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Identification and analysis of lipid metabolism-related genes 1 

in allergic rhinitis 2 

 3 

ABSTRACT 4 

Background: Studies have shown that the lipid metabolism mediator leukotriene is 5 

associated with the pathogenesis of allergic rhinitis (AR). The purpose of this study 6 

was to demonstrate the key lipid metabolism-related genes (LMRGs) related to the 7 

diagnosis and treatment of AR. 8 

Material and methods: AR-related expression datasets (GSE75011, GSE46171) 9 

were downloaded through the Gene Expression Omnibus (GEO) database. First, 10 

weighted gene coexpression network analysis (WGCNA) was used to get AR-related 11 

genes (ARRGs). Next, between control and AR guoups in GSE75011, differentially 12 

expressed genes (DEGs) were screened, and DEGs were intersected with LMRGs to 13 

obtain lipid metabolism-related differentially expressed genes (LMR DEGs). Protein‒14 

protein interaction (PPI) networks were constructed for these LMR DEGs. Hub genes 15 

were then identified through stress, radiality, closeness and edge percolated 16 

component (EPC) analysis and intersected with the ARRGs to obtain candidate genes. 17 

Biomarkers with diagnostic value were screened via receiver operating characteristic 18 

(ROC) curves. Differential immune cells screened between control and AR groups 19 

were then assessed for correlation with the diagnostic genes, and clinical correlation 20 

analysis and enrichment analysis were performed. Finally, reverse 21 

transcription-polymerase chain reaction (RT‒qPCR) was made on blood samples from 22 
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control and AR patients to validate these identified diagnostic genes. 23 

Results: 73 LMR DEGs were obtained, which were involved in biological processes 24 

such as metabolism of lipids and lipid biosynthetic processes. Sixty-six ARRGs and 25 

22 hub genes were intersected to obtain four candidate genes. Three diagnostic genes 26 

(LPCAT1, SGPP1, SMARCD3) with diagnostic value were screened according to the 27 

AUC > 0.7, with markedly variant between control and AR groups. In addition, two 28 

immune cells, regulatory T cells (TReg) and T follicular helper cells (TFH), were 29 

marked variations between control and AR groups, and SMARCD3 was significantly 30 

associated with TFH. Moreover, SMARCD3 was relevant to immue-related pathways, 31 

and correlated significantly with clinical characteristics (age and sex). Finally, RT‒32 

qPCR results indicated that changes in the expression of LPCAT1 and SMARCD3 33 

between control and AR groups were consistent with the GSE75011 and GSE46171. 34 

Conclusion: LPCAT1, SGPP1 and SMARCD3 might be used as biomarkers for AR. 35 

Keywords: Allergic rhinitis; Lipid metabolism; Biomarkers; Diagnostic model; 36 

Immune infiltration 37 

 38 

Introduction 39 

Allergic rhinitis (AR) is a chronic atopic disease characterized by the generation of 40 

specific IgE that affects approximately 10%~20% of the global population [1]. 41 

Exposure to inhaled allergens in susceptible individuals is a frequent precipitating 42 

factor for AR. The most common clinical symptoms include paroxysmal sneezing, 43 

nasal obstruction, rhinorrhea, and nasal itching, sometimes in association with 44 
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conjunctivitis, such as eye itching and tearing. Persistent severe rhinitis may 45 

predispose patients toward asthma [2]. Moreover, AR patients often have decreased 46 

learning and work efficiency, impaired sleep and quality of life, and even 47 

psychological disorders such as depression, leading to a huge economic burden on 48 

society. For treatment, nasal corticosteroids, antihistamines, and leukotriene receptor 49 

antagonists are currently the most recommended drugs [3]. However, their long-term 50 

drug use leads to a range of side effects, including epistaxis and drowsiness. 51 

Furthermore, the sustained poor efficacy of available drugs causes recurrent illnesses. 52 

