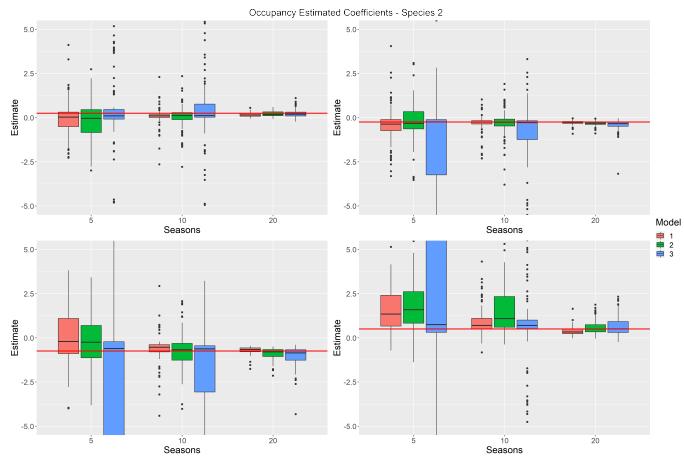


Fig. 3: $H = 100$ posterior means of each species 2 occupancy regression coefficient for each model and number of seasons when $J = 1$.

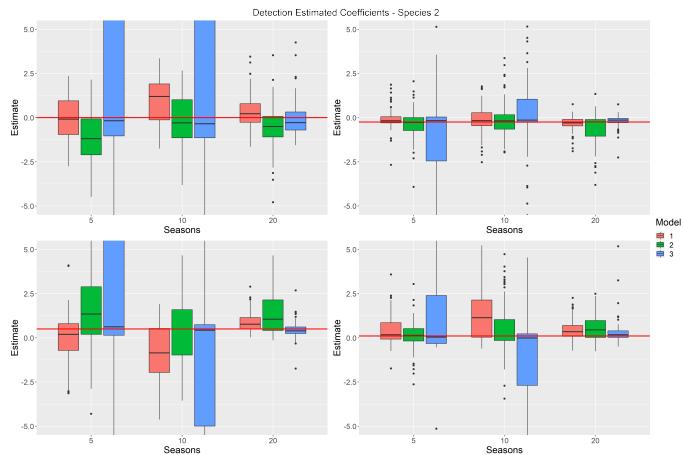


Fig. 4: $H = 100$ posterior means of each species 2 detection regression coefficient for each model and number of seasons when $J = 1$.

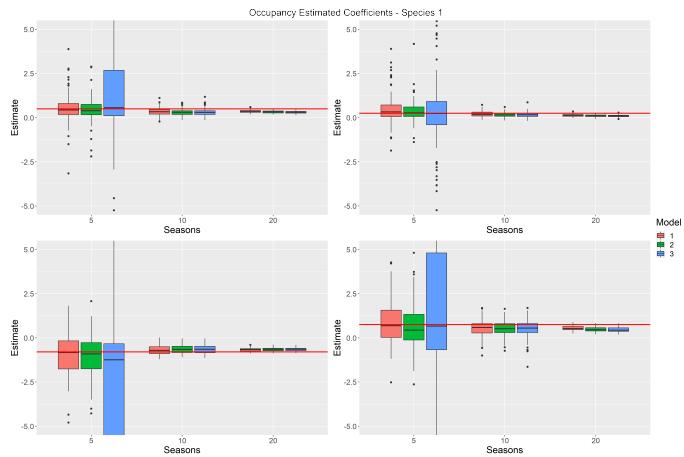
4 *Supplementary Material*

Fig. 5: $H = 100$ posterior means of each species 2 occupancy regression coefficient for each model and number of seasons when $J = 3$ surveys are taken per season.

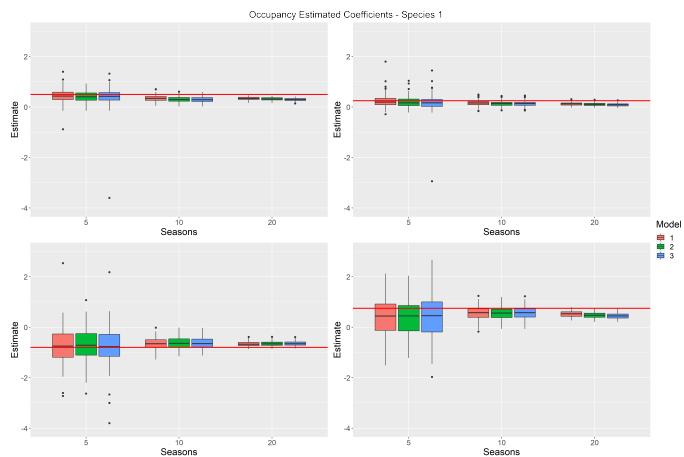


Fig. 6: $H = 100$ posterior means of each species 2 occupancy regression coefficient for each model and number of seasons when $J = 5$ surveys are taken per season.

