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Background: Studies have shown that the lipid metabolism mediator leukotriene is
associated with the pathogenesis of allergic rhinitis (AR).Qhe purpose of this study
was to demonstrate the key lipid metabolism-related genes (LMRGs) related to the
diagnosis and treatment of AR.

Material and methods: AR-related expression datasets (GSE75011, GSE46171)
were downloaded through%e Gene Expression Omnibus (GEQO) database. First,
weighted gene coexpression network analysis (WGCNA) was used to get AR-related
genes (ARRGS). Next, between control and AR guoups in GSE75011,Qifferentially
expressed genes (DEGs) were screened, and DEGs were intersected with LMRGs to
obtain lipid metabolism-relatetgfferentiaIIy expressed genes (LMR DEGS). Protein—
protein interaction (PPI) networks were constructed for these LMR DEGs. Hub genes
were then identified through stress, radiality, closeness and edge percolated
component (EPC) analysis and intersected with the ARRGs to obtain candidate genes.
Biomarkers with diagnostic value were screened via receiver operating characteristic
(ROC) curves. Differential immune cells screened between control and AR groups
were then assessed for correlation with the diagnostic genes, and clinical correlation
analysis and enrichment analysis were performed. Finally, @everse

transcription-polymerase chain reaction (RT—qPCR) was made on blood samples from
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control and AR patients to validate these identified diagnostic genes.

Results: 73 LMR DEGs were obtained, which were involved in biological processes
such as metabolism of lipids and lipid biosynthetic processes. Sixty-six ARRGs and
22 hub genes were intersected to obtain four candidate genes. Three diagnostic genes
(LPCATL1, SGPP1, SMARCD3) with diagnostic value were screened according to the
AUC > 0.7, with markedly variant between control and AR groups. In addition, two
immune@ells, regulatory T cells (TReg) and T follicular helper cells (TFH), were
marked variations between control and AR groups, and SMARCD?3 was significantly
associated with TFH. Moreover, SMARCD?3 was relevant to immue-related pathways,
and correlated significantly with clinical characteristics (age and sex). Finally, RT—
qPCR results indicated that changes in the expression of LPCAT1 and SMARCD3
between control and AR groups were consistent with the GSE75011 and GSE46171.
Conclusion: LPCAT1, SGPP1 and SMARCD3 might be used as biomarkers for AR.
Keywords: Allergic rhinitis; Lipid metabolism; Biomarkers; Diagnostic model;

Immune infiltration

Qltroduction

Allergic rhinitis (AR) is a chronic atopic disease characterized by the generation of

specific IgE that affects approximately 10%~20% of the global population [1].

@xposure to inhaled allergens in susceptible individuals is a frequent precipitating

factor for AR. The most common clinical symptoms include paroxysmal sneezing,

nasal obstruction, rhinorrhea, and nasal itching, sometimes in association with
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conjunctivitis, such as eye itching and tearing. Persistent severe rhinitis may
predispose patients toward asthma [2]. Moreover, AR patients often have decreased
learning and work efficiency, impaired sleep and quality of life, and even
psychological disorders such as depression, leading to a huge economic burden on
society. For treatment, nasal corticosteroids, antihistamines, and leukotriene receptor
antagonists are currently the most recommended drugs [3]. However, their long-term
drug use leads to a range of side effects, including epistaxis and drowsiness.
Furthermore, the sustained poor efficacy of available drugs causes recurrent illnesses.
Thus, finding more effective treatment for AR treatment is crucial.

Lipids are composed of fats and lipoids and play an important role in different
organelles as a second messenger for intracellular signaling [4]. Lipid metabolism
refers to the digestion, synthesis, and disassembly of lipids, with the help of various
enzymes related to the processing of substances necessary for the body to ensure
normal physiologic function. Previous studies showed that lipid metabolism-related
genes (LMRGs) are associated with several systemic diseases. For instance, Li et al.
found that LMRGs in circulation have good predictive value for early diagnosis of
intervertebral disc degeneration (IDD) [5]. LMRGs are also involved in lung cancer
development and might serve as biomarkers for lung cancer [6], and the lipid
compound prostaglandins is an effective therapeutic target in allergic airway diseases
[7]. Leukotriene is a well-recognized lipid inflammatory mediator in allergic diseases,
and leukotriene receptor antagonists are one of the major medications for AR [8]. In

addition, AR patients have a high level of apolipoprotein in nasal mucus, which may



67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

be involved in lipid metabolism and have immunomodulatory properties [9].
Nevertheless, the relationship between LMRGs and AR has remained unclear.