Thus, finding more effective treatment for AR treatment is crucial. 53 

Lipids are composed of fats and lipoids and play an important role in different 54 

organelles as a second messenger for intracellular signaling [4]. Lipid metabolism 55 

refers to the digestion, synthesis, and disassembly of lipids, with the help of various 56 

enzymes related to the processing of substances necessary for the body to ensure 57 

normal physiologic function. Previous studies showed that lipid metabolism-related 58 

genes (LMRGs) are associated with several systemic diseases. For instance, Li et al. 59 

found that LMRGs in circulation have good predictive value for early diagnosis of 60 

intervertebral disc degeneration (IDD) [5]. LMRGs are also involved in lung cancer 61 

development and might serve as biomarkers for lung cancer [6], and the lipid 62 

compound prostaglandins is an effective therapeutic target in allergic airway diseases 63 

[7]. Leukotriene is a well-recognized lipid inflammatory mediator in allergic diseases, 64 

and leukotriene receptor antagonists are one of the major medications for AR [8]. In 65 

addition, AR patients have a high level of apolipoprotein in nasal mucus, which may 66 



be involved in lipid metabolism and have immunomodulatory properties [9]. 67 

Nevertheless, the relationship between LMRGs and AR has remained unclear. 68 

In this study, AR-related public datasets and comprehensive bioinformatics methods 69 

were used to identify LMRGs with diagnostic value for AR, providing a potential 70 

treatment of AR patients. 71 

Materials and methods 72 

Data extraction 73 

AR-related datasets (GSE75011 and GSE46171) were downloaded through GEO 74 

database. The GSE75011 was the training set, containing 15 control and 25 AR blood 75 

samples. GSE46171 dataset containing 3 control and 6 AR samples of nasal mucous 76 

was used as an external validation set. A total of 750 LMRGs were gained through 77 

Reactome and the Kyoto Encyclopedia of Genes and Genomes (KEGG) repository 78 

[5]. 79 

 80 

Identification of AR-related genes (ARRGs) 81 

To gain ARRGs in GSE75011, weighted gene coexpression network analysis 82 

(WGCNA) was performed. First, the samples were clustered in order to remove 83 

outliers. Thereafter, the determination of soft threshold (β) was performed. Modules 84 

were segmented via dynamic tree cutting based on optimal β. Correlations were 85 

analyzed between modules and AR. The genes of the highest relevance module with 86 

|gene significance (GS)| > 0.3, |module membership (MM)| > 0.6, and P < 0.05 were 87 

defined as ARRGs [10]. 88 

1

2

13

19



 89 

Screening and functional analysis of lipid metabolism-related differentially 90 

expressed genes (LMR DEGs) 91 

First, sample normalization on the GSE75011 dataset was performed via “limma” R 92 

package (version 3.48.3). The mRNA expression levels between control and AR 93 

groups in the GSE75011 dataset were contrasted via the “limma” R package (version 94 

3.48.3) (P < 0.05) [11]. DEGs and LMRGs were taken to intersect to get LMR DEGs. 95 

Subsequently, enrichment analysis for LMR DEGs via Metascape database (P < 0.05) 96 

[12]. In addition, the online database WebGestalt was used to study the isease 97 

Ontology (DO) function of LMR DEGs. 98 

 99 

Creation of protein‒protein interaction (PPI) networks of LMR DEGs and 100 

screening of hub genes 101 

PPIs of LMR DEGs were created via Search Tool for the Retrieval of Interacting 102 

Genes (STRING). Subsequently, Cytoscape was utilized to visualize PPIs, and hub 103 

genes were obtained by intersecting the top 30 genes calculated by stress, radiality, 104 

closeness, and edge percolated component (EPC). 105 

 106 

Screening of diagnostic genes 107 

First, candidate genes were obtained by intersecting hub genes with ARRGs, and 108 

enrichment analysis were applied on them. Second, receiver operating characteristic 109 