2 Application Supplemental Results

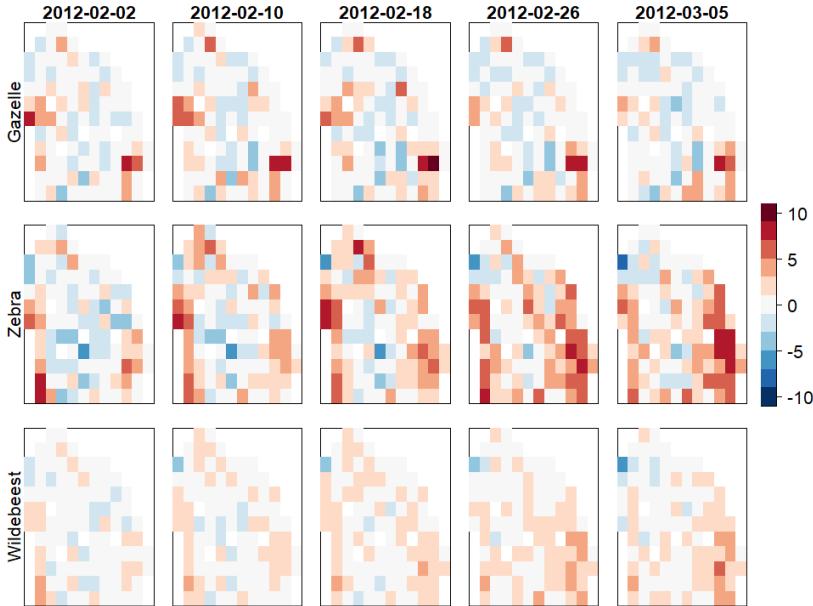


Fig. 7: Estimated values of the multivariate temporal random effect, $\omega_{it}^{(s)}$ for five consecutive seasons for each species.

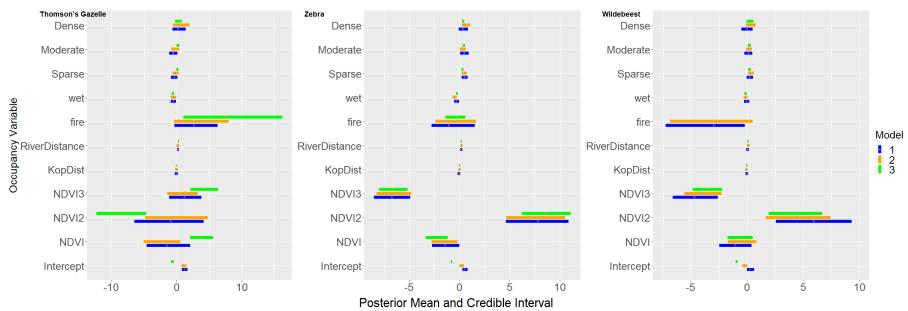


Fig. 8: Occupancy regression coefficient credible intervals for each species under each of the three models. Note that the coefficient for fire for wildebeest was less than -5 so it doesn't appear on the chart with the given x-limits

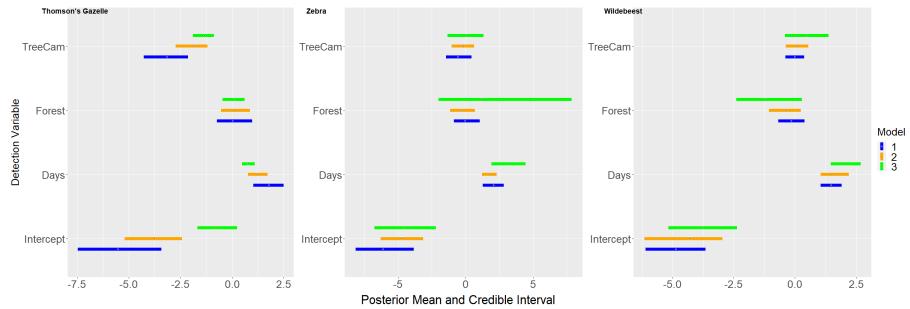
6 *Supplementary Material*

Fig. 9: Detection regression coefficient credible intervals for each species under each of the three models.

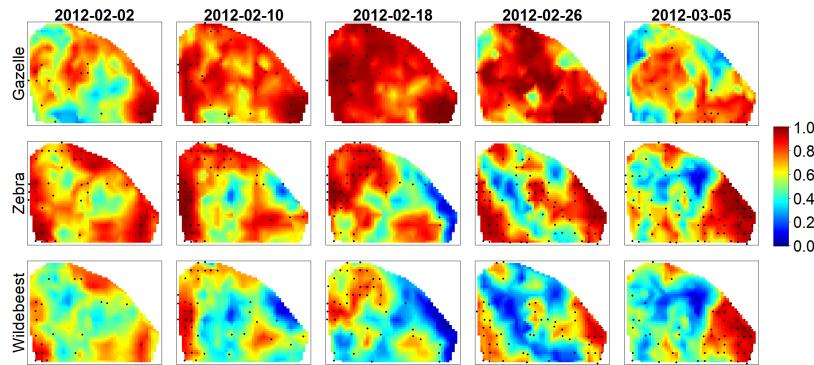


Fig. 10: Estimated occupancy probabilities for five consecutive seasons under model \mathcal{M}_2 that has a detection temporal random effect that is independent across species and has a spatially homogeneous temporal autocorrelation parameter in detection.