In this study, AR-related public datasets and comprehensive bioinformatics methods
were used to identify LMRGs with diagnostic value for AR, providing a potential

treatment of AR patients.

Materials and methods

Data extraction

AR-related datasets (GSE75011 and GSE46171) were downloaded through GEO
database. The GSE75011 was the training set, containing 15 control and 25 AR blood
samples. GSE46171 dataset containing 3 control and 6 AR samples of nasal mucous
was used as an external validation set. A total of 750 LMRGs were gained through

Reactome and theroto Encyclopedia of Genes and Genomes (KEGG) repository

[5].

Identification of AR-related genes (ARRGS)

To gain ARRGs in GSE75011,Q/eighted gene coexpression network analysis
(WGCNA) was performed. First, the@amples were clustered in order to remove
outliers. Thereafter, the determination of soft threshold () was performed. Modules
were segmented via dynamic tree cutting based on optimal . Correlations were
analyzed between modules and AR. The genes of the highest relevance module@dth
|gene significance (GS)| > 0.3, |module membership (MM)| > 0.6, and P < 0.05 were

defined as ARRGs [10].
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Screening and functional analysiSQf lipid metabolism-related differentially
expressed genes (LMR DEGs)

First, sample normalization on the GSE75011 dataset was performed via Qmma” R
package (version 3.48.3). The mRNA expression levels between control and AR
groups in the GSE75011 dataset were contrasted Vige “limma” R package (version
3.48.3) (P < 0.05) [11]. DEGs and LMRGs were taken to intersect to get LMR DEGs.
Subsequently, enrichment analysis for LMR DEGs via Metascape database (P < 0.05)
[12]. In addition, the online database WebGestalt was used to study the isease

Ontology (DO) function of LMR DEGs.

Creation ol%rotein—protein interaction (PPI) networks of LMR DEGs and
screening of hub genes

PPIs of LMR DEGs were created viaQearch Tool for the Retrieval of Interacting
Genes (STRING). Subsequently, Cytoscape was utilized to visualize PPIs, and hub
genes were obtained by intersecting the top 30 genes calculated by stress, radiality,

closeness, and edge percolated component (EPC).

Screening of diagnostic genes
First, candidate genes were obtained by intersecting hub genes with ARRGs, and
enrichment analysis were applied on them. Secondgeceiver operating characteristic

(ROC) curves of the candidate genes were mapped via “pROC” R package (version
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1.18.0) in the GSE75011 and GSE46171[13]. Candidate%enes with area under the
curve (AUC) > 0.7 were regarded diagnostic genes. A nomogram was constructed
with hub genes, and a calibration curve of the nomogram was drawn to verify its
validity. The diagnostic worth of age, sex, and time point was assessed in GSE46171

via ROC curves.

Immune analysis

Qhe single-set gene set enrichment analysis (ssGSEA) algorithm was utilized to assess

infiltrating richness of immune cells between AR and normal groups in the training
set. Differencegf the control and AR groups were compared by the Wilcox test. In
addition, relevance was analyzed via Spearman algorithm@etween diagnostic genes

and differential immune cells.

Analysis of clinical correlation
Relevance between diagnostic genes and clinical characteristics (age, sex, time point)

was analyzed using Pearson in the “corrplot” R package [14].

Qene Set Enrichment Analysis (GSEA) of diagnostic genes

On the basis of the median value of the diagnostic genes expression, the samples of
GSE75011 were grouped into high and low expression groups. All genes in two
expression groups were performed GSEA With?Ormalized enrichment score (NES)| >

1, nominal (NOM) P value < 0.05, and q < 0.25 [15].
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Expression profiles of diagnostic genes in external validation datasets
To further demonstrate the reliability of the results above,prression levels of the
diagnostic genes between AR and control samples were compared in the GSE75011

and GSE46171 datasets for external validation.

Patients and tissue preparation

Ten AR patients and ten patients without AR or significant underlying disease were
selected from people visiting to Shanghai Changzheng Hospital.Qhere were no
marked variation in sex and age between the groups (Table 1). Blood samples were
acquired from these patients with informed consent and@arried out reverse
transcription-polymerase chain reaction (RT—qPCR). This Medical Ethics Committee

of Shanghai Changzheng Hospital endorsed this study.