(ROC) curves of the candidate genes were mapped via “pROC” R package (version 110 
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1.18.0) in the GSE75011 and GSE46171[13]. Candidate genes with area under the 111 

curve (AUC) ≥ 0.7 were regarded diagnostic genes. A nomogram was constructed 112 

with hub genes, and a calibration curve of the nomogram was drawn to verify its 113 

validity. The diagnostic worth of age, sex, and time point was assessed in GSE46171 114 

via ROC curves. 115 

 116 

Immune analysis 117 

The single-set gene set enrichment analysis (ssGSEA) algorithm was utilized to assess 118 

infiltrating richness of immune cells between AR and normal groups in the training 119 

set. Differences of the control and AR groups were compared by the Wilcox test. In 120 

addition, relevance was analyzed via Spearman algorithm between diagnostic genes 121 

and differential immune cells. 122 

 123 

Analysis of clinical correlation 124 

Relevance between diagnostic genes and clinical characteristics (age, sex, time point) 125 

was analyzed using Pearson in the “corrplot” R package [14]. 126 

 127 

Gene Set Enrichment Analysis (GSEA) of diagnostic genes 128 

On the basis of the median value of the diagnostic genes expression, the samples of 129 

GSE75011 were grouped into high and low expression groups. All genes in two 130 

expression groups were performed GSEA with |normalized enrichment score (NES)| > 131 

1, nominal (NOM) P value < 0.05, and q < 0.25 [15]. 132 
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 133 

Expression profiles of diagnostic genes in external validation datasets 134 

To further demonstrate the reliability of the results above, expression levels of the 135 

diagnostic genes between AR and control samples were compared in the GSE75011 136 

and GSE46171 datasets for external validation. 137 

 138 

Patients and tissue preparation 139 

Ten AR patients and ten patients without AR or significant underlying disease were 140 

selected from people visiting to Shanghai Changzheng Hospital. There were no 141 

marked variation in sex and age between the groups (Table 1). Blood samples were 142 

acquired from these patients with informed consent and carried out reverse 143 

transcription-polymerase chain reaction (RT‒qPCR). This Medical Ethics Committee 144 

of Shanghai Changzheng Hospital endorsed this study.  145 

 146 

Table 1 Basic information of the patients 147 

Group 

 Sex 

Age (mean ± STD) 

 Male Female 

AR  6 4 29.9±5.705 

Control  5 5 28.4±3.098 

STD, standard deviation 148 

 149 

RT‒qPCR 150 
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Firstly, we conducted the total RNA extraction utilizing TRIzol (Ambion, Austin, 151 

USA). Then, reverse transcription of total RNA to cDNA was made via 152 

First-strand-cDNA-synthesis-kit (Servicebio, Wuhan, China). RT‒qPCR was made 153 

utilizing the 2xUniversal Blue SYBR Green qPCR Master Mix (Servicebio, Wuhan, 154 

China). Specific experimental steps were carried out on the basis of instructions. The 155 

primer sequences were showcased in Additional file 1. Internal reference gene was 156 

GAPDH. The 2−ΔΔCt method was utilized to calculate the expression of diagnostic 157 

genes [16]. Levels of expression of diagnostic genes between the control and AR 158 

groups were compared by the T test. 159 

 160 

Statistical analysis 161 

Statistical analysis was carried out through GraphPad Prism 5 and R software (version 162 

4.2.0). P < 0.05 represented a significant difference. Differences between groups were 163 

analyzed via the Wilcoxon test.  164 

 165 

Results 166 

Acquisition of ARRGs 167 

To identify ARRGs, WGCNA was performed with the GSE75011 dataset. Sample 168 

clustering analysis showed no outliers in the dataset (Figure 1A). The β was 4 (Figure 169 

1B), and each gene module contained a minimum of 100 genes. Three modules were 170 

eventually identified, each with a unique color (Figure 1C-D). The blue module 171 
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correlated markedly with AR (cor = -0.35, P = 0.03) (Figure 1D). Finally, 66 ARRGs 172 

were gained and utilized for further analysis (Figure 1E). 173 

 174 

Acquisition and functional enrichment of LMR DEGs 175 

The 25 samples were standardized for the GSE75011 dataset and are presented as box 176 

plots in Figure 2A-B. The volcano plot and heatmap show 1621 DEGs between the 177 