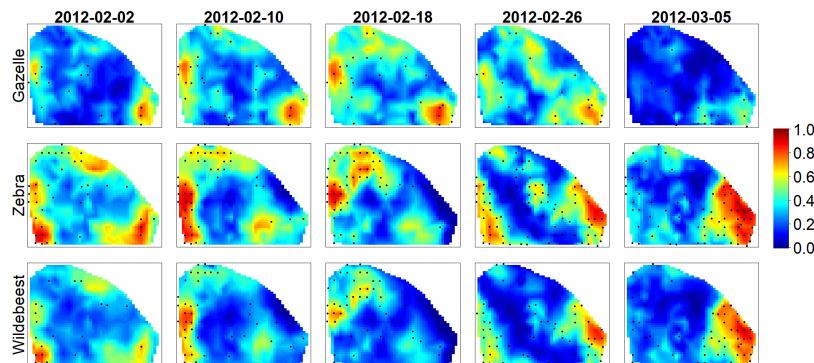


Fig. 11: Estimated occupancy probabilities for five consecutive seasons under model \mathcal{M}_3 that only has covariates in detection.

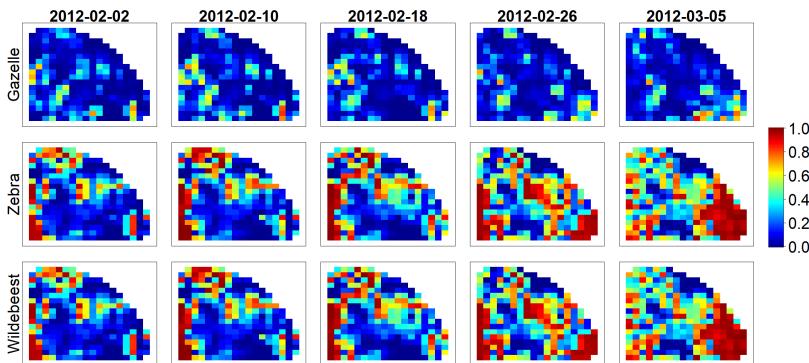


Fig. 12: Estimated detection probabilities for five consecutive seasons under model \mathcal{M}_2 .

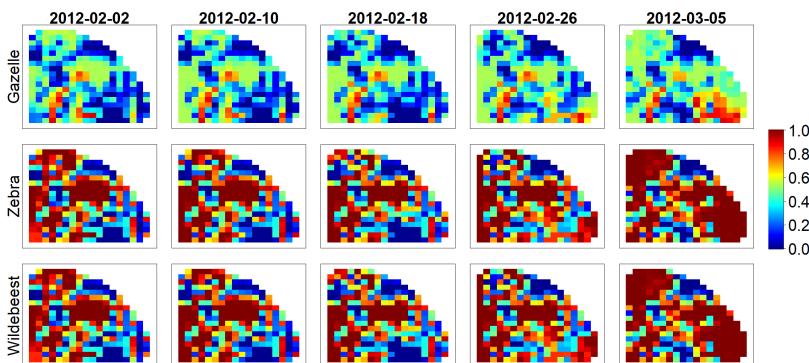


Fig. 13: Estimated detection probabilities for five consecutive seasons under model \mathcal{M}_3 .

3 Full Conditional Distributions

The posterior distribution can be explored with a Gibbs sampling algorithm since the full conditionals for each unknown quantity are known. These full conditionals are given below, where the notation $[V \mid \cdot]$ is used to denote the distribution of a random variable V conditional on all other random variables and on the data. Note that the derivations have been modified accordingly from Hepler and Erhardt (2021).

- For sites $i = 1, \dots, n$, time $t = 1, \dots, T$, and species $s = 1, \dots, S$, if $\sum_{j=1}^J Y_{itj}^{(s)} > 0$ then $Z_{it}^{(s)} = 1$ with probability 1. If $\sum_{j=1}^J Y_{itj}^{(s)} = 0$, then

$$[Z_{it}^{(s)} \mid \boldsymbol{\alpha}^{(s)}, \boldsymbol{\gamma}_t^{(s)}, \boldsymbol{\beta}^{(s)}, \omega_{it}^{(s)}] = \text{Bernoulli}(\bar{\Phi}),$$