Table 1 Basic information of the patients

Sex
Group Age (mean £ STD)
Male Female
AR 6 4 29.9+5.705
Control 5 5 28.4+3.098

STD, standard deviation

RT-qPCR



151  Firstly, we conducted the total RNA extraction utilizing TRIzol (Ambion, Austin,
152 USA). Then, reverse transcription of total RNA to cDNA was made via
153 Qirst-strand-cDNA-synthesis—kit (Servicebio, Wuhan, China). RT—qPCR was made
154  utilizing the 2xUniversal Blue SYBR Green qPCR Master Mix (Servicebio, Wuhan,
155  China). Specific experimental steps were carried out on the basis of instructions. The
156  primer sequences were showcased in Additional file 1. Internal reference gene was
157 GAPDH.q he 2724t method was utilized to calculate the expression of diagnostic
158  genes [16]. Levels of expression of diagnostic genes between the control and AR
159  groups were compared by the T test.

160

161 Qtatistical analysis

162  Statistical analysis was carried out through GraphPad Prism 5 and R software (version
163 4.2.0)9 < 0.05 represented a significant difference. Differences between groups were
164  analyzed via the Wilcoxon test.

165

166  Results

167  Acquisition of ARRGs

168  To identify ARRGs, WGCNA was performed with the GSE75011 dataset. Sample
169  clustering analysis showed no outliers in the dataset (Figure 1A). The B was 4 (Figure
170  1B), and each gene module contained a minimum of 100 genes. Three modules were

171  eventually identified, each with a unique color (Figure 1C-D). The blue module
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correlated markedly with AR (cor = -0.35, P = 0.03) (Figure 1D). Finally, 66 ARRGs

were gained and utilized for further analysis (Figure 1E).

Acquisition and functional enrichment of LMR DEGs

The 25 samples were standardized for the GSE75011 dataset and are presented as box
plots in Figure 2A-B. The volcano plot and heatmap show 1621 DEGs between the
AR and control groups, including 810 upregulated and 811 downregulated genes
(Figure 2C-D). A total of 73 LMR DEGs (Additional file 2) were obtained by Venn
analysis with LMRGs (810 genes) and DEGs (1621 genes), with a significant
difference detected based on a heatmap (Figure 2E-F). Enrichment analysis of the 73
LMR DEGs by Metascape showed a total of 334 functional pathways (Figure 2G-H)
to be related to the LMR DEGs, such as metabolism of lipids, lipid biosynthetic
process, and sterol regulatory element-binding protein (SREBP) signaling. DO
enrichment results showed that the LMR DEGs are significantly associated with 10
diseases, namely, xanthomatosis, increased serum pyruvate, decreased high-density
lipoprotein, hypoalphalipoproteinemia, myoglobinuria, insulin-resistant diabetes,

neonatal death, thin skin, myalgia and cardiomegaly (Figure 21).

Acquisition of hub genes
The PPI network was created for LMR DEGs. As illustrated in Figure 3A-B, SREBF1
interacts with multiple proteins, such as LPIN1, GPAM, and MED1. To identify the

most important genes, the 22 genes common to the 4 algorithms were used as hub



194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

genes (Figure 3C), and a PPl network of hub genes was created (Figure 3D). The
results showed that GPAM interacts with 7 genes, namely, PPARG, NFYA, SREBF1,

ACSL3, LPIN1, HMGCS1 and AACS.

Acquisition of diagnostic genes

Four candidate genes associated with diagnosis of AR were obtained by 66 ARRGs
with 22 hub genes taking intersections: LPCAT1, SREBF1, SMARCD3, and SGPP1
(Figure 4A). The four candidate genes were involved in 133 GO items, including 114
GO BP, 9 GO CC and 10 GO MF, such as retina development in camera-type eye,
npBAF complex, and transcription coregulator binding (Figure 4B).

Qhe diagnostic value of four candidate genes was assessed via ROC curve in
GSE75011 and GSE46171. The AUC values for the three genes (LPCAT],
SMARCD3, and SGPP1) were greater than 0.7 in both datasets, suggesting that the
three genes have diagnostic value for AR (Figure 4C-D). The AUCs for age, sex and
time point were 0.4492, 0.4839, and 0.7166, respectively, in GSE46171, revealing

that sex might be a diagnostic factor for AR (Figure 4E).