AR and control groups, including 810 upregulated and 811 downregulated genes 178 

(Figure 2C-D). A total of 73 LMR DEGs (Additional file 2) were obtained by Venn 179 

analysis with LMRGs (810 genes) and DEGs (1621 genes), with a significant 180 

difference detected based on a heatmap (Figure 2E-F). Enrichment analysis of the 73 181 

LMR DEGs by Metascape showed a total of 334 functional pathways (Figure 2G-H) 182 

to be related to the LMR DEGs, such as metabolism of lipids, lipid biosynthetic 183 

process, and sterol regulatory element-binding protein (SREBP) signaling. DO 184 

enrichment results showed that the LMR DEGs are significantly associated with 10 185 

diseases, namely, xanthomatosis, increased serum pyruvate, decreased high-density 186 

lipoprotein, hypoalphalipoproteinemia, myoglobinuria, insulin-resistant diabetes, 187 

neonatal death, thin skin, myalgia and cardiomegaly (Figure 2I). 188 

 189 

Acquisition of hub genes 190 

The PPI network was created for LMR DEGs. As illustrated in Figure 3A-B, SREBF1 191 

interacts with multiple proteins, such as LPIN1, GPAM, and MED1. To identify the 192 

most important genes, the 22 genes common to the 4 algorithms were used as hub 193 



genes (Figure 3C), and a PPI network of hub genes was created (Figure 3D). The 194 

results showed that GPAM interacts with 7 genes, namely, PPARG, NFYA, SREBF1, 195 

ACSL3, LPIN1, HMGCS1 and AACS. 196 

 197 

Acquisition of diagnostic genes 198 

Four candidate genes associated with diagnosis of AR were obtained by 66 ARRGs 199 

with 22 hub genes taking intersections: LPCAT1, SREBF1, SMARCD3, and SGPP1 200 

(Figure 4A). The four candidate genes were involved in 133 GO items, including 114 201 

GO BP, 9 GO CC and 10 GO MF, such as retina development in camera-type eye, 202 

npBAF complex, and transcription coregulator binding (Figure 4B). 203 

The diagnostic value of four candidate genes was assessed via ROC curve in 204 

GSE75011 and GSE46171. The AUC values for the three genes (LPCAT1, 205 

SMARCD3, and SGPP1) were greater than 0.7 in both datasets, suggesting that the 206 

three genes have diagnostic value for AR (Figure 4C-D). The AUCs for age, sex and 207 

time point were 0.4492, 0.4839, and 0.7166, respectively, in GSE46171, revealing 208 

that sex might be a diagnostic factor for AR (Figure 4E). 209 

 210 

Finally, the nomograms were created containing the three diagnostic genes in 211 

GSE75011 and GSE46171 (Figure 5A-B), and the AUC values in both datasets were 212 

above 0.6 (Figure 5C-D). The results demonstrated that the nomogram has good 213 

prediction ability for AR . 214 

 215 
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Immuno-infiltration analysis in AR and control groups 216 

Analysis of the percentage of immune cells by ssGESA in all samples showed the 217 

highest for T cells (Figure 6A). Differences in infiltrating immune cells between the 218 

AR and control groups were illustrated by a violin plot (Figure 6B). The results 219 

suggested that infiltration of regulatory T cells (TRegs) and T follicular helper cells 220 

(TFHs) was markedly lower in the AR group. There was significant relevance 221 

between SMARCD3 and TFHs. However, neither LPCAT1 nor SGPP1 correlated 222 

with differential immune cells (TRegs and TFHs); therefore, SMARCD3 was selected 223 

for further analysis (Figure 6C-E). 224 

 225 

Correlation analysis of clinical features, enrichment analysis and infiltration 226 

analysis of SMARCD3 227 

Pearson correlation analysis demonstrated that SMARCD3 was significantly 228 

associated with clinical characteristics (age and sex) (Figure 7A-C). Then, GSEA for 229 

SMARCD3 was performed, revealing 256 GO enrichment (Additional file 3) and 33 230 

KEGG (Additional file 4) pathways (Figure 7D-E). Overall, SMARCD3 was involved 231 

in immune-related pathways, for instance, the B-cell receptor signaling pathway and 232 