where

$$\bar{\Phi} = \frac{\Phi\left(\mathbf{X}_{it}^{(s)}\boldsymbol{\alpha}^{(s)} + \mathbf{K}_{it}^{(s)}\boldsymbol{\gamma}_t^{(s)}\right) \prod_{j=1}^J \left(1 - \Phi(\mathbf{W}_{itj}\boldsymbol{\beta}^{(s)} + \omega_{it}^{(s)})\right)}{\Phi\left(\mathbf{X}_{it}^{(s)}\boldsymbol{\alpha}^{(s)} + \mathbf{K}_{it}^{(s)}\boldsymbol{\gamma}_t^{(s)}\right) \prod_{j=1}^J \left(1 - \Phi(\mathbf{W}_{itj}\boldsymbol{\beta}^{(s)} + \omega_{it}^{(s)})\right) + 1 - \Phi(\mathbf{X}_{it}^{(s)}\boldsymbol{\alpha}^{(s)} + \mathbf{K}_{it}^{(s)}\boldsymbol{\gamma}_t^{(s)})}$$

In the above, $\mathbf{K}_{it}^{(s)}$ is the i th row of the matrix of basis functions $\mathbf{K}_t^{(s)}$.

- For sites $i = 1, \dots, n$, time $t = 1, \dots, T$, and species $s = 1, \dots, S$, the latent occupancy process has full conditional distributions

$$[\tilde{Z}_{it}^{(s)} \mid \cdot] = \begin{cases} TN_{(-\infty, 0)}\left(\mathbf{X}_{it}^{(s)}\boldsymbol{\alpha}^{(s)} + \mathbf{K}_{it}^{(s)}\boldsymbol{\gamma}_t^{(s)}, 1\right) & \text{if } Z_{it}^{(s)} = 0 \\ TN_{(0, \infty)}\left(\mathbf{X}_{it}^{(s)}\boldsymbol{\alpha}^{(s)} + \mathbf{K}_{it}^{(s)}\boldsymbol{\gamma}_t^{(s)}, 1\right) & \text{if } Z_{it}^{(s)} = 1, \end{cases}$$

where $TN_{(a, b)}$ denotes the truncated normal distribution, truncated to (a, b) .

- Provided $T > 2$, for each $t = 1, \dots, T$, we update the Sq -dimensional vector $\boldsymbol{\gamma}_t$ jointly.

– For $t = 1$, the full conditional is $[\boldsymbol{\gamma}_1 \mid \cdot] = N(\bar{\mu}, \bar{\Sigma})$, where

$$\bar{\Sigma}^{-1} = \mathbf{I}_{Sq} + \mathbf{K}_1^{*\prime} \mathbf{Q} \mathbf{K}_1^* + \mathbf{M}' \mathbf{K}_2^{*\prime} \mathbf{Q} \mathbf{K}_2^* \mathbf{M}$$

$$\bar{\mu} = \bar{\Sigma} \times \left\{ \mathbf{K}_1^{*\prime} (\tilde{\mathbf{Z}}_1 - \mathbf{X}_1^* \boldsymbol{\alpha}) + \mathbf{M}' \left(\mathbf{K}_2^{*\prime} \mathbf{Q} \mathbf{K}_2^* \right) \boldsymbol{\gamma}_2 \right\}$$

– For $t = 2, \dots, T-1$, the full conditional is $[\boldsymbol{\gamma}_t \mid \cdot] = N(\bar{\mu}, \bar{\Sigma})$, where

$$\bar{\Sigma}^{-1} = \mathbf{I}_{Sq} + \mathbf{K}_t^{*\prime} \mathbf{Q} \mathbf{K}_t^* + \mathbf{M}' \mathbf{K}_{t+1}^* \mathbf{Q} \mathbf{K}_{t+1}^* \mathbf{M}$$

$$\bar{\mu} = \bar{\Sigma} \times \left\{ \mathbf{K}_t^{*\prime} (\tilde{\mathbf{Z}}_t - \mathbf{X}_t^* \boldsymbol{\alpha}) + \mathbf{M}' \left(\mathbf{K}_{t+1}^{*\prime} \mathbf{Q} \mathbf{K}_{t+1}^* \right) \boldsymbol{\gamma}_{t+1} + \left(\mathbf{K}_t^{*\prime} \mathbf{Q} \mathbf{K}_t^* \right) \mathbf{M} \boldsymbol{\gamma}_{t-1} \right\}$$

– For $t = T$, the full conditional is $[\boldsymbol{\gamma}_T \mid \cdot] = N(\bar{\mu}, \bar{\Sigma})$, where

$$\bar{\Sigma}^{-1} = \mathbf{I}_{Sq} + \mathbf{K}_T^{*\prime} \mathbf{Q} \mathbf{K}_T^*$$

$$\bar{\mu} = \bar{\Sigma} \times \left\{ \mathbf{K}_T^{*\prime} (\tilde{\mathbf{Z}}_T - \mathbf{X}_T^* \boldsymbol{\alpha}) + \left(\mathbf{K}_T^{*\prime} \mathbf{Q} \mathbf{K}_T^* \right) \mathbf{M} \boldsymbol{\gamma}_{T-1} \right\}$$

Note that since the prior on γ_t is intrinsic MCAR, a centering constraint $1/q \sum_{i=1}^q \gamma_{it}^{(s)} = 0$ must be enforced for all s, t to ensure the posterior is proper and to be able to identify an intercept parameter.