Finally, the nomograms were created containing the three diagnostic genes in
GSE75011 and GSE46171 (Figure 5A-B), and the AUC values in both datasets were
above 0.6 (Figure 5C-D). The results demonstrated that the nomogram has good

prediction ability for AR .
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Immuno-infiltration analysis in AR and control groups

Analysis of the percentage of immune cells by ssGESA in all samples showed the
highest for T cells (Figure 6A).%ifferences in infiltrating immune cells between the
AR and control groups were illustrated by a violin plot (Figure 6B). The results
suggested that infiltration of regulatoqﬂ cells (TRegs) and T follicular helper cells
(TFHs) was markedly lower in the AR group. There was significant relevance
between SMARCD3 and TFHs. However, neither LPCAT1 nor SGPP1 correlated
with differential immune cells (TRegs and TFHs); therefore, SMARCD3 was selected

for further analysis (Figure 6C-E).

Correlation analysis of clinical features, enrichment analysis and infiltration
analysis of SMARCD3

Pearson correlation analysis demonstrated that SMARCD3 was significantly
associated with clinical characteristics (age and sex) (Figure 7A-C). Then, GSEA for
SMARCD3 was performed, revealing 256 GO enrichment (Additional file 3) and 33
KEGG (Additional file 4) pathways (Figure 7D-E). Overall, SMARCD3 was involved
irmnmune-related pathways, for instance, the B-cell receptor signaling pathway and

T-cell receptor signaling pathway. Four immune cells displayed marked variations

234 QGtween the high and low expression groups, namely, macrophages, T helper cells,

235

236

237

Tem, and TFH cells, reflecting the strong relevance between SMARCD3 and the

immune microenvironment (Figure 7F).
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mRNA levels of diagnostic genes

The significant differences in expression of SGPP1, LPCAT1 and SMARCD3
between control and AR in GSE75011 and GSE46171 were clearly observed via
visualized data (Figure 8A-B). Moreover, the changes of the three genes expression
were consistent in blood and nasal mucosal tissues, suggesting that these three genes

are of high diagnostic value.

To verify diagnostic gene expression, we collected blood samples to assess MRNA
expression levels of three prognostic genes via RT-gPCR. The expression trends of
LPCATI1 and SMARCD3 were consistent with public databases, and the expression
was lower in AR group (Figure 9A-B). However, SGPP1 exhibited the opposite trend
compared to the results of public database, possibly due to different experimental

designs or analysis methods (Figure 9C).

Discussion

AR is an airway allergic disease with a high incidence, affecting billions of people in
the world. Nevertheless, the effect of current therapies for AR is unsatisfactory due to
its complex pathogenesis. LMRGs are involved in the maintenance of systemic
physiology and play an important role in diverse diseases, especially in malignant
tumors. Moreover, lipid-related inflammatory mediators such as prostaglandins and
leukotrienes have been implicated in AR pathogenesis.@o our knowledge, this is the

first study to identify and analyze LMRGs in AR.
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In this study, three key LMRGs most associated with AR, i.e., LPCAT1, SGPPI, and
SMARCD3, were identified, all of which are protein-coding genes. As one of the
lysophosphatidylcholine acyltransferase (LPCAT) family, the LPCAT1 protein is an
enzyme essential for phosphatidylcholine metabolism and regulation of
phosphatidylcholine composition [17]. LPCAT1 is also usedq multiple tumors’
prognosis, such as colorectal cancer, breast cancer, and hepatocellular
carcinoma[18-20]. Little is known about LPCAT1 in allergic diseases. One study
reported that LPCAT1 downregulates eosinophilic inflammation in asthmatic mice
[21]. In the current study, LPCAT1 was significantly lower in AR blood samples,
consistent with published results, suggesting that it may be essential for AR
pathogenesis. SGPP1 can catalyze degradation of S1P, who can regulate diverse
biological processes, as a bioactive sphingolipid metabolite [22]. SGPP1 is considered
to be closely related to several tumors, especially regarding chemoresistance and
radioresistance [23, 24]. There are currently no reports about the function of SGPP1
in allergic diseases, and the results in the current study are the first to show significant
downregulation of SGPP1 in both blood and nasal mucosa samples in AR patients;
conversely, RT—qPCR using blood samples showed the opposite result, possibly due
to different experimental designs or analysis methods. Thus, the effect of SGPPI1 in
AR is still unclear. SMARCD3 is a chromatin-remodeling factor and a member of the
SWI/SNF family, which presengelicase and ATPase activities and are crucial in the
transcription process of certain genes. Its related pathways include the circadian clock

and transcriptional activation of mitochondrial biogenesis [25]. SMARCDﬁraS found
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to be downregulated in AR patients in this study, but how it participates in disease
processes remains to be explored.