T-cell receptor signaling pathway. Four immune cells displayed marked variations 233 

between the high and low expression groups, namely, macrophages, T helper cells, 234 

Tcm, and TFH cells, reflecting the strong relevance between SMARCD3 and the 235 

immune microenvironment (Figure 7F). 236 

 237 
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mRNA levels of diagnostic genes 238 

The significant differences in expression of SGPP1, LPCAT1 and SMARCD3 239 

between control and AR in GSE75011 and GSE46171 were clearly observed via 240 

visualized data (Figure 8A-B). Moreover, the changes of the three genes expression 241 

were consistent in blood and nasal mucosal tissues, suggesting that these three genes 242 

are of high diagnostic value.  243 

 244 

To verify diagnostic gene expression, we collected blood samples to assess mRNA 245 

expression levels of three prognostic genes via RT-qPCR. The expression trends of 246 

LPCAT1 and SMARCD3 were consistent with public databases, and the expression 247 

was lower in AR group (Figure 9A-B). However, SGPP1 exhibited the opposite trend 248 

compared to the results of public database, possibly due to different experimental 249 

designs or analysis methods (Figure 9C). 250 

 251 

Discussion 252 

AR is an airway allergic disease with a high incidence, affecting billions of people in 253 

the world. Nevertheless, the effect of current therapies for AR is unsatisfactory due to 254 

its complex pathogenesis. LMRGs are involved in the maintenance of systemic 255 

physiology and play an important role in diverse diseases, especially in malignant 256 

tumors. Moreover, lipid-related inflammatory mediators such as prostaglandins and 257 

leukotrienes have been implicated in AR pathogenesis. To our knowledge, this is the 258 

first study to identify and analyze LMRGs in AR. 259 

15



In this study, three key LMRGs most associated with AR, i.e., LPCAT1, SGPP1, and 260 

SMARCD3, were identified, all of which are protein-coding genes. As one of the 261 

lysophosphatidylcholine acyltransferase (LPCAT) family, the LPCAT1 protein is an 262 

enzyme essential for phosphatidylcholine metabolism and regulation of 263 

phosphatidylcholine composition [17]. LPCAT1 is also used in multiple tumors’ 264 

prognosis, such as colorectal cancer, breast cancer, and hepatocellular 265 

carcinoma[18-20]. Little is known about LPCAT1 in allergic diseases. One study 266 

reported that LPCAT1 downregulates eosinophilic inflammation in asthmatic mice 267 

[21]. In the current study, LPCAT1 was significantly lower in AR blood samples, 268 

consistent with published results, suggesting that it may be essential for AR 269 

pathogenesis. SGPP1 can catalyze degradation of S1P, who can regulate diverse 270 

biological processes, as a bioactive sphingolipid metabolite [22]. SGPP1 is considered 271 

to be closely related to several tumors, especially regarding chemoresistance and 272 

radioresistance [23, 24]. There are currently no reports about the function of SGPP1 273 

in allergic diseases, and the results in the current study are the first to show significant 274 

downregulation of SGPP1 in both blood and nasal mucosa samples in AR patients; 275 

conversely, RT‒qPCR using blood samples showed the opposite result, possibly due 276 

to different experimental designs or analysis methods. Thus, the effect of SGPP1 in 277 

AR is still unclear. SMARCD3 is a chromatin-remodeling factor and a member of the 278 

SWI/SNF family, which present helicase and ATPase activities and are crucial in the 279 

transcription process of certain genes. Its related pathways include the circadian clock 280 

and transcriptional activation of mitochondrial biogenesis [25]. SMARCD3 was found 281 
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to be downregulated in AR patients in this study, but how it participates in disease 282 

processes remains to be explored. 283 

Immuno-infiltration analysis refers to studying the composition and quantification of 284 

immune cells in diseases. In this study, T follicular helper cells (TFHs) were 285 

extremely significantly reduced in the AR group. TFHs are CD4+ T cells that 286 

specialize in helping B cells and are involved in a wide range of diseases. An 287 

increasing number of theories have concluded that the antigen-related IgE response 288 

depends on more TFHs than Th2 cells [26, 27]. There are few reports about TFH and 289 