- For each $s = 1, \dots, S$, we update the vector of occupancy fixed effects for species s jointly. Observe that

$$\tilde{\mathbf{Z}}^{(s)} = \mathbf{X}^{(s)} \boldsymbol{\alpha}^{(s)} + \mathbf{K}^{(s)} \boldsymbol{\gamma}^{(s)} + \boldsymbol{\epsilon}^{(s)},$$

where $\mathbf{X}^{(s)}$ denotes the full design matrix for species s , that is, $\mathbf{X}^{(s)} = (\mathbf{X}_1^{(s)'} \dots, \mathbf{X}_T^{(s)'})'$ so that the design matrices for each time period are row-concatenated, $\mathbf{K}^{(s)} = \text{diag}(\mathbf{K}_t^{(s)})$ is the block diagonal matrix of basis functions for each time period, and $\boldsymbol{\gamma}^{(s)} = (\boldsymbol{\gamma}_1^{(s)'}, \dots, \boldsymbol{\gamma}_T^{(s)'})'$ is the vector of spatial random effects for each time period. The full conditional is $[\boldsymbol{\alpha}^{(s)} \mid \cdot] = N(\bar{\mu}, \bar{\Sigma})$, where depending on the choice of prior distribution,

$$\bar{\Sigma}^{-1} = \begin{cases} \left(\mathbf{X}^{(s)'} \mathbf{X}^{(s)} \right) & \text{if } \pi(\boldsymbol{\alpha}^{(s)}) = 1 \\ \left(\mathbf{X}^{(s)'} \mathbf{X}^{(s)} + \tau_a \mathbf{I} \right) & \text{if } \boldsymbol{\alpha}^{(s)} \sim N(0, \tau_a), \end{cases}$$

for precision τ_a . Then,

$$\bar{\mu} = \bar{\Sigma} \times \left\{ \mathbf{X}^{(s)'} \left(\tilde{\mathbf{Z}}^{(s)} - \mathbf{K}^{(s)} \boldsymbol{\gamma}^{(s)} \right) \right\}.$$

- Our model assumes the occupancy propagator matrix is of the form $\mathbf{M} = \text{diag}(\rho_1, \dots, \rho_S) \otimes \mathbf{I}_q$. Let $\boldsymbol{\rho} \equiv (\rho_1, \dots, \rho_S)'$. We update the vector $\boldsymbol{\rho}$ with a single Gibbs update. Let $D(\boldsymbol{\gamma}_{t-1})$ be the $qS \times S$ block diagonal matrix with $q \times 1$ -dimensional blocks $\boldsymbol{\gamma}_{t-1}^{(s)}$ for $s = 1, \dots, S$. Under this specification, the full conditional distribution of $\boldsymbol{\rho}$ is multivariate normal (or truncated multivariate normal if the prior on $\boldsymbol{\rho}$ is chosen to have support smaller than the whole real line). That is, $[\boldsymbol{\rho} \mid \cdot] = N(\bar{\mu}, \bar{\Sigma})$, where

$$\bar{\Sigma}^{-1} = \sum_{t=2}^T D(\boldsymbol{\gamma}_{t-1})' \mathbf{K}_t^{*'} \mathbf{Q} \mathbf{K}_t^* D(\boldsymbol{\gamma}_{t-1})$$

$$\bar{\mu} = \bar{\Sigma} \times \left(\sum_{t=2}^T D(\boldsymbol{\gamma}_{t-1})' \mathbf{K}_t^{*'} \mathbf{Q} \mathbf{K}_t^* \boldsymbol{\gamma}_t \right)$$

- A Gibbs update can be performed for Σ assuming $\mathbf{X}_t^{(s)} = \mathbf{X}_t$ for all $s = 1, \dots, S$, which implies $\mathbf{K}_t^{(s)} = \mathbf{K}_t$ for all $s = 1, \dots, S$ and $t = 1, \dots, T$, and thus $\mathbf{X}_t^* = \mathbf{I}_S \otimes \mathbf{X}_t$ and $\mathbf{K}_t^{*'} \mathbf{Q} \mathbf{K}_t^* = \Sigma^{-1} \otimes \mathbf{K}_t' (\mathbf{D} - \mathbf{A}) \mathbf{K}_t$. Assuming an inverse Wishart prior distribution for Σ with parameters ν and Ψ , the full conditional distribution of Σ is inverse Wishart with parameters $\nu + qT$ and $\Psi + \sum_{t=1}^T \mathbf{B}_t$, where \mathbf{B}_t is the $S \times S$ matrix with (i, j) th entry $(B_t)_{i,j} =$