Immuno-infiltration analysis refers to studying the composition and quantification of
immune cells in diseases. In this study,Q follicular helper cells (TFHs) were
extremely significantly reduced in the AR group. TFHSs areQD4+ T cells that
specialize in helping B cells and are involvedﬂ a wide range of diseases. An
increasing number of theories have concluded that the antigen-related IgE response
depends on more TFHSs than Th2 cells [26, 27]. There are few reports about TFH and
SMARCD3. A microarray model system identified that the SMARCD3%ene IS
upregulated in T-cell acute lymphoblastic leukemia [28]. In this study, only
SMARCD?3 correlated with differential immune cells (TRegs and TFHs), and TFHs
and SMARCD3 were downregulated simultaneously in AR patients. Hence, it is
hypothesized that SMARCD3 participates in the differentiation of T cells.

GSEA was performed to further investigate the role of SMARCD3 in AR, the results
of which showed significant enrichment in the adipocytokineggnaling pathway,
B-cell receptor signaling pathway, and chemokine signaling pathway, among others.
The adipocytokine signaling pathway refers to a series of cascade events via autocrine
or paracrine adipocytokines, such as leptin and adiponectin, by adipocytes in the body
[29, 30]. This pathway is not only crucial for obesity, insulin resistance, and type II
diabetes mellitus but also plays an important role in inflammation and allergic
diseases. Dysregulation of pulmonary adipocytokine/insulin signaling caused by

early-onset obesity has been proven to induce asthma-like disease in mice [31]. The



304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

leptin/osteopontin axis promotes Th2 inflammation and Th17 responses in AR
through thﬁF-KB, MAPK, INK pathway and B3 integrin [32, 33]. Signaling through
the B-cell receptor (BCR) is crucial for antigen recognition and subsequent biological
effects, including B-cell activation, proliferation, and differentiation, which ensure
host defense [34]. One study@emonstrated that the BCR signaling pathway was
significantly enricheo@mong differentially expressed vesicle miRNAs in AR patient
nasal mucus, consistent with the findings in the current study and further elucidating
the importance of the BCR signaling pathway in AR development [35]. Chemokines
are small molecule-scale cytokines that recruit leukocyte subsets under steady-state
and pathological conditions; signaling pathways are activated by their binding to
receptors on the cell surface and are involved in chronic inflammatory and
autoimmune diseases. Multiple studies have shown that knockdown of the chemokine
receptoQCRB reduces eosinophilic inflammation and the Th2 immune response in

AR [36-38]. In summary, our findings are in accordance with all of the above studies.

Comparisons with other studies and contribution of the current work to existing
knowledge

To the best of our knowledge, exploration of AR based on GSE75011 and GSE46171
has mainly targeted key genes Qifferentially expressed between AR and control
samples [39-42]. In the current study, the biological significance of lipid metabolism
in AR was first systematically explored at the genetic level through these datasets.

Moreover, correlation between SMARCD3 expression and immune cell infiltration
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was investigated to elucidate the underlying role of immune-related treatment

targeting the SMARCD3 gene in exploration of AR development.

Study strengths and limitations

Three key LMRGs with high diagnostic values for AR were identified and analyzed
for the first time based on bioinformatics analysis of AR-related expression datasets.
However, the limitations of this study cannot be ignored. First, small sample sizes and
small datasets of AR may have introduced bias. Second, the mechanisms of these
genes in AR development have not been clearly elucidated. Deeper research may be
needed for the possibility of clinical use in the future.

Conclusions

In summary, this is the first bioinformatics analysis of LMRGs in AR, and three key
genes (LPCAT1, SGPP1 and SMARCD3) with high diagnostic value for AR were
identified. A highly accurate nomogram was constructed to validate the clinical value
of the gene-based diagnostic model. In addition, two of these genes were confirmed
by clinical validation and are considered potential treatment targets. In particular, the
correlation of SMARCD3 expression and immune cell infiltration was helpful to
reveal future research directions of immune-related treatment targeting the

SMARCD3 gene in AR.
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