SMARCD3. A microarray model system identified that the SMARCD3 gene is 290 

upregulated in T-cell acute lymphoblastic leukemia [28]. In this study, only 291 

SMARCD3 correlated with differential immune cells (TRegs and TFHs), and TFHs 292 

and SMARCD3 were downregulated simultaneously in AR patients. Hence, it is 293 

hypothesized that SMARCD3 participates in the differentiation of T cells. 294 

GSEA was performed to further investigate the role of SMARCD3 in AR, the results 295 

of which showed significant enrichment in the adipocytokine signaling pathway, 296 

B-cell receptor signaling pathway, and chemokine signaling pathway, among others. 297 

The adipocytokine signaling pathway refers to a series of cascade events via autocrine 298 

or paracrine adipocytokines, such as leptin and adiponectin, by adipocytes in the body 299 

[29, 30]. This pathway is not only crucial for obesity, insulin resistance, and type II 300 

diabetes mellitus but also plays an important role in inflammation and allergic 301 

diseases. Dysregulation of pulmonary adipocytokine/insulin signaling caused by 302 

early-onset obesity has been proven to induce asthma-like disease in mice [31]. The 303 
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leptin/osteopontin axis promotes Th2 inflammation and Th17 responses in AR 304 

through the NF-кB, MAPK, JNK pathway and β3 integrin [32, 33]. Signaling through 305 

the B-cell receptor (BCR) is crucial for antigen recognition and subsequent biological 306 

effects, including B-cell activation, proliferation, and differentiation, which ensure 307 

host defense [34]. One study demonstrated that the BCR signaling pathway was 308 

significantly enriched among differentially expressed vesicle miRNAs in AR patient 309 

nasal mucus, consistent with the findings in the current study and further elucidating 310 

the importance of the BCR signaling pathway in AR development [35]. Chemokines 311 

are small molecule-scale cytokines that recruit leukocyte subsets under steady-state 312 

and pathological conditions; signaling pathways are activated by their binding to 313 

receptors on the cell surface and are involved in chronic inflammatory and 314 

autoimmune diseases. Multiple studies have shown that knockdown of the chemokine 315 

receptor CCR3 reduces eosinophilic inflammation and the Th2 immune response in 316 

AR [36-38]. In summary, our findings are in accordance with all of the above studies. 317 

 318 

Comparisons with other studies and contribution of the current work to existing 319 

knowledge 320 

To the best of our knowledge, exploration of AR based on GSE75011 and GSE46171 321 

has mainly targeted key genes  differentially expressed between AR and control 322 

samples [39-42]. In the current study, the biological significance of lipid metabolism 323 

in AR was first systematically explored at the genetic level through these datasets. 324 

Moreover, correlation between SMARCD3 expression and immune cell infiltration 325 
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was investigated to elucidate the underlying role of immune-related treatment 326 

targeting the SMARCD3 gene in exploration of AR development. 327 

 328 

Study strengths and limitations 329 

Three key LMRGs with high diagnostic values for AR were identified and analyzed 330 

for the first time based on bioinformatics analysis of AR-related expression datasets. 331 

However, the limitations of this study cannot be ignored. First, small sample sizes and 332 

small datasets of AR may have introduced bias. Second, the mechanisms of these 333 

genes in AR development have not been clearly elucidated. Deeper research may be 334 

needed for the possibility of clinical use in the future. 335 

Conclusions 336 

In summary, this is the first bioinformatics analysis of LMRGs in AR, and three key 337 

genes (LPCAT1, SGPP1 and SMARCD3) with high diagnostic value for AR were 338 

identified. A highly accurate nomogram was constructed to validate the clinical value 339 

of the gene-based diagnostic model. In addition, two of these genes were confirmed 340 

by clinical validation and are considered potential treatment targets. In particular, the 341 

correlation of SMARCD3 expression and immune cell infiltration was helpful to 342 

reveal future research directions of immune-related treatment targeting the 343 

SMARCD3 gene in AR. 344 

 345 
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