trace $\left(\mathbf{C}_{i,j}^{(t)} \mathbf{K}_t' (\mathbf{D} - \mathbf{A}) \mathbf{K}_t\right)$, where for $t = 1$, $\mathbf{C}^{(1)}$ is the block matrix with (i, j) th block

$$\mathbf{C}_{i,j}^{(1)} = (\boldsymbol{\gamma}_1^{(i)}) (\boldsymbol{\gamma}_1^{(j)})'$$

for $i, j = 1, \dots, S$, and for $t = 2, \dots, T$ we have the block matrix with (i, j) th block

$$\mathbf{C}_{i,j}^{(t)} = (\boldsymbol{\gamma}_t^{(i)} - \rho_i \boldsymbol{\gamma}_{t-1}^{(i)}) (\boldsymbol{\gamma}_t^{(j)} - \rho_j \boldsymbol{\gamma}_{t-1}^{(j)})'.$$

- For each site, time, species, and survey $j = 1, \dots, J$, the full conditional distributions for the latent continuous detection process are

$$[\tilde{Y}_{itj}^{(s)} \mid \cdot] = \begin{cases} TN_{(-\infty, 0)} \left(\mathbf{W}_{it} \boldsymbol{\beta}^{(s)} + \omega_{it}^{(s)}, 1 \right) & \text{if } Y_{itk}^{(s)} = 0 \text{ and } Z_{it}^{(s)} = 1 \\ TN_{(0, \infty)} \left(\mathbf{W}_{it} \boldsymbol{\beta}^{(s)} + \omega_{it}^{(s)}, 1 \right) & \text{if } Y_{itk}^{(s)} = 1 \\ \delta_0 & \text{if } Z_{it}^{(s)} = 0, \end{cases}$$

where δ_0 is the dirac delta function that indicates a point mass at zero.

- For each $s = 1, \dots, S$, we update the vector of detection regression coefficients $\boldsymbol{\beta}^{(s)}$ jointly. Let $\mathbf{W}^{(s)}$ denote the row-concatenated detection design matrix for species s at all locations, times, and surveys, that is, $\mathbf{W}^{(s)} = (\mathbf{W}_1^{(s)'} \dots, \mathbf{W}_T^{(s)'})'$ where $\mathbf{W}_t^{(s)} = (\mathbf{W}_{t1}^{(s)'} \dots, \mathbf{W}_{tJ}^{(s)'})'$ is the concatenation of design matrices at all J surveys during time t . Define $\boldsymbol{\omega}^{(s)} = (\tilde{\omega}_1^{(s)'} \dots, \tilde{\omega}_T^{(s)'})'$ where $\tilde{\omega}_t^{(s)} = \omega_t^{(s)} \otimes \mathbf{1}_J$ repeats the values of the random effect for each survey within the given season. For a given vector or matrix Ω , let Ω^* denote the sub-vector/matrix created by subsetting only the rows of Ω for which the corresponding $Z_{it}^{(s)} = 1$. Then, the full conditional distribution of $\boldsymbol{\beta}^{(s)}$ is $[\boldsymbol{\beta}^{(s)} \mid \cdot] = N(\bar{\mu}, \bar{\Sigma})$, where depending on the choice of prior distribution,

$$\bar{\Sigma}^{-1} = \begin{cases} \left(\mathbf{W}^{(s)*'} \mathbf{W}^{(s)*} \right) & \text{if } \pi(\boldsymbol{\beta}^{(s)}) = 1 \\ \left(\mathbf{W}^{(s)*'} \mathbf{W}^{(s)*} + \tau_b \mathbf{I} \right) & \text{if } \boldsymbol{\beta}^{(s)} \sim N(0, \tau_b) \end{cases}$$

$$\bar{\mu} = \bar{\Sigma} \times \left\{ \mathbf{W}^{(s)*'} (\tilde{\mathbf{Y}}^{(s)*} - \boldsymbol{\omega}^{(s)*}) \right\}.$$

- Note that we define $\omega_{it}^{(s)}$ at all combinations of i, t even if that site-season combination is not observed. Also note that the full conditional of $\omega_{it}^{(s)}$ only depends on observations which were observed and had $Z_{it}^{(s)} = 1$ since if the species was not actually there, then detection is undefined. Define I_{itj} to be an indicator that a survey was conducted at site i during season t . Observe that the latent detection process for all site season combinations (observed and unobserved) is then a mixture distribution such that $[\tilde{Y}_{itj}^{(s)} \mid Z_{it}^{(s)}, \omega_{it}^{(s)}, \boldsymbol{\beta}^{(s)}] = Z_{it}^{(s)} I_{itj} \phi \left(\tilde{Y}_{itj}^{(s)} - \mathbf{W}_{itj}^{(s)'} \boldsymbol{\beta}^{(s)} - \omega_{it}^{(s)} \right) + (1 - Z_{it}^{(s)} I_{itj}) \delta_0$, where $\phi(\cdot)$ is the standard normal probability density function. We will update the n -dimensional vector $\boldsymbol{\omega}_t^{(s)}$ for each t, s .

- For $t = 1$, observe

$$\begin{aligned} [\omega_1^{(s)} | \cdot] &\propto \left\{ Z_{it}^{(s)} I_{itj} \prod_{j=1}^{J_{it}} [\tilde{Y}_{itj}^{(s)} | \cdot] + (1 - Z_{it}^{(s)} I_{itj}) \delta_0 \right\} \\ &\quad \times [\omega_1^{(s)} | \omega_1^{(-s)}] [\omega_2^{(s)} | \omega_1^{(s)}, \omega_1^{(-s)}, \omega_2^{(-s)}] \\ &\propto \exp \left(-\frac{1}{2} \sum_j \mathbf{Z}_1 I_{1j} (\tilde{\mathbf{Y}}_{1j}^{(s)} - \mathbf{W}_{1j} \boldsymbol{\beta}^{(s)} - \omega_1^{(s)})' (\tilde{\mathbf{Y}}_{1j}^{(s)} - \mathbf{W}_{1j} \boldsymbol{\beta}^{(s)} - \omega_1^{(s)}) \right) \\ &\quad \times [\omega_1^{(s)} | \omega_1^{(-s)}] [\omega_2^{(s)} | \omega_1^{(s)}, \omega_1^{(-s)}, \omega_2^{(-s)}] \end{aligned}$$

Note that from the conditional property of the multivariate normal distribution, $[\omega_1^{(s)} | \omega_1^{(-s)}]$ is the pdf of a $N(\omega_1^{(-s)} \Sigma_{-s, -s}^{-1} \Sigma_{-s, s}, (\Sigma_{s, s} - \Sigma_{s, -s} \Sigma_{-s, -s}^{-1} \Sigma_{-s, s}) I_n)$, and $[\omega_2^{(s)} | \omega_1^{(s)}, \omega_1^{(-s)}, \omega_2^{(-s)}]$ is also a normal pdf with mean $\tilde{\rho}^{(s)} \omega_1^{(s)} + (\omega_2^{(-s)} - (\mathbf{1}_n \otimes \tilde{\rho}^{(-s)}) \omega_1^{(-s)}) \Sigma_{-s, -s}^{-1} \Sigma_{-s, s}$ and covariance $(\Sigma_{s, s} - \Sigma_{s, -s} \Sigma_{-s, -s}^{-1} \Sigma_{-s, s}) I_n$. In the above, we use $-s$ as a subscript or superscript to indicate the rows/columns that exclude s . Also, Σ refers to Σ_ω , but the subscript is dropped here for convenience. Let $\Sigma_{s|-s} = \Sigma_{s, s} - \Sigma_{s, -s} \Sigma_{-s, -s}^{-1} \Sigma_{-s, s}$. Simplifying yields that when $t = 1$, the full conditional distribution of $\omega_1^{(s)}$ is $[\omega_1^{(s)} | \cdot] = N(\bar{\mu}, \bar{\Sigma})$, where

$$\bar{\Sigma}^{-1} = \text{diag}(\mathbf{Z}_1 \sum_j I_{1j}) + (1 + \tilde{\rho}^{(s)2}) \Sigma_{s|-s}^{-1} I_n$$

and

$$\begin{aligned} \bar{\mu} &= \bar{\Sigma} \left\{ \mathbf{Z}_1 \sum_j I_{1j} \left(\tilde{\mathbf{Y}}_{1j}^{(s)} - \mathbf{W}_{1j} \boldsymbol{\beta}^{(s)} \right) + \Sigma_{s|-s}^{-1} (\Sigma'_{-s, s} \Sigma_{-s, -s}^{-1} \otimes I_n) \omega_1^{(-s)} \right. \\ &\quad \left. + \tilde{\rho}^{(s)} \Sigma_{s|-s}^{-1} \left[\omega_2^{(s)} - (\Sigma'_{-s, s} \Sigma_{-s, -s}^{-1} \otimes I_n) (\omega_2^{(-s)} - \tilde{\rho}^{(-s)} \omega_1^{(-s)}) \right] \right\} \end{aligned}$$

- Similarly, for $t = 2, \dots, T-1$ we get that the full conditional distribution of $\omega_t^{(s)}$ is $[\omega_t^{(s)} | \cdot] = N(\bar{\mu}, \bar{\Sigma})$, where

$$\bar{\Sigma}^{-1} = \text{diag}(\mathbf{Z}_t \sum_j I_{tj}) + (1 + \tilde{\rho}^{(s)2}) \Sigma_{s|-s}^{-1} I_n$$

and

$$\begin{aligned} \bar{\mu} &= \bar{\Sigma} \left\{ \mathbf{Z}_t \sum_j I_{tj} \left(\tilde{\mathbf{Y}}_{tj}^{(s)} - \mathbf{W}_{tj} \boldsymbol{\beta}^{(s)} \right) \right. \\ &\quad \left. + \Sigma_{s|-s}^{-1} \left(\tilde{\rho}^{(s)} \omega_{t-1}^{(s)} + (\Sigma'_{-s, s} \Sigma_{-s, -s}^{-1} \otimes I_n) (\omega_t^{(-s)} - \tilde{\rho}^{(-s)} \omega_{t-1}^{(-s)}) \right) \right\} \end{aligned}$$

$$+ \tilde{\rho}^{(s)} \Sigma_{s|-s}^{-1} \left[\boldsymbol{\omega}_{t+1}^{(s)} - (\Sigma'_{-s,s} \Sigma_{-s,-s}^{-1} \otimes \mathbf{I}_n) \left(\boldsymbol{\omega}_2^{(-s)} - \tilde{\rho}^{(-s)} \boldsymbol{\omega}_t^{(-s)} \right) \right] \} \}$$

- For $t = T$ the full conditional distribution of $\boldsymbol{\omega}_T^{(s)}$ is $[\boldsymbol{\omega}_T^{(s)} \mid \cdot] = N(\bar{\mu}, \bar{\Sigma})$, where

$$\bar{\Sigma}^{-1} = \text{diag}(\mathbf{Z}_T \sum_j \mathbf{I}_{Tj}) + \Sigma_{s|-s}^{-1} \mathbf{I}_n$$

and

$$\begin{aligned} \bar{\mu} = \bar{\Sigma} \left\{ \mathbf{Z}_t \sum_j \mathbf{I}_{tj} \left(\tilde{\mathbf{Y}}_{tj}^{(s)} - \mathbf{W}_{tj} \boldsymbol{\beta}^{(s)} \right) \right. \\ \left. + \Sigma_{s|-s}^{-1} \left(\tilde{\rho}^{(s)} \boldsymbol{\omega}_{T-1}^{(s)} + (\Sigma'_{-s,s} \Sigma_{-s,-s}^{-1} \otimes \mathbf{I}_n) \left(\boldsymbol{\omega}_T^{(-s)} - \tilde{\rho}^{(-s)} \boldsymbol{\omega}_{T-1}^{(-s)} \right) \right) \right\} \end{aligned}$$

- Our model assumes the detection propagator matrix is of the form $\tilde{\rho}_i = \text{diag}(\tilde{\rho}_i^{(1)}, \dots, \tilde{\rho}_i^{(S)})$. We update this S -dimensional vector jointly for each i . Let $D(\boldsymbol{\omega}_{i,t-1}) = \text{diag}(\omega_{i,t-1}^{(1)}, \dots, \omega_{i,t-1}^{(S)})$. be the $S \times S$ diagonal matrix. The full conditional distribution of the vectorized diagonal elements in $\tilde{\rho}_i$ is truncated multivariate normal $[\tilde{\rho}_i \mid \cdot] = N(\bar{\mu}, \bar{\Sigma})$, where

$$\bar{\Sigma}^{-1} = \sum_{t=2}^T D(\boldsymbol{\omega}_{i,t-1})' \Sigma_{\omega}^{-1} D(\boldsymbol{\omega}_{i,t-1})$$

$$\bar{\mu} = \bar{\Sigma} \times \left(\sum_{t=2}^T D(\boldsymbol{\omega}_{i,t-1})' \Sigma_{\omega}^{-1} \boldsymbol{\omega}_{i,t} \right)$$

- Assume the prior for Σ_{ω} is inverse Wishart with parameters ν and Ψ . The full conditional distribution of Σ_{ω} is inverse Wishart with parameters $\nu + nT$ and $\Psi + \sum_{t=1}^T \mathbf{B}_t$, where \mathbf{B}_t is the $S \times S$ matrix with (i, j) th entry $(B_t)_{i,j} = \text{trace}(\mathbf{C}_{i,j}^{(t)})$, where for $t = 1$, $\mathbf{C}^{(1)}$ is the block matrix with (i, j) th block

$$\mathbf{C}_{i,j}^{(1)} = (\boldsymbol{\omega}_1^{(i)}) (\boldsymbol{\omega}_1^{(j)})'$$

for $i, j = 1, \dots, S$, and for $t = 2, \dots, T$ we have the block matrix with (i, j) th block

$$\mathbf{C}_{i,j}^{(t)} = (\boldsymbol{\omega}_t^{(i)} - \tilde{\rho}^{(i)} \boldsymbol{\omega}_{t-1}^{(i)}) (\boldsymbol{\omega}_t^{(j)} - \tilde{\rho}^{(j)} \boldsymbol{\omega}_{t-1}^{(j)})',$$

where $\boldsymbol{\omega}_t^{(i)} = (\omega_{1t}^{(i)}, \dots, \omega_{nt}^{(i)})$ and $\tilde{\rho}^{(i)} = (\tilde{\rho}_1^{(i)}, \dots, \tilde{\rho}_n^{(i)})$.

References

Hepler, S.A. and R.J. Erhardt. 2021. A spatiotemporal model for multivariate occupancy data. *Environmetrics* 32(2): e2657 .